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Temporal Cortex Neurons Encode Articulated Actions as
Slow Sequences of Integrated Poses
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Form and motion processing pathways of the primate visual system are known to be interconnected, but there has been surprisingly little
investigation of how they interact at the cellular level. Here we explore this issue with a series of three electrophysiology experiments
designed to reveal the sources of action selectivity in monkey temporal cortex neurons. Monkeys discriminated between actions per-
formed by complex, richly textured, rendered bipedal figures and hands. The firing patterns of neurons contained enough information to
discriminate the identity of the character, the action performed, and the particular conjunction of action and character. This suggests
convergence of motion and form information within single cells. Form and motion information in isolation were both sufficient to drive
action discrimination within these neurons, but removing form information caused a greater disruption to the original response. Finally,
we investigated the temporal window across which visual information is integrated into a single pose (or, equivalently, the timing with
which poses are differentiated). Temporal cortex neurons under normal conditions represent actions as sequences of poses integrated
over �120 ms. They receive both motion and form information, however, and can use either if the other is absent.

Introduction
Our ability to perceive actions and movement, and to combine
that information with the perception of who or what is acting or
moving, is fundamental to our visual experience. What compu-
tations allow for successful perception of motion and the binding
of these motions to the correct actors? What are the neural sub-
strates of these computations? Visual processing has been
roughly divided into ventral (“what”) and dorsal (“where/how”)
streams (Ungerleider and Mishkin, 1982). These two streams are
not wholly independent: neurons encoding both types of infor-
mation have been described, particularly in the superior tempo-
ral sulcus (STS) (Bruce et al., 1981; Oram and Perrett, 1996;
Jellema et al., 2004). This object/spatial distinction is, however, a
widely accepted if rough subdivision of the function of the visual
system.

Information from the dorsal and ventral streams can be en-
coded separately (Wu et al., 2004). In normal perception, how-
ever, information from different visual modalities is correctly
bound together to give coherent percepts of objects with partic-
ular shapes and colors at particular places doing particular things.
Must a binding problem (Treisman and Gelade, 1980) be solved
to rejoin form with articulated action, or might the two remain
coupled throughout the visual pathway?

Many neurons in the upper bank and fundus of anterior STS
are selective for motion direction, and some are relatively invari-

ant to visual form (Bruce et al., 1981). Some respond selectively to
specific combinations of orientation and motion direction when
monkeys observe humans walking or objects being moved in
various locations and directions (Perrett et al., 1985; Oram and
Perrett, 1996; Vangeneugden et al., 2009) Many of these neurons
even respond to static poses reached during the performance of
such actions (Jellema and Perrett, 2003). This area is reciprocally
connected with inferior temporal cortex (IT) and receives input
from more posterior dorsal-stream sources such as medial supe-
rior temporal area MST; nearby regions in the fundus of the
posterior STS also project to IT (Baizer et al., 1991). Given these
connections, it is not surprising that Gross et al. (1972) found
that virtually all observed IT neurons were sensitive or even se-
lective to motion. A region in the lower bank of the posterior STS
shows heightened blood-oxygen-level-dependent responses to
biological motion (Grossman et al., 2000; Beauchamp et al.,
2003) of point-light walkers (Johansson, 1973). A nearby region
shows a strong preference for motionless bodies relative to other
objects (Downing et al., 2001), and this preference correlates on a
voxel-by-voxel basis with preference for biological versus scram-
bled motion (Peelen et al., 2006).

In this study, we use visually rich, controlled, repeatable stim-
uli to show that temporal cortex neurons carry information
about both object form and complex actions. We explore the
nature and origins (pose-based vs motion-based) of the informa-
tion giving rise to the action discrimination of these neurons. We
also investigate the timescale of temporal integration (into a rep-
resentation of a pose) versus differentiation (between poses).

Materials and Methods
Subjects
Three male rhesus monkeys (Macaca mulatta; monkeys G, R, and S),
aged 7–11 years and weighing between 8 and 12 kg, were the subjects in
these experiments. Before the experiment, the monkeys had been famil-
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iarized with the behavioral apparatus and had
participated in unrelated studies. Monkeys had
a recording chamber implanted over the left
(tasks 1 and 2) or right (task 3) hemisphere
(Horsley–Clark coordinates: �15 anterior,
�20 lateral) and a titanium head post for head
restraint. All surgeries were performed using
sterile technique while the animals were intu-
bated and anesthetized using isoflurane gas. All
procedures conformed to the National Re-
search Council Guide for the Care and Use of
Laboratory Animals as well as the Brown Uni-
versity Institutional Animal Care and Use
Committee.

Stimulus apparatus
Stimuli were presented on a dual-processor
�86 graphics workstation, running a custom
OpenGL-based stimulation program under
Windows XP (Microsoft). The screen resolu-
tion was 1024 � 768 with a vertical refresh rate
of 100 Hz. Behavioral control for the experi-
ments was maintained by a network of inter-
connected personal computers running the
QNX real-time operating system (QSSL; QNX
Software Systems). This system provides deter-
ministic control and acquisition of button responses (with submillisec-
ond precision) and eye position and communicates with the dedicated
graphics machine using isolated high-speed Ethernet and direct digital
input/output. Experimental control and data collection of behavioral
measures were conducted using custom software. All behavioral data,
such as button responses and eye-position signals, were available for
online monitoring and stored to disk for offline analysis.

Monkeys were seated in a primate chair, with the head fixed. They
responded by means of two buttons on a board on which they rested their
hands (one button under each hand). Eye movements were recorded
using an EyeLink II video eye-tracking system, running at 500 Hz (SR
Research). Each recording session began with a simple eye-movement
task to calibrate the eye-tracking system. Aside from the stimulus display,
the recording booth was dark and well isolated from acoustic and elec-
tromagnetic interference.

Stimuli and tasks
Task 1: action recognition. Each trial consisted of the same general se-
quence (Fig. 1), beginning with a fixation spot presented against a gray
background. Once the monkey maintained continuous fixation for 450
ms, the spot disappeared. After a 500 ms blank period, one of eight fully
textured rendered three-dimensional humanoid characters (Geo-
metricks) appeared, in a neutral upright pose. Rendering relied on
Granny3D (RadGameTools). Each character subtended �6° vertically in
this neutral pose. The character remained motionless for 300 ms and
then began performing one of eight different actions (MeGa MoCap V2;
Credo Interactive). The segue into the action was blended with the neu-
tral pose, so the initial moments of motion were subtle and difficult to
distinguish. After 1300 ms of action, the character began moving back
toward the neutral pose, reaching it after a total of 1900 ms of motion. At
800 ms later, the character vanished, ending the trial. The monkey’s task
was to use two buttons to classify the actions into two preset arbitrary
(but fixed) groups. See supplemental Figure 1 (available at www.
jneurosci.org as supplemental material) for images of all eight characters
and supplemental Movie 1 (available at www.jneurosci.org as supple-
mental material) to see all eight actions performed by one of the charac-
ters. A button-press response immediately ended the trial, removing the
character from the screen. The monkey received auditory feedback after
each trial, accompanied by juice after a correct choice or a penalty delay
of 2 s if incorrect. If the monkey did not respond by the end of the trial, it
received the same feedback as if it responded incorrectly, and the stimu-
lus was saved for reuse later in the block.

Task 2: reduced action recognition. Most aspects of this task were iden-
tical to the action recognition task. However, many of the action movies

were manipulated, to either remove form information or remove motion
information. The task requirements were identical, as were the particular
actions and characters used. Only one character was used in a given
recording session, however, to allow for sufficient trials with all actions
and all types of stimuli. The character used for a particular session was
chosen by eye to maximize action discrimination, based on real-time
rasters during an initial survey using all characters and all actions.

The first new stimuli in this experiment, “strobe” stimuli, were iden-
tical to the original textured animated characters except that they were
visible only for periodic 10 ms monitor refreshes separated by blank
screens. The period of this strobe-light effect (determined by the length
of the blank between frames) took several different values in different
trials: 40, 80, 120, 180, or 260 ms. These were designed to remove motion
information, to test responses to single snapshots, and to examine the
time over which those static images could potentially combine to elicit
neural responses similar to those driven by moving stimuli. For an ex-
ample, see supplemental Movie 9 (available at www.jneurosci.org as sup-
plemental material).

The second manipulation was designed to remove form information
and to test the contribution of motion-sensitive mechanisms to the
action-discriminative neurons from which we recorded. Construction
of these stimuli, “formless dot fields,” is fully described by Singer and
Sheinberg (2008). Essentially, these stimuli appear at any instant to be
uniform random fields of �2000 2 � 2 pixel white dots. The dots persist
for only 40 ms, and those that are situated on the screen in a position
above the underlying animated stimulus (which is not visibly rendered)
move as the stimulus moves. Although conveying essentially nothing about
form, these stimuli contain motion information almost identical to the orig-
inal stimuli. Supplemental Movie 10 (available at www.jneurosci.org as sup-
plemental material) shows an example of such stimuli.

Finally, we used stimuli identical to the formless dot fields except that
the foreground dots (over the figure) and the background dots were
rendered in two different colors. This enabled easy segmentation of fig-
ure from ground, without providing any local form or texture informa-
tion. We also showed strobed versions of these colored dot field stimuli,
with the same frequencies as for the fully textured stimuli. Supplemental
Movie 2 (available at www.jneurosci.org as supplemental material)
shows examples of all manipulations used in this task.

Task 3: clipped action viewing. Both the monkeys’ behavioral task and
the stimuli were new in this experiment. After the monkey fixated on a
point at the center of the screen, a rendered image of a hand (subtending
�6° of visual angle vertically) appeared. The hand remained motionless
for 300 ms and then performed an action for 1200 ms before returning to

Figure 1. Sequence of events in the action recognition and reduced action recognition tasks. The monkey initiated the trial by
fixating for 450 ms on a central fixation point. This then vanished, leaving a blank screen for 500 ms. A humanoid figure (possibly
subject to one of the manipulations in the reduced action task) appeared and stood in a neutral motionless pose for 300 ms before
beginning an action. This action lasted 1900 ms or until the monkey responded; if the monkey still had not responded by the time
the action completed, the figure remained motionless in the neutral pose for up to 800 ms longer.

3134 • J. Neurosci., February 24, 2010 • 30(8):3133–3145 Singer and Sheinberg • Temporal Coding of Actions



its initial neutral pose and stopping. During this time, the monkey was
required to keep its gaze on the hand; excursions beyond �0.5° from the
extent of the hand aborted the trial. After the hand stopped moving, two
peripheral targets appeared, one on each side of the hand; the monkey
was then free to look where it wished and had to respond based on a
change in one of the targets. The behavioral aspect of the task ensured

that the monkey was attending to the task but is
irrelevant to this experiment. For practical pur-
poses, one may consider the monkeys to have
performed viewing-only tasks. Because of the
range of stimulus manipulations used in this
experiment (see below), we decided not to
teach the monkeys to respond differentially to
the particular animated sequences; we did not
want to bias them to attend to particular as-
pects of the actions. Our interest here was to
better understand how single-neuron responses
were affected by altering the temporal dynamics
of the action sequences.

There were two basic actions that the hand
could perform, spelling out either “LW” or
“WL” in American Sign Language. These ac-
tions were identical but with the temporal or-
der of individual frames reversed. There were
also “clipped” trials: the movie of the action
was broken up into short clips, and each clip
was played backward while maintaining the
overall order of the clips. One may conceptual-
ize this manipulation by imagining a movie
consisting of several reels, each corresponding
to a clip. In the normal version of the movie,
the reels are played in the correct order. In the
clipped version, the same sequence of reels is
used, but the film has been wound backward
on each reel so that each reel starts at the end
and plays in reverse. We used clip lengths of 4,
8, 12, 20, 30, and 60 frames (shown on a 100 Hz
monitor), dividing up the 120 frames of the
overall action. For example, with a clip length
of 60 frames, the first half of the action played
backward, followed by the second half running
backward. Figure 2 schematizes full-motion
and 30-frame (300 ms) clipped versions of
both actions. In this way, we constructed a
range of stimuli between the two basic actions:
using 40 ms clips looks like a slightly jittery
version of the basic action, whereas using 600
ms clips is equivalent to playing the opposite
basic action but playing the second half of it
first (for examples, see supplemental Movie 3,
available at www.jneurosci.org as supplemen-
tal material). We also presented formless dot
field versions of these stimuli at all clip lengths.

Recording apparatus
In the first two tasks, at the beginning of each
recording session, a 25 gauge guide tube was
inserted to a level just below the dura. A single
electrode was advanced through the guide tube
using a micropositioner (David Kopf Instru-
ments). In the third task, single electrodes were
lowered through chronically implanted guide
tubes that could be pivoted to provide access to
an extended region of cortex. Electrodes were
composed of a tungsten core with glass coating
(Alpha Omega). Neural signals were amplified
(model A-1; BAK Electronics), bandpass fil-
tered between 100 Hz and 12 kHz (model 3364;
Krohn-Hite), and digitized at 34.375 kHz. We
recorded from single units or small groups of

units. The signals were thresholded and (when more than one unit was
recorded at once) sorted using “wave_clus” (Quiroga et al., 2004).

In the first tasks, neurons were located in both banks of the STS in both
monkeys and also in the inferior temporal gyrus in monkey S. Figure 3
shows recording locations in near-coronal magnetic resonance imaging

Figure 2. Schemata of some of the stimuli used in the clipped action viewing task. The two basic full-motion actions are shown,
progressing through several representative poses, along with the two stimuli broken up into 300 ms clips that are then reversed.
Short vertical arrows indicate abrupt jumps from one pose to the other, happening between two frames. Other arrows indicate
smooth transitions between poses. Arrows of the same color connect the same poses; if both stroke and color are the same, the
transition is in the same order, whereas two same-colored arrows with different strokes indicate that the two motions are reversals
of each other.

Figure 3. Near-coronal MRI slices showing the approximate locations from which neurons were recorded in monkeys G and S.
This included both banks of the left STS in both monkeys, left-hemisphere IT in monkey S, and IT and the lower bank of the STS in
monkey G’s right hemisphere. Neurons were �12 mm (for monkey G’s left hemisphere) and 15 mm (for monkey S) anterior of the
interaural plane, as shown in the insets. Monkey G’s right hemisphere recordings (dashed ellipse) were �14 mm anterior of the
interaural plane, 2 mm anterior of the region highlighted here.

Singer and Sheinberg • Temporal Coding of Actions J. Neurosci., February 24, 2010 • 30(8):3133–3145 • 3135



(MRI) slices, �12 mm (for monkey G) and 15 mm (for monkey S)
anterior of the interaural plane. We removed the recording hardware
from monkey S after the first task so that only monkey G performed the
second task, during which we recorded from the same site as in the first
task. In the third task, we recorded from deep in the STS and in IT in
monkey G, �14 mm anterior to the interaural plane. Monkey R also
performed the third task; we do not have an MR image of monkey R’s
brain, but based on the stereotaxic coordinates of the chamber and two
atlases of macaque brains (Paxinos et al., 2000; Saleem and Logothetis,
2006), we estimate that these cells were in the upper bank of the STS, in
the superior temporal polysensory area TPO and/or area TAa in the
superior temporal gyrus, �12 mm anterior to the interaural plane.

Data analysis
The responses of the neurons we observed tended to be more diverse,
more extended, and more robust than is commonly seen using flashed
static images. Most stimuli elicited responses, and the responses some-
times persisted for several hundred milliseconds after the stimuli disap-
peared. This is in contrast to the typical selective phasic responses we
observed to flashed static images while lowering the electrode and hunt-
ing for visual neurons. For these reasons, the conventional notion of
“selectivity” (poor response to most stimuli and a strong response to the
selected stimulus) is not useful. We speak instead of discrimination or
information: are the firing rates of these neurons able to tell us what the
monkey is looking at? Our analyses reflect this; instead of finding the
stimulus for which each neuron was selective, we examined the capability
of populations of neurons to represent various aspects of the stimuli. We
also tested the generality of these representations and the importance of
different stimulus properties in their construction, comparing responses
between different stimulus conditions.

Poisson models. To demonstrate how effectively even relatively small
populations of cells could differentiate between the individual stimuli
presented, we developed and tested a model based on the populations of
neurons recorded from in each monkey in the first two tasks. We treated
each unit as a rate-varying Poisson process; the rate parameter of such a
process can be estimated by the mean observed rate. For each unit, for
each trial, we determined the spike counts in each 40 ms bin after stim-
ulus onset. We chose 40 ms because it maximized performance of the
model, although bin sizes between 5s and 100 ms yielded qualitatively
similar results and nearly the same level of performance. Then, for each
unit and for each distinct stimulus, we calculated the average spike count
in each bin, leaving one trial out for verification purposes. In the action
recognition task, there were 64 distinct stimuli (8 actions � 8 characters);
in the reduced action recognition task, there were only eight actions,
because we only showed one character on any given day. There were
typically only a small number of trials for each condition for each neuron;
to overcome problems with unusual bins having an inordinate impact on
the performance of the model, we processed the resulting (bin-indexed)
vectors. Each vector was convolved with a Gaussian kernel with an SD of
one bin. Then, any binwise firing rates less than the mean firing rate
during the 500 ms before the onset of the stimulus were averaged with
this baseline rate. At this point, we had estimates of the rate for each unit,
at each time bin, in response to each of the 8 or 64 stimuli. Given a
Poisson process with rate parameter � per unit time, the probability of

observing n events in one unit of time is
e���n

n!
. The probability of ob-

serving one of the left-out spike trains from a unit, given that a particular
stimulus was shown, is the product of this term across all time bins.

No more than a few of these units were ever recorded simultaneously.
However, as long as there are no long-term changes over time in the
functioning of these populations of neurons, we can consider together all
neurons from all recording sessions as one pseudo-population. In doing
so, we treat the left-out trials of all the neurons, for each stimulus, as
having been responses to the same presentation of that stimulus. Previ-
ous work has found no loss of information in comparing IT neuron
responses across days in this manner (Anderson et al., 2007). It is then
possible to construct a confusion matrix for the population of cells, plot-
ting the probabilities assigned (as described above) to each of the 8 or 64
stimuli against each of the 8 or 64 left-out trials. The diagonal of the

matrix indicates how reliably the responses to a given stimulus identify
that stimulus, whereas the entries off the diagonal give a measure of the
similarity in pseudo-population responses to the two stimuli indexed.
Such a confusion matrix is based on a specific set of left-out trials; differ-
ent sets of left-out trials yield different confusion matrices. By creating
many confusion matrices and multiplying them together, we can esti-
mate the information that these neurons are intrinsically capable of rep-
resenting or simulate what a larger population (consisting of many
neurons similar to each recorded neuron) might be able to do on a single
trial. We evaluated the performance of each model by counting the num-
ber of left-out trials that were assigned the highest probability by their
respective Poisson processes. In addition to collapsing across all time bins
in the entire trial, we also looked at the accumulation of information
(that is, the increase in performance) as successive bins were added to the
model, increasing the temporal window of the model one bin at a time.

Evaluating the performance of these models is a way of measuring
similarity: in these cases, similarity between individual (left-out) re-
sponses to each stimulus and the average responses to each stimulus. In
the reduced action recognition task, we also used these models to quan-
tify the similarity of responses between conditions. We did this by using
models created from one set of data to evaluate trials from another.

Local and global similarity scores. There were only two basic actions in
the clipped action viewing task. Creating a classifier that successfully
discriminated between them would tell us very little. Moreover, we were
interested in comparing responses to a given stimulus at particular times
with responses to other stimuli at different times. Specifically, are the
responses to a given frame of animation more influenced by temporally
local context (the order of frames within the clip, or motion information)
or by the global action context in which the frame occurs (that is, the
order of the clips: LW vs WL)? We therefore followed a different ap-
proach for analyzing these data, calculating local and global similarity
scores. These tell us how similar the responses are to visually identical
frames when they appear in the same local context or in the same global
context, respectively. At clip durations for which the local similarity score
is higher, information within clips exerts more influence on the re-
sponses to the frames of an action. When the global similarity score is
higher, the positions of the frames within the overall action exert a greater
influence.

For each neuron, for each basic action, and for each clip length, we
binned the spike counts into 1 ms bins. These histograms were smoothed
with a Gaussian window of 5 ms SD and then rebinned into 10 ms bins.
Each such bin can be indexed by basic action, time bin, and clip duration.
For each bin, we exhaustively calculated its absolute differences from all
other bins. We used these differences to calculate a similarity value for
each comparison, leading to local and global similarity scores for each
clip length. For a given clip length, let Di, j

same refer to the sum of the two
absolute differences between same-action conditions at bin i in the full-
motion action and bin j in the clipped action. For example, D31,19

same com-
pares bin 31 of the full-motion LW action to bin 19 of the clipped LW
action (for the clip length being considered), adding that difference to the
difference between bin 31 of the full-motion WL action and bin 19 of the
clipped WL action. Let Di, j

opp refer to the corresponding sum of the two
differences between opposite-action conditions. We then defined our simi-

larity value for the same-action comparison as
Di, j

opp � 0.025

Di, j
same � 0.025

and for

opposite-action comparisons as its reciprocal,
Di, j

same � 0.025

Di, j
opp � 0.025

. These sim-

ilarity values for all i,j yield a similarity matrix, indexed by time in full-
motion trials and time in clipped trials. There is one such matrix for
same-action comparisons and one for opposite-action comparisons
(corresponding values in these two matrices are reciprocal).

Di,j
same is low when the firing rate of the cell is low or when the responses

in the ith bin of the full-motion action and the jth bin of the clipped
action are similar. In the latter case, this similarity leads to a low Di,j

opp

also, unless the similarity is particular to the same-action comparison.
Therefore, the similarity value for same-action comparisons should be
high if and only if Di,j

same is low because of something particular to the
same-action comparison. Likewise, opposite-action similarity should be
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high if and only if Di,j
opp is low but Di,j

same is not. The value of the constant
added to the numerator and denominator (0.025) is somewhat arbi-
trarily chosen such that it carries the same weight as a 25 Hz firing rate;
other values work without qualitatively changing the results. It serves to
prevent similarity values from becoming extremely high solely because of
a low denominator and to help compensate for increased variance lead-
ing to increased rate differences at higher firing rates.

Relative to a full-motion action, the clipped versions of the opposite
action contain all the same motion (except for the abrupt transitions
between clips), but the clips are in the reverse order; the global sequence
of poses is reversed. Conversely, full-motion and clipped versions of the

same action contain the same overall sequences
of general poses, but within each clip the local
motion is reversed. By comparing the same-
action versus opposite-action similarity values
for visually identical frames, we can see the ef-
fect of stimulus history on the responses to
those frames. Higher similarity values between
matching frames in same-action comparisons
indicate that a correct progression of general
poses through the action is more important to
the representation of the action. Higher simi-
larity values between matching frames in the
opposite-action cases indicate that the context
within the clip of that frame is more important.

To calculate the local and global similarity
scores for each clip length, we sum the similar-
ity values corresponding to the responses to
visually identical frames in the opposite-action
and same-action comparisons, respectively.
Visually identical frames of animation, blurred
slightly and shifted to account for 130 ms of
latency, are mapped in Figure 4 for same-
action and opposite-action cases. We used
these maps as masks, multiplying them point-
wise by the similarity matrices and summing
the results. This gives us two values for each
neuron, a local (intraclip) similarity score and
a global (interclip) similarity score. Both scores
are derived from comparisons of identical
frames in the two conditions, so any differences
should be attributable to differences in context
(motion in the correct direction versus the cor-

rect general sequence of poses). Figure 5 illustrates this process for one
example cell, using trials with 300 ms clips.

Results
Learning and behavior
Monkeys G and S learned the action recognition task; they were
first trained with only two of the eight characters. After three
consecutive 64-trial blocks with 95% or better performance,
those characters were replaced with two new characters. The
monkey then trained on these two characters until the criterion

Figure 4. Masks relating identical frames of animation in same-action (top) and opposite-action (bottom) cases. Identical frames were shifted forward in time by 130 ms to account for latency
to the neurons from which we recorded, and the masks were blurred slightly. For each neuron, these masks were multiplied pointwise by the same-action and opposite-action similarity score
matrices, and the results were summed to give global and local similarity scores.

Figure 5. Calculation of local and global similarity scores for one sample neuron at 300 ms clip length. For the local similarity
score, the matrix of opposite-action similarity values for this neuron is calculated. This is then multiplied pointwise by the appro-
priate mask, which selects only those pairs of times at which the same animation frame is driving both neurons. The values in the
resulting matrix (most of which are 0 because of the mask) are summed, yielding the local similarity score. The global similarity
score is calculated with the same technique but starting with the similarity values from same-action trials and using a different
mask.
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was met. The last two pairs of characters
were taught similarly. After a monkey
reached this high-performance threshold
on all characters, we began electrophysio-
logical recordings. Blocks during record-
ing sessions were also 64 trials, one for
each combination of character and action.

Both monkeys were able to learn to
perform the task extremely well. Learning
all eight actions as performed by the first
pair of characters took 3–9 d, and succes-
sive pairs of figures generally took succes-
sively less time to reach criterion. The
third and fourth pairs took approximately
1 d each, for both monkeys (Fig. 6). This
suggests that not only were the monkeys
able to perform the task, they were able to
transfer what they learned about an action
to its performance by a new character.
During the main experiment, after train-
ing, both monkeys did very well at all
action/character combinations. Overall
performance was above 90%. Reaction times were 1048 � 229 ms
for monkey S and 869 � 121 ms for monkey G (mean � SD).
High performance in this task indicates that the eight actions are
both perceptually and cognitively distinct and that the monkeys
can respond invariantly with respect to the acting character.

Monkey G learned the reduced action recognition task, in
which stimuli consisted of one character performing the eight
original actions under various conditions to remove different
kinds of information from the stimuli. Strobe conditions re-
moved motion information, formless dot fields removed form
information, and colored dot fields removed texture and local
form information, as well as motion information when the col-
ored dot fields were also strobed. The monkey was able to per-
form all versions of the task at better than chance level and was
near its peak performance in each condition after the first day of
exposure to the new tasks. When faced with nonstrobe stimuli, it
responded to colored dot fields almost as accurately as to fully
textured stimuli. In both cases, performance fell off as the strobe
period increased but remained well above chance. Formless dot
field stimuli proved more difficult; the monkey performed well
on six of eight actions but virtually always misclassified the re-
maining two. Behavioral performance is summarized in Figure 7.

The monkey’s rapid learning of the reduced action recogni-
tion stimuli, comparable in speed with its learning of new char-
acters performing the same actions in the action recognition task,
suggests that it recognized the old actions despite the visual dif-
ferences in the new stimuli. The monkey’s extremely poor per-
formance with two of the left-button formless dot field actions
could arise from mistaking those actions for other actions with
right-button mappings or from complete failure to perceive the
actions combined with a default right-button choice. The latter
case is unlikely, however; reaction times for the different right-
button actions appear not to be drawn from the same population
(Kruskal–Wallis test, p � 0.001). The monkey is not blindly
pressing the right button except when one of the two left-button
actions that it is able to identify appears. Reaction times for the
two consistently misclassified actions are marginally different
(means of 1194 and 1176 ms; Kruskal–Wallis test, p � 0.06). The
monkey’s decreased performance at longer strobe periods is also
somewhat noteworthy. The same sequence of frames was shown
in each trial with a given strobe period, and, even at the slowest

period, the monkey would see two or three frames that unambig-
uously determined which action was being performed. The mon-
key could have simply learned one diagnostic frame for each
action at each strobe period; we have seen monkeys learn many
more difficult discrimination tasks. That it did not is another
piece of evidence that it was attending to and basing its responses
on the actions and that its decreased performance at longer peri-
ods was attributable to a failure to interpret an extremely sparse
sequence of poses as a known action.

Monkeys G and R learned the clipped action viewing task.
Neither monkey had difficulty maintaining fixation within the
required window. Moreover, they executed the behavioral task
at above 90% performance. This does not bear on the current
study except as a demonstration that they were engaged in the
stimuli.

Figure 6. Learning curves for both monkeys in the action recognition task. Monkeys were trained on successive pairs of
characters. Once a monkey reached criterion on a given pair (95% performance in 3 successive 64-trial blocks) that pair was
set aside and the new pair was introduced. In both monkeys, the first pair took the longest, and the last two pairs were
learned very quickly.

Figure 7. Behavioral performance in reduced action recognition tasks. Performance is di-
vided up by strobe period, with full-motion stimuli indicated by a 10 ms strobe period (as the
refresh rate of the monitor was 100 Hz). Black bars indicate proportion correct in trials with
textured characters, dark gray bars indicate proportion correct in trials with colored dot stimuli,
and the single light gray bar shows performance with formless dot fields (white dots). There
were no strobed versions of these last stimuli because they contained only motion information.
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Neural responses in action recognition task
We recorded from 107 units in monkey S and 69 in monkey G.
We considered for additional analysis those cells for which the
number of spikes in at least one of the two 600 ms windows
between 100 and 1300 ms after stimulus onset carried significant
information about the stimuli. Significance was determined with
a permutation test at the p � 0.05 level, using the mutual infor-
mation between spike count and stimulus as the permuted statis-
tic. We calculated mutual information using the algorithm for the
calculation of “Icount” with the classical debiaser as described by
Victor (2002). This was done for both characters and actions,
giving each cell four chances to pass the permutation test at an
uncorrected p � 0.05 level. With this criterion in place, 55 cells
from monkey S and 50 from monkey G remained. Note that this
excluded many cells that were visually responsive but did not
discriminate between the stimuli we used.

Further breaking down the results of this permutation test
also reveals that we did not simply record from two different
populations of cells with response properties suited exclusively
for either character or action discrimination. In monkey G, 33 of
50 units carried information about both action and character.
This left only three that carried significant information about
action but no significant information about character and 14 that
carried character but not action information. In monkey S, 18
units carried significant information about both character and
action, leaving six that only discriminated between actions and 31
that showed only character information.

The number of neurons that carried information only about
action was no greater than would be expected by chance, in line
with the idea that most cells in this region of the STS and IT are at
least somewhat responsive to form. Nevertheless, more than half
of all informative cells did carry information about actions. Al-
though the majority of these neurons (considering both monkeys
together) were in the STS, many of the action-discriminative cells
were located in IT (and many of the action-discriminative STS
neurons were in the lower bank of the STS, part of temporal
cortex area TE).

Figure 8 shows mean spike rates for one example unit, broken
up by character, by action, and by both factors. Each character/
action combination was presented 20 times, for a total of 1280
trials. Traces at the end of each row and column show the means
for the associated character or action, respectively. Green lines
indicate stimulus onset, and red lines in the collapsed means
indicate average reaction times for each character or action. This
unit was discriminative for character, for action, and for the spe-
cific combination of character and action. Other units exhibited
varying response patterns, onset and offset latencies, and patterns
of discrimination, with no clear categories or types of responses
emerging.

We evaluated trial data with rate-varying Poisson models,
whose rates are derived from the data not used in the evaluation.
This let us compare similarity of response between the evaluated
trials and the averaged responses, to both the same stimuli (yield-
ing a measure of reliability of response encoding) and different

Figure 8. Mean firing rates from one sample cell (20 trials per stimulus, 1280 trials total). The main 8 � 8 grid of traces shows the mean firing rate in response to each specific combination of
character and action. Characters are grouped by row and actions by column. The plots at the end of each row and column show the mean response for that character or action, respectively, collapsed
across the other factor (160 trials each). Green lines indicate stimulus onset, and red lines indicate mean reaction time for a particular character or action.
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stimuli (yielding a measure of similarity of response to the two
different stimuli). Figure 9 shows graphically the product of 50
confusion matrices for each monkey, derived from 50 random
collections of left-out trials. Each row represents one stimulus
that a given trial might have contained; each column represents
one left-out trial (actually, one such trial per neuron). The color
at each position indicates the evaluation by the model of the
probability that the spikes observed in trial of that column would
be seen if the stimulus associated with that row were shown.
Probability ranges from blue (low) through yellow to reddish
brown (high). There is a clear series of 8 � 8 red blocks running
down the diagonal. This corresponds to high probability assigned
to the correct character. There is also, on the main diagonal, a
width-one line of high probability corresponding to the correct
model and action. Other width-one diagonal lines faintly visible
off the main diagonal indicate relatively higher probability for the
correct action but the incorrect character. Notably, the single
highest probability in a column (i.e., for a particular left-out trial)
corresponds to the correct stimulus in 38 of the 64 trials for
monkey S and 64 of the 64 trials for monkey G. Although this high
performance comes from 50 confusion matrices, it holds up well
even with only five.

Rather than collapsing across all time bins in the entire trial,
we can look at the increase in performance as the probabilities of
successive time bins are taken into consideration, thereby discover-
ing when these neural populations begin to represent information
about the viewed stimuli. Figure 10 shows average performance
(averaged across 200 single realizations of the model) as the num-
ber of bins used increases. A very rapid initial rise corresponds to
information about the character, followed much later by infor-
mation about the action. Note that these curves were derived
from individual confusion matrices, and so final performance
here gives an indication of how well each of the confusion matri-
ces that were used to make Figure 8 performed on its own. This
plot also shows performance at identifying only the model and
only the action, disregarding the other factor. Mean reaction
times differed by approximately one bin width between different
stimuli, and performance is good considerably before the mon-
keys typically responded, so the performance of the model is not
simply an artifact of varying stimulus presentation durations or
disappearance times. The most informative individual 40 ms bins
(data not shown) were on average able to correctly identify 8 of 64

stimuli in monkey S and 25 of 64 in monkey G; chance perfor-
mance would be 1 of 64. Even small populations of neurons are
able to represent these complex stimuli using population rate
codes over short windows of time.

Neural responses in reduced action recognition task
During the reduced action recognition task, we recorded from 23
units from monkey G in the same region as in the previous task;
these exhibited the same varied responses to full-texture full-
motion stimuli observed in the action recognition task. Because
of the small sample size and the high visual responsiveness of the
cells, we used the entire population of neurons for analysis. Re-
sponses to colored dot fields tended to resemble responses to fully
textured stimuli. In both cases, when tested with strobed stimuli,
we found that, as the strobe period increased, responses became
less discriminative and more phasic, with individual bursts of
activity often visible at longer periods. The white formless dot
field stimuli tended to drive only minimally discriminative re-
sponses, although they were robustly visual. Figure 11 shows
peristimulus time histograms for one example unit.

The neurons from which we recorded exhibit properties sim-
ilar to the properties ascribed by a functional MRI (fMRI) study
to the lower superior temporal (LST) area (Nelissen et al., 2006);
our recording sites were several millimeters more anterior than
those described by Nelissen et al., although the difference might
be partially explained by our monkey’s 2:1 size advantage. Com-
paring the locations of their LST and our recording sites relative
to nearby landmarks, it seems possible that at least some of the
cells from which we recorded were located in this area.

To analyze the resulting data more quantitatively, we con-
structed and tested Poisson models as in the action recognition
task. Because we only used one character at a time, the models
only have to distinguish between the eight actions. Models con-
structed from fully textured and from colored dot field full-
motion trials do well at classifying their respective left-out trials,
correctly identifying an average of approximately six of the eight
actions. As strobe period increases, the resulting models perform
less well but still considerably above chance (averaging four or

Figure 9. Confusion matrices for models based on neuron populations from monkey S (left)
and monkey G (right). Each column represents the left-out trials for one of the 64 stimuli used;
each row represents the 64 different stimuli that the model might choose as having generated
the left-out trials. High probability is indicated by deep red. Stimuli are sorted first by character
and then by action; 8 � 8 blocks of high probability on the main diagonal indicate correct
classification of the corresponding character, and single-pixel diagonal lines of high probability
indicate correct classification of action. High probability on the main diagonal indicates good
performance at both character and action.

Figure 10. Plot showing mean cumulative performance of one Poisson model, as the num-
ber of 40 ms bins increases. Blue is for monkey G, and red is for monkey S. Solid lines indicate
performance at predicting both character and action (chance performance is 1 of 64 correct);
long dashes indicate performance at predicting action only, and short dashes indicate perfor-
mance at predicting character only (both with chance performance at 8 of 64).
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more correct, depending on period). The model generated from
formless dot field stimuli performs worse than any of the other
models, although it still reaches an average performance of �3.5
correct classifications by the end of the 1320 ms used. Figure 12
shows cumulative performance averaged across 200 instances of
each model, for all these models. In all cases, performance is
significantly above chance (t test and permutation test, p � 0.01).

We also used these Poisson models to compare population
codes between different stimulus types. Because we were inter-
ested in comparing the effects of removing form information and
removing motion information, we used the full-motion colored
dot field models as the baseline point of comparison. Using these
models, we tested data from trials at the five strobe frequencies
with colored dots (bringing the stimuli successively farther from
full motion) and the formless dot field stimuli (removing all ex-
plicit form). These models classified strobed colored dot stimuli
fairly well, with decreasing performance as strobe period in-
creased. They performed barely (but significantly; t test, p � 0.05)
above chance level on formless dot field trials and at the longest
period of colored dot fields. Performance, averaged across 200
instances of each model, is shown in Figure 13. Performance
levels at all conditions are significantly different from each other
except for 260 ms strobed colored dot fields and formless dot

fields, for which the poor performances
are indistinguishable (permutation test,
p � 0.2).

The model based on full-motion col-
ored dot field trials performs marginally
above chance even when applied to the
longest period (260 ms) colored dot field
trials, indicating that even the phasic
stimulus-locked bursts of activity in the
strobe trials have something in common
with the responses to full-motion stimuli.
In fact, this model generalizes to 260 ms
colored dot field trials better than the
model based on full-motion textured tri-
als generalizes to 120 ms textured strobe
trials (data not shown). This counterin-
tuitive result may be attributable to the
engagement of static object-recognition
processes, based on detailed form and tex-
ture information, in the case of fully tex-
tured low-frequency strobe flashes. These
could overpower the action information
implicit in sparse sequences of poses. In
the absence of such rich form informa-
tion, however (i.e., in the colored dot field
case), all that remains is this limited pose
information, which engages the same ac-
tion processing mechanisms as in the full-
motion version.

Such an explanation could also explain
the different quality of the neural response
to formless dot fields. These stimuli con-
tain the same motion information as col-
ored dot fields and essentially the same
motion information as fully textured ac-
tions but drive responses that are so dif-
ferent from the responses to naturalistic
actions that models built off of responses
to naturalistic actions perform extremely
poorly when applied to formless dot field

trials. Local motion information present in all three types of stim-
uli may only be strong enough to drive the responses of these cells
(or might only be represented at all) when form/pose informa-
tion is absent. It is also possible that the neurons from which we
recorded never receive direct input of motion information and
that even the observed discrimination of formless dot fields arises
from pose information received from some source of structure-
from-motion information (Orban et al., 1999).

Neural responses in clipped action viewing task
Only successfully completed trials were considered for analysis.
We recorded from 60 neurons at 29 sites in monkey G and 63
neurons at 28 sites in monkey R. We excluded neurons for which
a Poisson model classifier (as described above in Materials and
Methods, Poisson models) was unable to discriminate between
full-motion versions of the two actions with at least 95% cer-
tainty. This left 43 neurons from monkey G and 53 from monkey
R. Any difference in the character of the neural responses between
monkeys was overshadowed by differences between individual
neurons; we therefore combined the two monkeys’ data for all
analyses. Figure 14 shows one example unit, which was most
active when the hand moved through the “L” phases of actions.
This sort of response, driven by one or the other main phase of

Figure 11. Responses of one unit in the reduced action recognition task. The top block of peristimulus time histograms shows
responses to the eight actions performed by fully textured characters at six increasing strobe periods. The middle block shows
responses to the actions rendered as colored dot fields, at the same strobe periods. The bottom row shows responses to the actions
rendered as formless dot fields. Green lines indicate stimulus onset. Calibration at the top left gives scales for firing rate and time
in all plots. Note that, at longer strobe periods, responses to individual image onsets are apparent.
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action, was common but not the only sort we observed. Data
from this neuron were used in Figure 5 as well.

Figure 15 shows means for both similarity scores plotted at the
six clip lengths tested. An ANCOVA failed to find any linear
dependence on clip length when considering local and global
similarity scores combined together ( p � 0.1). With increasing
clip length, local similarity scores increased and global similarity
scores decreased relative to the combined population trend ( p �
0.0001). Paired t tests at each clip length confirm that the local
similarity scores and the global similarity scores are significantly
different ( p � 0.01) at all clip lengths except for 200 ms ( p �
0.5). The same analysis of the data from the formless dot field
versions of the stimuli revealed no results that were systematically
significant other than a very small increase in the similarity scores

(taken together) as clip length increased ( p � 0.05). That local
and global similarity scores in formless dot field trials are so poor
and so similar suggests that these neurons are not able to extract
very much information from these stimuli. This is not surprising,
especially at the shorter clip lengths; it is difficult to establish and
maintain correspondences between frames when the entire dis-
play changes radically several times per second. These values may
be seen as liberal estimates for the similarity scores of stimuli
between which these cells are unable to discriminate.

The data indicate that, at clip lengths shorter than 200 ms,
frames in full-motion trials elicit responses more like their
matches in clipped trials with the same global pose progression.
At clip lengths longer than 200 ms, however, responses to frames
in full-motion trials resemble more the responses to their
matches in clipped trials with the same local motion. Temporal
context is important in determining neural response to a partic-
ular frame. Below 200 ms, the more important context is pro-
vided by what happens between clips; with long clips, the content
within each clip exerts more contextual influence on response to
each frame. Especially when taken with the results of the reduced
action recognition task, this strongly suggests that neurons in the
temporal lobe are integrating across �120 ms to build pose rep-
resentations. The sequence of these poses then drives the action-
specific response. As clip length increases in this experiment,
individual clips become long enough that they contain multiple
such poses. Eventually, the sequences of poses within each clip
become more important than the between-clip sequences, caus-
ing the primacy of within-clip context seen at the longest clip
lengths.

Figure 12. Performance of models based on reduced action recognition task trials. Each bar
gives the mean number of actions correctly identified (of 8 actions, in total) by the model
generated from trials of its respective stimulus type, tested with that same type of trial. Means
were calculated across 200 instances of each model; they give an indication of how well this
population of cells can encode actions, given stimuli with different strobe frequencies and
rendering styles.

Figure 13. Generalization of the model generated from full-motion colored-dot stimuli. This
model was used to evaluate trials with colored-dot stimuli at different strobe periods, as well as
trials in which formless dot field stimuli were presented. Each test was repeated 200 times, with
a random selection of trials, and the mean performance is indicated here.

Figure 14. Responses of one sample neuron in the clipped action viewing task. Large plots
show the responses of the cell to the two actions, collapsed across all treatments (full-motion
and all clip lengths). The small plots to the right show the same responses, split up by clip length.
In order, from top to bottom, these are 10 (full-motion), 40, 80, 120, 200, 300, and 600 ms.
Responses are relatively invariant to clip length, driven by the “L” phase of the action regardless
of how it is presented.
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Selectivity and invariance
As noted previously, the neurons from which we recorded gen-
erally exhibited complex and sustained patterns of activity in
response to our stimuli. While searching for neurons, we flashed
static isolated images on the monitor in front of the monkey and
typically observed stereotypical patterns of object selectivity. As
soon as we found a visually responsive cell, we would attempt to
achieve a stable signal. This done, we would begin the experi-
ments. We did not preselect cells by any criterion other than
having a visual response. We were therefore surprised at the rich
variety of complex and extended responses we observed.

Although these neurons were not selective for moving charac-
ters in the conventional sense of responding more robustly to one
stimulus than to all the others, they clearly carried information
about the stimuli. We observed invariance for both character
identity and action. A large minority of cells carried significant
information about what character was shown but were invariant
to the action performed. Although only a small number of neu-
rons discriminated actions while remaining completely invariant
to character identity, the cells that carried information about
both stimulus dimensions generally showed common response
features that were preserved regardless of which character was
performing them (Fig. 8).

Discussion
In this study, we have raised and suggested an answer to a funda-
mental question about the neural underpinnings of an important

aspect of visual perception: where and how are viewed articulated
actions represented in the brain? We have shown that neurons in
the superior temporal sulcus and inferior temporal cortex can
represent not only the static form information with which they
are often stimulated experimentally but the dynamic articulated
action information that is so important in natural viewing con-
ditions. Although they can extract information about actions
from motion input, it is not the predominant source of action
information. Instead, actions appear to be encoded as sequences
of poses derived from visual form input integrated across 100 ms
or more.

Fundamentally, any stimulus shown on a cathode ray tube
monitor is a sequence of snapshots; at refresh rates of 100 Hz,
however, such displays appear no different from true motion.
The visual system ignores the jumps between frames. As anyone
who has ever watched poorly animated cartoons can attest, even
much lower frame rates with noticeable jumps between poses are
sufficient to give a strong impression of action, without a com-
pelling local motion percept. The results of the reduced action
recognition task show that temporal cortex neurons can encode
actions using either kind of information.

In the cell population from which we recorded, the removal of
form information disrupts normal action representations much

Figure 16. A, When the reversed clips are short (thick arrows), the information from the
small number of similar video frames in each clip is integrated into a single pose representation
(stick figure). Neural responses are driven by the sequence of these poses (thin arrows). B, As
clip length grows, more frames are integrated into a smaller number of pose representations.
C, The neural representation of a sufficiently long clip begins to resemble the representation of
the matching part of the reversed action. This could be attributable to the development of a
motion-based representation (motion vectors between the poses on top). Our results, however,
suggest that the frames within such long clips are integrated into several poses (bottom), the
sequence of which matches the sequence in the appropriate segment of the reversed action.

Figure 15. Local and global similarity scores averaged across all action-discriminative cells
in the population. Both scores are derived from comparisons of neural responses to matching
frames of animation. The local similarity score was calculated by comparing responses to frames
with identical local context, up to the limit of the clip size; global similarity score comes from
comparing responses to frames in clips in which the local (within-clip) context is reversed but
whose overall sequencing in the course of the action (between clips) matched. All differences
are significant except for 20 frame (200 ms) clips. The dashed traces show the same values
calculated from formless dot field trials. No differences reach significance, Bonferroni’s cor-
rected (and only at 80 ms are the differences significant without correcting for multiple com-
parisons, p � 0.05). Error bars indicate SEM.
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more than the removal of motion information (Fig. 12). This
suggests that action representations are based more on form in-
formation, when both are available. These neurons were able to
extract as much information about action from two or three static
frames as they were from full-motion information in the absence
of form cues. Moreover, the responses of neurons under all but
the slowest strobe conditions were much more similar to how the
neurons responded under natural viewing conditions than were
responses to formless (but full-motion) dot fields (Fig. 13). This
is in accord with recent fMRI evidence: Peelen et al. (2006) found
correlations in fMRI signal between selectivity for biological mo-
tion and selectivity for bodies, but not selectivity for motion, in
every brain region they considered. The neurons from which we
recorded certainly carry information about action: at least 0.1 bit
per neuron over the course of less than 1 s of animation, based on
the ability of our simple model to discriminate actions. We have
no way of knowing whether the cell populations we examined are
normally necessary for biological motion perception; however, a
study of human lesions showed that loss of tissue in the superior
temporal gyrus, superior temporal sulcus, and middle temporal gy-
rus (along with frontal and supramarginal cortex) was implicated in
significant biological motion perception deficits (Saygin, 2007).

Previous fMRI (Nelissen et al., 2006) and single-neuron
(Vangeneugden et al., 2009) recordings have suggested that var-
ious regions of temporal cortex respond and adapt differently to
different aspects of moving stimuli. However, we could not find
any correlations between recording location and any of our mu-
tual information measures in either monkey in the action recog-
nition task. Although this might be explained by imprecision in
locating the neurons from which we recorded, our stimuli were
more complex than those used in previous experiments. The re-
sponse patterns we observed were also more complex than those
previously reported, and, in fact, most visual neurons that we
encountered were well driven by most of the stimuli we used. It
would not be surprising if a larger input space were mapped onto
a larger region of representation space, that is, cortex. Without a
histological study (which is not possible because the monkeys are
still involved in other experiments), we have no way of distin-
guishing between these possibilities.

At timescales shorter than 200 ms, the temporal direction of
local motion in the clipped action viewing task is less important
to driving responses than the more global sequence of poses (Fig.
15). In other words, the neurons are driven more by what hap-
pens from clip to clip than they are by what happens within a clip.
For animation clips longer than 200 ms, however, this reverses;
the direction in which each clip plays exerts more influence on
the responses of the neurons than does the order in which the
clips play.

This result can be viewed as a measure of the timescale of
integration (into a single pose) versus differentiation (between
poses). Short clips are integrated into single elements, in terms of
their representational power, whereas longer clips are differenti-
ated into multiple pieces. The shift occurs as clips grow from 120
to 300 ms. Effectively, increasing clip length decreases the frame
rate of the original action and increases the “actionhood” of the
individual clips, which shift from being interpreted as poses to
segments of the opposite action (Fig. 16). This result can also be
understood from the perspective of the influence of recent input
(that is, context or history) on neural response. The history lead-
ing up to a single frame of animation influences the response that
frame elicits; this influence appears to span 120 –200 ms.

The idea of a neural window of pose integration fits well with
many previous behavioral studies. Face parts are integrated into a

holistic face percept when presented with interstimulus intervals
as long as 120 ms (Singer and Sheinberg, 2006) or even 200 ms
(Anaki et al., 2007). Caudek et al. (2002) found that three-
dimensional motions can be determined by three dots presented
sequentially for 182 ms each. EEG event-related potentials ex-
hibit a characteristic component (putatively reflecting a break in
integration) when one element of a rapidly presented visual se-
quence is omitted, as long as the period is faster than 180 ms
(Czigler et al., 2006). Blake and Lee (2005) survey numerous
other experiments, many of which show windows of integration
in the range of 100 –200 ms.

Although these results strongly suggest that ventral stream
neurons in the temporal cortex represent actions as sequences of
poses, there is still much to understand about action recognition.
Motion information clearly does reach these neurons; could this
be an epiphenomenon of form extracted from motion (Orban et
al., 1999)? It is also not clear whether this pose-based temporal
lobe representation is the primary visual representation of com-
plex motions; neurons in frontal and parietal cortices, including
mirror neurons (Rizzolatti and Craighero, 2004), also respond to
viewed actions. Although there may be dorsal stream neurons
selective for complex patterns of motion, they are typically de-
scribed as selective for relatively simple patterns compatible with
rigid object motion (Orban et al., 1992), as well as for three-
dimensional depth derived from disparity (DeAngelis et al.,
1998) or parallax (Nadler et al., 2008). The results presented here
are compatible with a model of visual function in which the lo-
cations of the objects and changes in location are represented by
the dorsal stream, whereas their shapes, and changes in those
shapes, are represented by ventral stream neurons, updated sev-
eral times per second.
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