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Spinal dorsal horn GABAA receptors are found both postsynaptically on central neurons and presynaptically on axons and/or terminals
of primary sensory neurons, where they mediate primary afferent depolarization (PAD) and presynaptic inhibition. Both phenomena
have been studied extensively on a cellular level, but their role in sensory processing in vivo has remained elusive, due to inherent
difficulties to selectively interfere with presynaptic receptors. Here, we address the contribution of a major subpopulation of GABAA

receptors (those containing the �2 subunit) to spinal pain control in mice lacking �2-GABAA receptors specifically in primary nocicep-
tors (sns-�2 �/� mice). sns-�2 �/� mice exhibited GABAA receptor currents and dorsal root potentials of normal amplitude in vitro, and
normal response thresholds to thermal and mechanical stimulation in vivo, and developed normal inflammatory and neuropathic pain
sensitization. However, the positive allosteric GABAA receptor modulator diazepam (DZP) had almost completely lost its potentiating
effect on PAD and presynaptic inhibition in vitro and a major part of its spinal antihyperalgesic action against inflammatory hyperalgesia
in vivo. Our results thus show that part of the antihyperalgesic action of spinally applied DZP occurs through facilitated activation of
GABAA receptors residing on primary nociceptors.

Introduction
GABAA receptors mediate fast synaptic inhibition throughout
the adult mammalian CNS. They are also densely expressed in the
spinal dorsal horn (Bohlhalter et al., 1996), where they control
the propagation of nociceptive signals (Roberts et al., 1986;
Ishikawa et al., 2000). Diminished GABAergic and glycinergic
inhibition at this site is a major factor in chronic pain syndromes
(for a review, see Zeilhofer, 2008). Conversely, hyperalgesia orig-
inating from inflammatory and neuropathic diseases can be
reversed by local spinal or systemic administration of benzodiaz-
epines (BDZs) such as diazepam (DZP) (Knabl et al., 2008) and
midazolam (Kontinen and Dickenson, 2000), which enhance
GABAA receptor activation. GABAA receptors are heteropentam-
eric ligand-gated ion channels, most of which are composed of �,

�, and � subunits (Olsen and Sieghart, 2008). BDZ-sensitive sub-
types contain one �2 subunit, which together with an �1, �2, �3,
or �5 subunit forms the BDZ-binding site (Pritchett et al., 1989;
Wieland et al., 1992). For each of these subunits, point-mutated
mice have been generated that carry a histidine to arginine (H/R)
substitution that destroys the DZP-sensitivity of the mutated �
subunit without changing its responses to GABA (Möhler et al.,
2002). Using these mice it has become possible to attribute to
�2-GABAA receptors most of the antihyperalgesic effect of spinal
DZP (Knabl et al., 2008).

In the spinal cord, �2-GABAA receptors are densely expressed
in the superficial layers of the dorsal horn, the main termination
area of primary nociceptors (Bohlhalter et al., 1996). At this site,
�2-GABAA receptors are found not only postsynaptically on cen-
tral neurons, where they cause classical hyperpolarization, but
most likely also presynaptically on the terminals of primary sen-
sory neurons [discussed in Persohn et al. (1991) and Bohlhalter et
al. (1996)]. These terminals are depolarized by GABAA receptors
(Labrakakis et al., 2003), because their intracellular chloride con-
centration is kept above electrochemical equilibrium by the chlo-
ride importer NKCC1 (Alvarez-Leefmans, 2009). This primary
afferent depolarization (PAD) causes presynaptic inhibition, i.e.,
a reduction in synaptic glutamate release, possibly through inac-
tivation of presynaptic sodium channels and/or through activa-
tion of a shunting conductance, both of which can result in
inhibition of action potential propagation into presynaptic ter-
minals (Kullmann et al., 2005). Both processes will result in re-
duction of nociceptive input to the spinal cord. However, if PAD
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becomes sufficiently strong to trigger action potentials, it may
also elicit so-called dorsal root reflexes and exaggerate pain and
neurogenic inflammation (Willis, 1999).

The contribution of PAD to the processing of nociceptive
signals and to the antihyperalgesic effect GABAA receptor mod-
ulators is unknown, mainly due to the lack of suitable tools for the
specific targeting of presynaptic GABAA receptors. Here, we used
a genetic approach and investigated conditional nociceptor-
specific �2-GABAA receptor-deficient and point-mutated mice
in morphological, electrophysiological, and behavioral experi-
ments. Deletion of the �2-GABAA receptor in nociceptive pri-
mary afferents reduced DZP sensitivity of GABAergic membrane
currents in nociceptive dorsal root ganglion (DRG) neurons and
GABAA receptor-mediated presynaptic inhibition, and led to a
reduction in the antihyperalgesic effect of spinal DZP.

Materials and Methods
Mice. To generate a floxed Gabra2 allele, a 6.3 kb PstI-NcoI genomic
fragment containing exons 5 (221 bp) and 6 (83 bp), together with 2 SphI
sites, was isolated. The 1 kb SphI-SphI fragment was removed from the
6.3 kb PstI-NcoI fragment and replaced by an oligo hybrid containing a
loxP site with adjacent KpnI and SalI sites, recreating a single SphI site,
into which the 1 kb SphI-SphI fragment containing exon 5 was rein-
serted. A neomycine resistance cassette (FRT-Pol2-neo-bpA-FRT-loxP)
was then subcloned into the SalI site. The vector was linearized at the 5�
end of the genomic homology at a NotI site and electroporated into
embryonic stem (ES) cells (C57BL/6N, Eurogentec). Clones harboring a
single targeting event (see Fig. 1 A, “targeted allele”) were injected into
blastocysts (Polygene). The neomycine resistance cassette was bred out
using ACTFlpe mice (Jackson Laboratories) to obtain the floxed allele
(Gabra2 tm2.1Uru). Floxed mice were crossed with EIIa-cre mice (Jackson
Laboratories) to obtain Gabra2 global knock-out mice (allele designated
Gabra2 tm2.2Uru). Nociceptor-specific sns-�2 �/� mice and sns-�2 �/R

point-mutated mice were generated from sns-cre transgenic mice (Agar-
wal et al., 2004) crossed with �2 fl/fl and/or �2 R/R mice (Löw et al., 2000)
(for the designations of the different genotypes, see Table 1). All mice
were maintained on a C57BL/6J background.

mRNA quantification. Four to six lumbar DRGs, lumbar spinal cords,
and cerebral cortices were rapidly removed from killed adult sns-�2 �/�

mice and �2 fl/fl littermates, as well as from global �2 �/� mice. mRNA
expression of GABAA receptor subunits was quantified with quantitative
reverse transcriptase PCR (qRT-PCR) using �-actin as reference gene
(for Taqman assays, see Table 2).

Morphology. Lumbar spinal cords prepared from 6 – 8-week-old sns-
�2 �/� mice and �2 fl/fl littermates were cut into 300-�m-thick parasag-
ittal slices, fixed in 4% paraformaldehyde for 10 min, and subsequently
cut into 14-�m-thick sections using a cryostat. Immunofluorescence
stainings were made to study the colocalization of GABAA receptor �2
and �3 subunits using guinea pig affinity purified antisera [guinea pig
affinity purified antisera (Knabl et al., 2008)] with markers of primary
afferent nociceptive fibers (CGRP and IB4). A polyclonal rabbit antise-
rum against CGRP (Millipore Bioscience Research Reagents, cat. no. AB

15360) and an IB4-Alexa 488 conjugate (Invitrogen, cat. no. 121411)
were used to label spinal axons and terminals of peptidergic and nonpep-
tidergic nociceptors, respectively. Thick myelinated (non-nociceptive)
fiber terminals were labeled with a rabbit antiserum against VGluT1
(Synaptic Systems). High-resolution confocal images were processed and
analyzed with Imaris (Bitplane) software. Double-immunofluorescence
staining was visualized by confocal microscopy (Zeiss LSM-710 Meta)
using a 63� Plan-Apochromat objective (NA 1.4). The pinhole was set to
1 Airy unit for each channel and separate color channels were acquired
sequentially. The acquisition settings were adjusted to cover the entire
dynamic range of the photomultipliers. High-resolution confocal images
were processed and analyzed with Imaris (Bitplane) with minimal adjust-
ments of contrast and brightness. Images from both channels were over-
laid (maximal intensity projection) and background was subtracted,
when necessary. A low-pass “edge-preserving” filter was used for im-
ages displaying �2 or �3 staining. Colocalization of �2-subunit im-
munoreactivity with primary afferent terminals was quantified from
single confocal sections (1024 � 1024 pixels) at a magnification of 78
nm/pixel in 8-bit grayscale images, using a threshold segmentation
algorithm (minimal intensity, 90 –130; size 0.08 – 0.8 �m 2). Colocal-
izations were counted in six fields per slide each from a different
mouse. Three mice per genotype were analyzed. Colocalizations were
considered to be true only if (1) the �-subunit staining appeared
completely inside the primary afferent staining, (2) covered an area �
0.057 �m 2, and (3) the colocalization was visible in the previous and
next images of the Z-stack.

Electrophysiology. Whole-cell patch-clamp recordings were made at
room temperature from acutely isolated nociceptive DRG neurons
and from superficial dorsal horn neurons. DRG neurons were pre-
pared from 3– 4-week-old mice (Knabl et al., 2008). Nociceptive DRG
neurons were identified by the presence of Na � currents resistant to
tetrodotoxin (TTX) (0.3 �M) and exhibiting pronounced reduction in
amplitudes during repetitive (5 Hz) depolarizations for 30 ms to 0 mV
(Blair and Bean, 2003). Transverse spinal cord slices with short dorsal
roots attached were prepared from 2–3-week-old mice (Ahmadi et al.,
2002). Dorsal roots were stimulated electrically (duration �100 �s;
17–70 V) at a frequency of 0.07 Hz to elicit primary afferent-evoked
EPSCs. Dorsal root potential (DRP) recordings were made from iso-
lated spinal cords of 18 –27-d-old mice at 28.5°C (Martinez-Gomez
and Lopez-Garcia, 2005). Dorsal roots S2 or S3 were stimulated and
the cranially adjacent root was recorded. Suction electrodes were used
for both stimulation and recording.

Behavior. Experiments were done in 7–10-week-old mice. Care was
taken to ensure equal numbers of male and female mice in all experi-
ments. Inflammatory and neuropathic pain induction, thermal and me-
chanical testing, and intrathecal injections, i.e., injections into the
subarachnoid space of the spinal canal, of DZP and vehicle were done as

Table 1. Genotypes and cell type-specific phenotypes of the mouse lines analyzed

Genotype Gabra2 phenotype

Gabra2 Gabra2 sns-cre Primary
nociceptors

All other
cell types Designation (short)allele 1 allele 2 transgene

fl fl � wt/wt wt/wt �2 fl/fl_sns�cre tg� (�2 fl/fl)
fl fl � �/� wt/wt �2 fl/fl_sns�cre tg� (sns��2 �/�)
fl H � wt/wt wt/wt �2 fl/H_sns�cre tg� (�2 fl/H)
fl H � �/wt wt/wt �2 fl/H_sns�cre tg� (sns��2 �/H)
fl R � wt/R wt/R �2 fl/R_sns�cre tg� (�2 fl/R)
fl R � �/R wt/R �2 fl/R_sns�cre tg� (sns��2 �/R)
R R � R/R R/R (�2 R/R)
� � � �/� �/� (�2 �/�)

Phenotypically, floxed (fl) alleles are regarded as wild type (wt) in the absence of cre.

Table 2. qRT-PCR (Taqman) assays used to quantify GABAA receptor � subunit
expression

Assay ID Context sequence (including the probe sequence) Gene

Mm00607939_s1 CTGTTACTGAGCTGCGTTTTACACC Actb
Mm00439046_m1 TTCCAGAAAAGCCAAAGAAAGTAAA Gabra1
Mm00433435_m1a TATATACCATGAGGCTTACAGTCCA Gabra2
Mm00433440_m1 AGTGACTGTGACACTCGATCTCACA Gabra3
Mm00802631_m1 GAAACATCCCTTCAGAATACACATG Gabra4
Mm00621092_m1 ACACCATGCGTCTGACAATCTCTGC Gabra5
Mm01227754_m1 CCAGGATTTGGGGGTGCTGTAACAG Gabra6
Mm01266203_g1 TCTCAGAGGCAAACATGGAATACAC Gabrd
Mm00489932_m1 CCAGACATGGAATATTCCATTGACA Gabre
Mm01193033_m1 GTAACATGGACTACACAGCCACTAT Gabrp
Mm00445057_m1 AGCAAATGTGCAGGATGGCCTGATT Gabrq
Mm00433499_m1 GCAAGGCAGCCCAATCCTGAGACGA Gabrr1
Mm00433507_m1 TCCAAGCCAAGCCATTTGTATAAAA Gabrr2
Mm01344096_m1 GTTTCCCTGGGGATCACGACGGTGC Gabrr3
aThis assay amplifies a gene segment including the floxed gabra2 exon 5 and, therefore, does not yield a PCR product
from chromosomes that have undergone cre-mediated excision of exon 5.
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described previously (Knabl et al., 2008). Cap-
saicin was dissolved in Tween 80 (10%), etha-
nol (10%), and saline (80%). Permission for
the animal experiments was obtained from the
Veterinäramt des Kantons Zürich (ref. no. 121/
2006 and 34/2007).

Results
Nociceptor-specific �2-GABAA

receptor-deficient mice
Conditional nociceptor-specific �2-GABAA

receptor-deficient mice (�2fl/fl_sns-cretg�;
short sns-�2�/� mice) were generated by
crossing mice carrying a floxed �2-GABAA

receptor (Gabra2) gene (Fig. 1A) to trans-
genic mice expressing the cre recombinase
under the transcriptional control of the sen-
sory neuron-specific sodium channel (sns)
gene (Agarwal et al., 2004). To quantify
changes in GABAA receptor �2 subunit ex-
pression and to test for possible compensa-
tory upregulations or downregulations of
other BDZ-sensitive GABAA receptor sub-
units, we used qRT-PCR in lumbar dorsal
root ganglia and spinal cords and in cerebral
cortices. Compared with �2fl/fl mice, sns-
�2�/� mice showed pronounced reduction
in GABAA receptor �2 mRNA subunit copy
numbers with no significant changes in the
spinal cord or cerebral cortex (Fig. 1B). The
expression of the other BDZ-sensitive
GABAA receptor subunits was not signifi-
cantly changed in DRGs of sns-�2�/�

mice (Fig. 1C). We also analyzed possible
changes in the expression of the BDZ-
insensitive GABAA receptor subunits �4,
�6, �, �, �, 	, and 
1-
3 (Table 3). Tran-
scripts encoding for six of these subunits
(�4, �, �, 	, 
1, and 
3) were reliably de-
tected in DRGs of both �2 fl/fl and sns-
�2�/� mice. mRNA encoding for the �4
subunit was significantly upregulated in
sns-�2�/� mice by 44.5 � 9.5% (mean �
SEM). Upregulations by between 20 and 40% were also found for
�, 	, and 
1, but these did not reach statistical significance.

No detectable levels of �2 subunit mRNA were found in global
�2�/� mice [generated from �2 fl/fl mice crossed to EIIa-cre mice
(Lakso et al., 1996)], verifying the specificity of the assay and
suggesting that the �2 mRNA remaining in DRGs of sns-�2�/�

mice derived most likely from non-nociceptive (sns-cre negative)
DRG neurons.

�2-GABAA receptors expressed in spinal terminals of primary
afferent sensory fibers
High-resolution confocal microscopy was used in parasagittal
sections of the lumbar spinal cord to quantify the expression of
�2-GABAA receptors in the three major subpopulations of pri-
mary afferent fibers. Peptidergic and nonpeptidergic nociceptive
fiber axons and terminals were labeled with antiserum against
calcitonin gene-related peptide (CGRP) and with a fluorescent
isolectin B4 (IB4) conjugate, respectively, while non-nociceptive
fiber terminals were labeled with an antiserum against the vesic-
ular glutamate transporter 1 (VGluT1), which is in the dorsal
horn selectively expressed by thick myelinated (non-nociceptive)

primary afferent fiber terminals (Todd et al., 2003). All sections
were counterstained with an antiserum against the GABAA recep-
tor �2 subunit (Fig. 2A,B). In the major termination area of
nociceptive fibers (laminae I and II of the spinal dorsal horn),

Figure 1. Generation of GABAA receptor �2 fl/fl mice and qRT-PCR analyses. A, Generation of mice carrying a floxed Gabra2 allele. For
details, see Materials and Methods. B, Quantification (mean � SEM) of Gabra2 transcript numbers (relative to �-actin) in lumbar DRGs,
spinal cords, and cerebral cortices of sns-�2 �/� mice (n�7) and wild-type (�2 fl/fl) littermates (n�9) with qRT-PCR. C, Quantification
of gabra1, Gabra2, Gabra3, and Gabra5 gene transcripts (encoding for the BDZ-sensitive subunits �1, �2, �3, and �5) in the DRGs of
sns-�2 �/� mice and wild-type (�2 fl/fl) littermates. ***p � 0.001. Statistical comparisons between wild-type and sns-�2 �/� were
made with unpaired t tests followed by Bonferroni corrections for three (B) and four (C) independent comparisons.

Table 3. Changes in gene expression in sns-�2 �/� mice compared to �2 fl/fl mice

GABAA receptor
subunit (gene)

Expression relative to
�-actin in �2 fl/fl mice
(mean � SEM)

Expression ratio
(sns-�2 �/�/�2 fl/fl)
(mean � SEM) P

�4 (Gabra4) 7.6 � 0.34�10 �5 1.45 � 0.25 0.004
�6 (Gabra6) n.d.
� (Gabrd) 2.9 � 0.45�10 �4 1.41 � 0.45 n.s.
� (Gabre) 2.2 � 0.21�10 �4 1.10 � 0.26 n.s.
� (Gabrp) n.d.
	 (Gabrq) 2.5 � 0.41�10 �4 1.37 � 0.29 n.s.

1 (Gabrr1) 2.6 � 0.39�10 �4 1.23 � 0.14 n.s.

2 (Gabrr2) n.d.

3 (Gabrr3) 1.8 � 0.33�10 �4 0.90 � 0.11 n.s.

Gene expression for both genotypes was first calculated relative to �-actin expression, and then compared between
sns-�2 �/� and �2 fl/fl mice. n.d., Not detectable. �6 transcripts were not detectable in any of the samples, and
transcripts for � and 
2 were only found in two out of 16 samples. P, Significance calculated by ANOVA followed by
Bonferroni correction for six independent samples. n.s., Not significant after Bonferroni correction. Number of mice,
n � 8 and 7, for �2 fl/fl and sns-�2 �/�, respectively.
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approximately one third and one fourth of CGRP- and IB4-
positive structures stained also positive for �2-GABAA receptors
in wild-type (�2 fl/fl) mice. These colocalizations were virtually
absent in sns-�2�/� mice (Fig. 2C,D). As expected, VGluT1-
positive structures were mainly located in the deep dorsal horn
(lamina III and deeper). They also showed a considerable but
lower degree of colocalization with �2-GABAA receptors, which
was unchanged in sns-�2�/� mice. We also found a significant
expression of �3-GABAA receptors in all three types of primary
afferent fibers (52 � 12%, 41 � 16%, 27 � 4% (mean � SD) with
CGRP, IB4, and VGluT1, respectively). The distribution of �3-
GABAA receptors was not altered in sns-�2�/� mice.

Electrophysiological analysis of
sns-�2 �/� mice
To analyze functional consequences of
sns-�2 gene deletion at the cellular level,
we first made whole-cell recordings from
acutely isolated nociceptive DRG neurons
identified by the presence of TTX-
resistant Na� currents with pronounced
use-dependent inactivation upon repeti-
tive stimulation (Pearce and Duchen,
1994; Arbuckle and Docherty, 1995; Blair
and Bean, 2003). Amplitudes of GABAer-
gic membrane currents evoked by exoge-
nous application of muscimol remained
unchanged in sns-�2�/� mice, but their
facilitation by DZP (1 �M) was signifi-
cantly reduced (Fig. 3A).

We next analyzed the modulation of
primary afferent-evoked synaptic trans-
mission by presynaptic GABAA receptors
in transverse spinal cord slices. AMPA
receptor-mediated EPSCs were evoked
by electrical stimulation of attached dor-
sal rootlets and recorded from visually
identified superficial (laminae I/II) dorsal
horn neurons. Electrical stimulation thresh-
olds of AMPA-EPSCs were virtually iden-
tical in wild-type and sns-�2�/� mice
[32.4 � 2.9 V (n � 17) and 34.1 � 2.8 V
(n � 10), means � SEM]. In the absence
of muscimol or DZP, the vast majority of
AMPA-EPSCs were reliably triggered by
dorsal root stimulation and occurred with
constant latencies. They, therefore, most
likely represented monosynaptic events.
After a stable AMPA-EPSC was estab-
lished, slices were superfused with differ-
ent concentrations of muscimol to
activate GABAA receptors. To avoid con-
founding effects arising from activation of
postsynaptic GABAA receptors, we re-
placed in the intracellular recording solu-
tion Cl� with F� (Turecek and Trussell,
2001), which does not permeate GABAA

receptor channels (Bormann et al., 1987).
AMPA-EPSC amplitudes were not signif-
icantly different between sns-�2�/� mice
and �2 fl/fl littermates, and were similarly
decreased with the GABAA receptor ago-
nist muscimol in both genotypes (Fig.
3B). However, when DZP (1 �M) was ap-

plied in addition to a low concentration (0.1 �M) of muscimol,
the rate of successful transmissions (i.e., of presynaptic stimula-
tions eliciting EPSCs) dropped significantly in �2 fl/fl mice as ex-
pected for a presynaptic site of action. This increased inhibition
was not observed in sns-�2�/� mice (Fig. 3C).

The functioning of GABAA receptors on the presynaptic ter-
minals of primary nociceptors was also assessed through the anal-
ysis of DRPs. These are local field potentials generated by
GABAergic interneurons and occurring in one dorsal root after
electrical stimulation of another dorsal root in a neighboring
segment. We compared DRPs of sns-�2�/� and �2 fl/fl mice in
terms of amplitude, sensitivity to the GABAA receptor blocker

Figure 2. �2-GABAA receptors in the spinal dorsal horn. A, Colocalization of �2-GABAA receptors (red) with peptidergic
(CGRP-positive, lamina II outer) and nonpeptidergic (IB4-positive, lamina II inner) axons and terminals (green) in parasagittal
sections of lumbar spinal cord of adult wild-type (�2 fl/fl) and sns-�2 �/� mice. B, C, Higher magnification of the areas indicated
in A showing the �2-subunit immunoreactivity alone (B) or superimposed with colocalized pixels (yellow, C). Arrows in C point to
the terminals containing the an �2-GABAA receptor. B, �2-GABAA receptor immunoreactivity. C, Colocalization (indicated by
arrows). D, Statistical analysis. Percentage colocalization (mean� SD) of CGRP- (lamina IIo), IB4- (lamina IIi), and VGluT1- (lamina
III) positive axons and terminals with �2-GABAA receptors. Colocalizations (for criteria, see Materials and Methods) were counted
in six fields per slide each from a different mouse. Three mice per genotype were analyzed. ANOVA followed by Bonferroni post hoc
test F(5,12) � 47.0; ***p � 0.001. Scale bars: A, 5 �m; B, C, 0.5 �m (scale bar only shown in B).
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bicuculline, and DZP sensitivity. DRPs of
sns-�2�/� mice were of similar size and
similarly sensitive to bicuculline (1 and 3
�M), but their potentiation by DZP was
strongly reduced (0.3–3 �M) (Fig. 4).

Acute nociception and inflammatory
and neuropathic hyperalgesia in sns-
�2 �/� mice
Before analyzing conditional �2-GABAA

receptor mutant mice, we verified that the
presence of the sns-cre transgene alone
did not affect the development of hyper-
algesia or the responsiveness of mice to
DZP. sns-cre mice with no mutations in
the Gabra2 gene developed normal hyper-
algesia and responded normally to spinal
DZP (Table 4). We then continue with the
analysis of sns-�2�/� mice. These mice
responded normally to acute noxious heat
and to mechanical stimulation with von
Frey filaments, and exhibited normal noci-
ceptive responses (flinches) after chemical
activation of nociceptors through subcu-
taneous capsaicin injection into one hind-
paw (Table 5). When tested in an
inflammatory pain model (subcutaneous
injection of the yeast extract zymosan A
into one hindpaw), sns-�2�/� and �2 fl/fl

mice developed virtually identical thermal
and mechanical hyperalgesia and similar
paw swelling (Fig. 5A–C). Likewise, sns-
�2�/� and �2 fl/fl mice responded with
nearly identical thermal and mechanical
hyperalgesia after chronic constriction in-
jury (CCI) of the left sciatic nerve (Fig.
5D,E), and developed unchanged me-
chanical hyperalgesia after subcutaneous
capsaicin injection (Fig. 5F).

In separate experiments, we assessed
the consequences of sns-�2 gene deletion
for the antihyperalgesic effects of spinal
DZP in inflammatory and neuropathic
pain. DZP [0.09 mg/kg body weight, com-
pare with Knabl et al. (2008)] was injected
intrathecally at the level of the lower lum-
bar spine. Injections were made 2 d after
zymosan A injection and 7 d after CCI
surgery, when inflammatory or neuro-
pathic hyperalgesia had reached a maxi-
mum [for the time course of sensitization,
compare with Reinold et al. (2005) and
Hösl et al. (2006)]. DZP reversibly re-
duced thermal and mechanical hyperalge-
sia to similar degrees in both pain models.
This antihyperalgesia was profoundly reduced in global �2-
GABAA point-mutated mice (�2 R/R mice), confirming the dom-
inant contribution of �2-GABAA receptors (Fig. 6). In the
inflammatory pain model, the antihyperalgesic effect of intrathe-
cal DZP in sns-�2�/� mice fell between those of wild-type (�2 fl/

fl) and �2 R/R mice for thermal and mechanical hyperalgesia,
indicating that presynaptic �2-GABAA receptors contributed
significantly to �2-dependent antihyperalgesia (Fig. 6 A, B).

Although intrathecal DZP was similarly effective against neu-
ropathic hyperalgesia, and although this antihyperalgesia was
also mainly mediated by �2-GABAA receptors, neuropa-
thic sns-�2 �/� mice responded normally to intrathecal DZP
(Fig. 6C,D).

Because compensatory processes are of major concern in gene
deletion studies (Rudolph and Möhler, 2004), we included
nociceptor-specific �2 point-mutated mice (sns-�2�/R) in addition

Figure 3. GABAergic membrane currents and primary afferent-evoked synaptic transmission in wild-type (�2 fl/fl) and sns-
�2 �/� mice. A, GABAergic membrane currents recorded from nociceptive DRG neurons. Left, Individual current traces evoked
through puffer application of GABA (1 mM) to the soma of the recorded DRG neuron in �2 fl/fl and sns-�2 �/� mice in the absence
(black) or presence (red) of DZP (1 �M). Right, Statistical analysis (mean�SEM). n�26 (�2 fl/fl) and 14 (sns-�2 �/�). *p�0.05
(unpaired t test). B, C, Primary afferent-evoked EPSCs recorded from lamina I/II neurons in transverse spinal cord slices. B, Left,
Current traces under control conditions (black) and in the presence of muscimol (musc, 5 �M, red). Right, Statistical analysis
(mean � SEM). EPSC amplitudes: unpaired t test, n � 19 (�2 fl/fl), n � 18 (sns-�2 �/�); inhibition by muscimol, n � 6 –17. C,
Analyses of synaptic failure rates. Left, Superposition of 10 consecutive primary afferent-evoked EPSCs under control conditions, in
the presence of muscimol (0.1 �M) and in the additional presence of DZP (1 �M). Right, Statistics (mean � SEM). n � 17 (�2 fl/fl)
and 10 (sns-�2 �/�). ANOVA (genotype � treatment); F(3,81) � 3.96; *p � 0.03; **p � 0.01 significant against �2 fl/fl;
���p � 0.001 significant against control.
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to sns-�2�/� and �2R/R mice in a subset of experiments (those on
mechanical hyperalgesia) (Fig. 6B,D). These “tissue-specific point-
mutated” mice carry a point-mutated and a floxed (wild type) allele
in all cells of the body, with the exception of primary nociceptors
that only express the mutated allele after cre-mediated deletion
of the wild-type allele. In all tests performed, the phenotypes
of these sns-�2 �/R mice closely resembled those of sns-�2 �/�

mice. Because heterozygous nociceptor-specific �2-deficient
(sns-�2 �/�) mice and heterozygous �2-point-mutated (�2H/R)
mice showed no behavioral changes compared with wild-type (�2fl/fl)
mice(Table6),thephenotypeofsns-�2�/R miceclearlyoriginatedfrom
the presence of the point mutation in primary nociceptors. These
experiments therefore render compensatory upregulations of
other DZP-sensitive GABAA receptors in the sns-�2�/� mice
unlikely.

Discussion
Although presynaptic GABAA receptors
have been extensively studied in various
CNS areas (Kullmann et al., 2005), their
roles in integrative CNS functions and as
targets for GABAergic drugs have re-
mained difficult to assess. Here, we have
used a genetic approach to selectively in-
terfere with presynaptic GABAA receptors
on spinal nociceptor terminals and to in-
vestigate their contribution to spinal pain
control. We used confocal double labeling
experiments to study the expression pat-
tern of �2-GABAA receptors in the spinal
dorsal horn, electrophysiological record-
ings in spinal cord slices, and isolated spi-
nal cords to assess their contribution
to the modulation of primary afferent-
evoked synaptic transmission, and finally
behavioral experiments to study their role
in pain control.

Previous in situ hybridization (Per-
sohn et al., 1991; Ma et al., 1993), immu-
nofluorescence (Bohlhalter et al., 1996;
Knabl et al., 2008), and electrophysiolog-
ical (Knabl et al., 2008) experiments have
suggested that GABAA receptors on pri-
mary sensory neurons are mainly, if not
exclusively, of the �2 subtype. Our confo-
cal double labeling experiments confirm
the presence of �2-GABAA receptors on
peptidergic and nonpeptidergic nocicep-
tors as well as on non-nociceptive fibers.
The additional presence of �3 subunits
found in all three fiber types is consistent
with our electrophysiological results,
which demonstrate that GABAergic
membrane currents in nociceptive DRG
neurons and DRPs were still potentiated
by DZP in sns-�2�/� mice, albeit to a
lesser extent than in wild-type mice.

GABAergic axo-axonic synapses onto
the presynaptic terminals of primary af-
ferent nerve fibers have been extensively
investigated in monkey (Alvarez et al.,
1993) and cat (Alvarez et al., 1992), but
data in mice is sparse. In monkey and cat
electron microscopy studies, GABAergic

terminals were found presynaptic to A� fiber terminals but not to
C fiber terminals. Our study, however, provides clear evidence
for the presence of GABAA receptors on the intraspinal segments
of peptidergic and nonpeptidergic C fibers in mice, and also for
their functionality, as ablation of �2-GABAA receptors in the
sns-�2�/� mice almost completely abolished the potentiating
effect of DZP on DRPs. Although the sns-cre is active not only in
C fiber nociceptors but also in A� nociceptors (Gangadharan et
al., 2009), these actions cannot be ascribed to �2-GABAA recep-
tors on A� fibers alone, because recent evidence indicates that in
particular heat hyperalgesia is largely, if not exclusively, mediated
by peptidergic C fibers (Abrahamsen et al., 2008; Cavanaugh et
al., 2009). Provided that the absence in monkey and cat of
GABAergic terminals presynaptic to C fiber endings translates to

Figure 4. Dorsal root potentials. A, Left, Average traces of DRPs recorded at threshold stimulation (1T) and at fivefold (5T) and
tenfold (10T) higher stimulation intensities in wild-type (�2 fl/fl) and sns-�2 �/� mice. Right, Statistical analysis (mean � SEM).
n � 18 (�2 fl/fl) and 14 (sns-�2 �/�). B, Same as A, but inhibition by bicuculline (bic, 1.0 �M, red) of DRPs elicited at 5T. n � 9
(�2 fl/fl) and 7 (sns-�2 �/�). C, Same as B but potentiation by DZP (1 �M, red). n � 9 (�2 fl/fl) and 5 (sns-�2 �/�). *p � 0.05
(unpaired t test) significant against �2 fl/fl.
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mice, our findings may prompt for struc-
tural arrangements of the GABAergic in-
put different from classical axo-axonic
synapses. In such an alternative scenario,
GABAergic inhibition of C fiber nocicep-
tors might not originate from GABAA re-
ceptors located at the presynaptic
terminal itself, but from axonal receptors
located farther away from the terminals.
Such an arrangement would impair action
potential propagation rather than directly
interfere with transmitter release, and
would be similar to what has been de-
scribed for muscle spindle afferents in the
rat brainstem (Verdier et al., 2003). These
axonal receptors might become activated
through ambient GABA rather than
through GABA released directly onto
these receptors.

The most obvious behavioral pheno-
type observed in sns-�2�/� mice was a re-
duction in the antihyperalgesic effect of
spinal DZP against inflammatory hyper-
algesia. At least for inflammatory hyperal-
gesia, this phenotype unambiguously
indicates that the antihyperalgesic action
of spinal benzodiazepines is largely due to a direct action on the
sensory pain pathway and not to indirect effects, such as a reduc-
tion in anxiety-induced hyperalgesia. It also indicates that the
enhancement on primary afferent depolarization by spinally ap-
plied BDZs increases presynaptic inhibition in primary nocicep-
tors and, thereby, reduces nociceptive input to the spinal dorsal
horn. Diminished DZP-induced antihyperalgesia in sns-�2�/�

mice correlates well with the decreased ability of DZP to facilitate
GABAA receptor-mediated inhibition of synaptic transmission
between primary nociceptors and second order neurons, and
with the diminished DZP-sensitivity of GABAergic DRPs in these
mice. Approximately one third of the �2-GABAA receptor-
mediated antihyperalgesia was maintained in sns-�2�/� mice.

This part may originate from �2-GABAA receptors expressed by
intrinsic dorsal horn neurons. Expression of �2-GABAA recep-
tors on intrinsic dorsal horn neurons has not been generally ac-
cepted previously, because in situ hybridization studies had
revealed significant amounts of �2 mRNA in the ventral but not
in the dorsal horn (Ma et al., 1993). Our experiments demon-
strate that much of the �2 immunofluorescence is retained in
sns-�2�/� mice, consistent with our previous electrophysiologi-
cal data showing reduced DZP-sensitivity in dorsal horn neurons
of �2 R/R mice (Knabl et al., 2008). Alternatively, the remaining
�2-GABAA receptor-mediated antihyperalgesia could come
from �2-GABAA receptors residing on primary sensory neurons
that do not express the sns-cre.

Figure 5. Nociceptive behavior in sns-�2 �/� mice. Inflammation induced by subcutaneous zymosan A injection (0.06 mg/10
�l) into the plantar side of the left hindpaw. Thermal hyperalgesia (paw withdrawal latencies, s) (A), mechanical sensitization
(paw withdrawal thresholds, g) (B), and paw swelling (C) in sns-�2 �/� and wild-type (�2 fl/fl) littermates. n � 6 –10 mice/
group. D, E, Same as B, C, but neuropathic pain induced through CCI surgery of the left sciatic nerve. n � 6 mice/group. F,
Secondary hyperalgesia induced through subcutaneous injection of capsaicin (30 �g in 10 �l) into the plantar left hindpaw.
Mechanical withdrawal thresholds (g); n � 5– 6 mice/group. For statistics, see Table 5.

Table 4. Baseline nociceptive sensitivity, inflammatory hyperalgesia (48 h after subcutaneous zymosan A injection), and antihyperalgesic effect of diazepam (0.09 mg/kg,
i.t.) in wild-type and sns-cre transgenic mice

Acute nociception Inflamed Antihyperalgesia by diazepam

Thermal (PWL, s) Mechanical (PWT, g) Thermal (PWL, s) Mechanical (PWT, g) Thermal (AUC, s�h) Mechanical (AUC, g�h)

Wild type 14.8 � 0.8 3.5 � 0.06 5.65 � 0.19 0.94 � 0.10 19.9 � 2.9 6.55 � 1.0
(n � 7) (n � 9) (n � 7) (n � 9) (n � 7) (n � 9)

sns-cre tg� 14.4 � 2.6 3.6 � 0.09 5.73 � 0.91 1.02 � 0.06 20.4 � 3.0 6.34 � 0.3
(n � 8) (n � 7) (n � 8) (n � 7) (n � 8) (n � 7)

P (unpaired t test) 0.71 0.63 0.95 0.58 0.91 0.83

Paw withdrawal latencies (PWL; s) in response to stimulation with defined radiant heat, mechanical thresholds (PWT; g) in response to stimulation with electronic von Frey filaments in wild-type and sns-cre � littermates. Antihyperalgesia
was quantified as the area under the curve (AUC) of the change from before-drug baseline plotted versus time. All values mean � SEM.

Table 5. Baseline nociceptive sensitivity and inflammatory and neuropathic hyperalgesia in wild-type and sns-�2 �/� mice

Acute nociception Inflammatory hyperalgesia/paw swelling Neuropathic hyperalgesia
Capsaicin-induced
sensitization
Mechanical (AUC, g�h)

Thermal
(PWL, s)

Mechanical
(PWT, g)

Chemical
(flinches/5 min)

Thermal
(AUC, s�d)

Mechanical
(AUC, g�d)

Paw swelling
(AUC, ml�h)

Thermal
(AUC, s�d)

Mechanical
(AUC, g�d)

�2 fl/fl 15.0 � 0.6 3.0 � 0.1 49.5 � 6.6 33.3 � 4.6 9.1 � 0.3 3.62 � 0.42 224 � 9 47.3 � 1.5 4.6 � 0.24
(n � 6) (n � 6) (n � 6) (n � 6) (n � 6) (n � 6) (n � 6) (n � 6) (n � 5)

sns-�2 �/� 14.5 � 0.8 3.1 � 0.1 49.0 � 7.1 33.0 � 4.6 10.6 � 0.7 3.25 � 0.31 230 � 8 44.8 � 1.4 4.5 � 0.22
(n � 10) (n � 10) (n � 6) (n � 10) (n � 10) (n � 10) (n � 6) (n � 6) (n � 6)

Paw withdrawal latencies (PWL; s) in response to stimulation with defined radiant heat, mechanical thresholds (PWT; g) in response to stimulation with electronic von Frey filaments, and numbers of flinches within 5 min after subcutaneous
injection of capsaicin (1.6 �g in 10 �l) in sns-�2 �/� mice and in wild-type (�2 fl/fl) littermates. Hyperalgesia was quantified as the area under the curve (AUC) of the change from baseline sensitivity plotted versus time. p � 0.1 (unpaired
t test) for all comparisons between genotypes. All values mean � SEM.
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In contrast to the antihyperalgesic activity of spinal DZP
against inflammatory pain, its activity against neuropathic pain
was not changed in sns-�2�/� or sns-�2�/R mice. It is tempting
to speculate that presynaptic inhibition by �2-GABAA receptors
might be less important under neuropathic conditions. However,
Abrahamsen et al. (2008) demonstrated that different types of
primary afferent sensory fibers mediate inflammatory and neu-
ropathic hyperalgesia. In fact, neuropathic hyperalgesia devel-
oped normally in mice lacking sns-positive primary nociceptors,
whereas inflammatory hyperalgesia was largely abolished (Abra-
hamsen et al., 2008). It is therefore possible that the antihyperal-
gesic action of intrathecal DZP against neuropathic pain also

occurred through presynaptic �2-GABAA receptors, but residing
on primary afferent sensory fibers that did not express sns-cre.

GABAA receptors on spinal nociceptor terminals have been
suggested to inhibit the transmission of nociceptive signals
through PAD and subsequent presynaptic inhibition (Willis,
1999). The sns-�2�/� mice studied here had normal baseline
nociceptive sensitivities and developed normal inflammatory or
neuropathic hyperalgesia. Very intense nociceptor stimulation
and inflammation may, however, enhance PAD to levels suffi-
cient to trigger action potentials and to elicit so-called dorsal root
reflexes (Cervero and Laird, 1996; Willis, 1999). Input from pri-
mary afferent nerve fibers could then, via interconnected
GABAergic interneurons, elicit action potentials in other primary
afferent fiber terminals, from which excitation could spread both
anterogradely and retrogradely, to exaggerate pain and inflam-
mation. Again, sns-�2�/� mice exhibited unaltered hyperalgesia
after capsaicin injection and unchanged hyperalgesia or paw
swelling after zymosan A injection. Nevertheless, our findings do
not exclude a contribution of GABAergic PAD to presynaptic
inhibition or dorsal root reflexes, because the GABAA receptors
remaining in nociceptors of sns-�2�/� mice were apparently suf-
ficient to sustain GABAergic membrane currents and DRPs of
nearly normal amplitude. Reduced BDZ sensitivity of GABAA

receptor currents in nociceptive DRG neurons and of dorsal root
potentials but nearly unchanged amplitudes and unaffected
bicuculline sensitivity may be explained by the upregulation of
BDZ-insensitive GABAA receptor subunits. A significant upregu-
lation was found for the �4 subunit. In addition, other BDZ-
insensitive but bicuculline-sensitive subunits (� and 	) showed
a trend toward increased expression in sns-�2 �/� mice. One
might speculate that a facilitation of GABAA receptor-

Figure 6. Antihyperalgesic effects of DZP. A—D, Antihyperalgesic effects of intrathecally injected DZP (0.09 mg/kg body weight) on thermal (A, C) and mechanical (B, D) hyperalgesia expressed
as percentage maximum possible analgesia (mean � SEM). Area under the curve (AUC), 0 – 4 h after DZP injection. A, B, Inflammatory hyperalgesia induced by subcutaneous zymosan A injection
(0.06 mg in 10 �l) into the left hindpaw. DZP was given 48 h after zymosan A injection. Left, Time course; right, Statistics. AUC expressed as percentage of wild-type littermates (�2 fl/fl mice). ANOVA
F(2,25) � 8.71 followed by Bonferroni post hoc text, n � 8 –10 mice/group (thermal hyperalgesia); ANOVA F(3,33) � 36.82, n � 7–12 mice/group (mechanical hyperalgesia). C, D, Same as A, B but
neuropathic pain 7 d after CCI surgery of the left sciatic nerve. ANOVA followed by Bonferroni post hoc test F(2,21) � 5.18, n � 7–9 mice/group (thermal hyperalgesia); F(3,23) � 11.16, n � 5–10
mice/group (mechanical hyperalgesia). *p � 0.05; **p � 0.01; ***p � 0.001, significant against �2 fl/fl, �p � 0.05; ���p � 0.001, against �2 R/R.

Table 6. Baseline mechanical sensitivity, inflammatory hyperalgesia, and
antihyperalgesic effect of DZP (0.09 mg/kg, i.t.) in heterozygous
nociceptor-specific �2-deficient (sns-�2 �/H) mice, heterozygous point-mutated
(�2 H/R) mice, and heterozygous �2-floxed (wild-type) mice

Acute nociception
(PWT, g)

Inflammatory
hyperalgesia
(PWT, g)

Antihyperalgesia
by DZP
(AUC, g�h)

�2 fl/H (n � 7) 3.59 � 0.06 0.82 � 0.11 7.80 � 2.95
sns-�2 �/H (n � 6) 3.55 � 0.13 1.02 � 0.08 7.59 � 0.35
�2 R/H (n � 6) 3.50 � 0.11 0.99 � 0.08 8.12 � 0.63
P (ANOVA) 0.56 0.90 0.76

Antihyperalgesia was quantified as the area under the curve (AUC) of the change from before-drug baseline sensi-
tivity plotted versus time. All three genotypes had virtually identical baseline mechanical sensitivities, developed
similar mechanical hyperalgesia, and responded normally to DZP (0.09 mg/kg, i.t.). Because the floxed Gabra2 allele
behaves as a wild-type allele in the absence of cre expression, �2 fl/H mice can be considered as wild-type mice.
Hence, these experiments demonstrate that the histidine to arginine point mutation of only one Gabra2 allele
(�2 H/R mice) has no apparent consequences for pain control or for the anti-hyperalgesic effect of intrathecal DZP.
Similarly, the nociceptor-specific deletion of one gabra2 allele (in sns-�2 �/H mice) affected neither baseline me-
chanical sensitivity nor the development of mechanical hyperalgesia or its reversal by intrathecal DZP. The pheno-
type described for the nociceptor specific �2 point-mutated (sns-�2 �/R) mice can thus be specifically attributed to
the lack of DZP-sensitive �2-GABAA receptors in primary nociceptors. All values mean � SEM.
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mediated dorsal root reflexes by BDZs could also counteract
antihyperalgesia by spinal BDZs. However, although DRPs in
sns-�2�/� mice were less sensitive to DZP, these mice did not
show increased antihyperalgesia.

In summary, the generation of mice with a genetic ablation of
a specific GABAA receptor subtype in primary nociceptors al-
lowed us to attribute to presynaptic GABAA receptors residing on
the axons or terminals of primary nociceptors a significant role in
spinal pain control, namely a contribution to antihyperalgesia
mediated by spinal DZP.
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Hösl K, Reinold H, Harvey RJ, Müller U, Narumiya S, Zeilhofer HU (2006)
Spinal prostaglandin E receptors of the EP2 subtype and the glycine re-
ceptor �3 subunit, which mediate central inflammatory hyperalgesia, do
not contribute to pain after peripheral nerve injury or formalin injection.
Pain 126:46 –53.

Ishikawa T, Marsala M, Sakabe T, Yaksh TL (2000) Characterization of spi-
nal amino acid release and touch-evoked allodynia produced by spinal
glycine or GABAA receptor antagonist. Neuroscience 95:781–786.
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