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Introduction
Studies of neuronal activity throughout
the brain predominantly rely on extracel-
lular recordings of spiking activity. These
records often contain action potentials
from more than one neuron, so it is im-
perative to discriminate the spikes that
originate from separate neurons. The pro-
cess of discrimination is based on differ-
ences in each neuron’s extracellular
waveform that originate from cell-specific
biophysical properties. We briefly review
the electronics of extracellular recording,
the detection of spike events, and the clus-
tering of similar spike waveforms as a
means to sort spikes according to their
putative underlying sources. When spike
sorting succeeds, it transforms a funda-
mental weakness of extracellular record-
ing, namely the inability to isolate single
neurons, into one of its greatest strengths,

the simultaneous measurement from
multiple cells.

Special emphasis is placed on visual-
ization schemes for spike data as well as on
a set of metrics to estimate the number of
incorrectly categorized spikes. False-
negative contributions to a cluster lead to
a suppression of inferred spike rates, while
false-positive contributions lead to a dis-
tortion in the inferred receptive field for
the cell. Both errors reduce the estimated in-
formation carried by the cell. A matrix of
values for these metrics allows readers to as-
sess claims, e.g., the size and reliability of
multiple peaks in a receptive field, relative to
the level of contamination of the data.

Analog processing
Extracellular action potential waveforms
appear roughly biphasic in the vicinity of a
cell soma and dendrite, as the capacitive
current flow across the cell membrane
dominates and the voltage approximates
the derivative of the intracellular wave-
form. The amplitude of the extracellular
signals is small compared with that of the
intracellular potential, on the order of
hundreds of microvolts, but still signifi-
cant in terms of signal-to-noise ratio
(Henze et al., 2000) (Fig. 1A). The resis-
tive nature of the extracellular space en-
sures that currents summate without
preferential attenuation of their high-
frequency components (Logothetis et al.,
2007), so that the signals from different
cells may be recorded with a single or mul-
tiwire electrode at a fixed location (Buz-
sáki, 2004).

The most important factors for suc-
cessful spike sorting are the choice of ap-
propriate microelectrodes, the precision
of the placement of the electrodes, and
quality of the acquisition electronics.
When spiking activity is synchronous be-
tween neighboring cells, there is consider-
able overlap of the spike waveforms, and
sorting becomes very difficult. In this case,
it appears best to use a fine individual elec-
trode to isolate a single cell. These elec-
trodes typically have 1- to 5-�m-diameter
tips and an impedance whose magnitude
is typically 1–20 M� measured at a fre-
quency of 1 kHz. Multiwire electrodes,
such as stereotrodes (McNaughton et al.,
1983) and tetrodes (Gray et al., 1995), are
appropriate for simultaneous recording
from two or more units when neuronal
activity is largely asynchronous (Ain-
sworth and O’Keefe, 1977; Krüger and
Bach, 1981; Reitboeck, 1983; Venkatacha-
lam et al., 1999; Fee and Leonardo, 2001;
Yamamoto and Wilson, 2008; Battaglia et
al., 2009). These electrodes are made of
12–25 �m microwire with exposed ends
that have impedances of �100 k�. While
the extracellular waveform of two neu-
rons may appear similar on a single mi-
crowire, they are unlikely to be similar on
multiple electrodes at different albeit
nearby locations. Last, the impedance of
electrodes exhibits equal reactive and re-
sistive components (Humphrey and
Schmidt, 1991); the magnitude of these
components decreases as a power law with
increasing frequency (Blum et al., 1991)
and the measured noise decreases with in-
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creasing frequency, in a manner consis-
tent with thermal Johnson noise (Fig. 1B).

The electrical signal recorded by the
electrode must be conditioned for acqui-
sition (Fig. 1A). In general, the signal is
impedance buffered as close to the elec-
trode tip as possible to minimize contam-
ination by noise from environmental
sources. Spectral filtering is performed to
isolate frequency components relevant for
spike waveforms. The signal from the am-
plifier is high-pass filtered near 300 Hz
solely for spike recording or at frequencies
down to 0.1 Hz when field potential data
are simultaneously acquired. The signal is
typically low-pass filtered at 10 kHz,
which is where the amplifier noise and the
spectral power of the spike are compara-
ble (Fig. 1C). The signal is oversampled,
and the entire digitized data stream is
stored for analysis. Acquisition schemes
where only putative spike events are
stored do not allow for the characteriza-
tion of background noise or for different
spike detection criteria to be applied post
hoc. Before offline sorting, the digitized
signals are additionally bandpass filtered
to specifically isolate those frequencies
present in the extracellular waveform that
exceed the noise (Fig. 1C).

Algorithmic spike sorting
We summarize the key issues of spike sort-
ing and refer the reader to the work by Le-
wicki (1998) for a thorough review. The first
step in automated spike sorting is the extrac-
tion of spike waveforms from extracellular
data, and the second is the clustering of these
waveforms into groups that represent the
activity of single neurons. The simplest
method for detecting a spike is to select a
threshold value of voltage for the extracellu-
lar signal on each microwire (Fig. 2A). An
epoch of data, typically 1.0–2.0 ms in extent,
is extracted and time-stamped whenever a
signal crosses threshold (Fig. 2B). This ap-
proach considers the voltage only at a par-
ticular time point, whereas extracellular
waveforms have characteristic shapes that
extend over many data samples. If the extra-
cellular waveform is known a priori, the
matched filter provides an optimal way of
linearly filtering the recording to use the full
shape of the waveform in detection (Fig.
2A). As the waveform is not typically known
a priori, a nonlinear filter can increase the
signal-to-noise ratio by emphasizing voltage
deflections that are both large in amplitude
and high in frequency content (Kim and
Kim, 2000) (Fig. 2A).

The choice of threshold for detection
of a putative spike waveform is a trade-off
between false-positive and false-negative

Figure 1. Signals and signal conditioning steps in the acquisition of extracellular data. A, The extracellular signal from one
microwire of a tetrode, positioned near a hippocampal CA1 neuron in vivo (Henze et al., 2000), followed by a schematic of the
signal flow. Each box refers to a specific process that is implemented by an electronic or computational unit; see Ganguly and
Kleinfeld (2004), their supplemental material, for details of the circuit. All extracellular signals are referenced to an unrelated
region of cortex and impedance-buffered at the head of the animal. We use N-channel field effect transistors (SST4118; Vishay
Siliconix) with matched transconductances that were configured as common source transconductance amplifiers; the input noise
of these transistors does not exceed the noise generated by the microelectrode. The transistors provide noise immunity as well as
current to drive flexible cables that connect the head stage to precision load resistors, followed by 1 Hz high-pass single-pole
filters. We measured the difference between each filtered channel and the filtered reference signals with a field effect transistor-
input instrumentation amplifier with a fixed gain of 100 (v/v) (INA101, Burr Brown, Texas Instruments). The amplified signal then
passes through a commutator, if applicable, and is high-pass filtered (4-pole Bessel filter configured around a no. UAF42, Burr
Brown), further amplified (no. OPA101, Burr Brown), anti-alias filtered (8-pole constant-phase low-pass filter; no. D68L8D—
10.0 kHz, Frequency Devices), and finally digitized (16 bit digitizer, NI-6251, National Instruments). All numerical operations were
performed with programs written in MATLAB (The MathWorks). B, The complex impedance of a 25-�m-diameter microwire
electrode, cut at 45° and beveled on a diamond grinding wheel, as a function of frequency, together with the measured electrode
noise. The measured curves have a phenomenological falloff as �Impedance� � f �0.78, where f is the frequency. The measured
noise is close to the expected value for thermal Johnson noise, which varies as �4kBTZResistive for a 1 Hz bandwidth, where kBT
� 100 meV is the thermal energy and ZResistive is the resistive part of the impedance. C, The spectral composition of the spike
signal averaged over 151 waveforms from the same single unit. The bands have 0.95 confidence limits. Part of the decrement near
10 kHz is caused by the low-pass filter. Also shown are the fit to the electrode noise and the specified amplifier noise.
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errors. On the one hand, it is favorable to
err on the side of a low threshold since
noise events that are erroneously included
as spikes can be eliminated when wave-
forms are clustered. On the other hand,
each detected event is typically followed
by a censored period that momentarily
prevents another spike from being de-
tected. This censor period is included to
prevent a single spike waveform from trig-

gering multiple events. If a spike detection
threshold is set too low, noise events may
cause a high fraction of the data to be cen-
sored and true events will go undetected.
The number of expected noise events for a
particular threshold can be calculated
from the background noise and used to set
detection criteria (Fig. 2C).

The set of waveforms that cross thresh-
old must be aligned to facilitate their com-

parison. Waveforms are typically aligned
on either their peak or center-of-mass, as
either of these points is less susceptible to
noise than the threshold crossing. Fur-
ther, the true peak of the waveform may
occur in between samples, so splines (de
Boor, 2001) can be used to interpolate the
waveform about its true peak. With mul-
tiwire electrodes, the alignment can be
performed on the data channel with the
largest event, with the resulting alignment
point applied to the other channels.

A range of different approaches are
used to separate the set of waveforms into
groups that are based on similarity of their
shape and possible other factors, such as
the state of the animal and the statistics of
neuronal spiking (Abeles and Goldstein,
1977; Lewicki, 1994; Fee et al., 1996b;
Nguyen et al., 2003; Quiroga et al., 2004;
Delescluse and Pouzat, 2006). Since the
clustering of waveforms into common
sources involves statistical inference, a
given cluster of waveforms is referred to as
a unit rather than a neuron.

Multiwire electrode signals are sorted
as one composite waveform whose di-
mensionality is the number of samples
times the number of channels. For exam-
ple, stereotrode voltages sampled at 30
kHz for a 1.5 ms window have a dimen-
sion of 90. As it is difficult to visualize data
in greater than even three dimensions,
sorting relies on automated algorithms to
cluster data. A useful parametric method
is to assume that the data consist of mul-
tiple Gaussian distributions, where each
distribution corresponds to the spikes of a
single neuron (Pouzat et al., 2002). While
extracellular noise typically follows a Gauss-
ian distribution, non-Gaussian variability in
waveforms can occur during bursts of ac-
tion potentials or as a result of electrode drift
(Fee et al., 1996a; Harris et al., 2000; Shoham
et al., 2003; Delescluse and Pouzat, 2006). It
is therefore advisable to use nonparametric
clustering algorithms, which typically in-
volve hierarchical aggregation, where wave-
forms that are the most similar are
progressively grouped until some criteria
are reached (Fee et al., 1996b).

A final issue concerns on-line sorting,
such as by matched filtering with mem-
bers of a library of spike waveforms
(Thakur et al., 2007; Calabrese and Panin-
ski, 2011). On-line sorting is unavoidable
for certain engineering applications, such
as neuroprosthetic devices (Tillery and
Taylor, 2004), and may provide useful
feedback on the placement of electrodes
in the course of experimentation. How-
ever, on-line sorting is at best approxi-

Figure 2. Threshold selection for spike detection and the stability and self-consistency of a single cluster of spikes. A, Example
from rat motor cortex containing three obvious extracellular spikes in a single-electrode record. Top trace, Data were low-pass
filtered at 6 kHz and high-pass filtered at 600 Hz. Middle trace, The data were convolved with a matched filter expressed by
��� �1v, where v is a vector containing the mean waveform of a spike cluster found on a previous iteration of spike sorting, �� is
the covariance matrix of the background noise sampled at random time intervals, and � is a scalar that normalizes the filter gain
to one (Duda and Hart, 1973). Bottom trace, The data were filtered by the nonlinear energy operator, ENL(n) � x 2(n) � x(n � 1)
x(n � 1), where x(n) is the value of the signal at the nth sample (Kim and Kim, 2000). Note that the scale bar does not apply to the
output of the ENL. B, Histogram of values in entire extracellular signal from single electrode data as in A, after bandpass filtering.
Note the presence of a second peak of large negative amplitude that corresponds to data points from spike events. There are 100
bins spaced out on a logarithmic scale between �1 and �1000 �V. C, Number of detected events as a function of detection
threshold for larger portion of same dataset as in A. Left y-axis gives the total number of events, while the right y-axis gives the
proportion of the experiment that is censored by this many events. The censored period was 0.75 ms in a dataset of 200 s. D,
Two-dimensional histogram of waveforms (top) and standard deviation of waveform for each time point in waveform (bottom)
for stereotrode data; black line is the standard deviation of the background activity of that channel. The waveform acquisition
time is 2 ms of which a 1.5 ms interval is retained after centering of the waveform on their negative peak. E, Firing rate (top) and
waveform amplitude (bottom) as a function of time during the experiment; bin width is 10 s. F, Interspike interval histogram that
illustrates a relative lack of spike events occurring during the refractory period (red stripe) of the previous spike; bin width is 0.25
ms. G, Histogram of spike waveform amplitudes relative to the threshold used for detection. Red line is a Gaussian fit that can be
used to estimate the number of waveforms from this putative unit that did not cross threshold.
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mate and cannot supplant post hoc sorting
based on the entire collection of spike
waveforms and the statistics of the under-
lying noise (Fee et al., 1996a,b).

Visual inspection
We consider a series of visual tests on the
output of automated spike sorting rou-
tines that address whether a single cluster
of waveforms is self-consistent with a sin-
gle neuron.

Inspect the waveforms
The clustered waveforms should be in-
spected for a nonphysiological shape or
obvious contamination by multiple neu-
rons. This can be done by overlaying all
clustered waveforms together, which has
the advantage of clearly indicating any
outlier events, or with a heat map of time-
voltage values (Fig. 2D), which has the ad-
vantage of indicating the variability of the
waveform.

Specialized visualization tools may be
required for atypical cases. For example, a
systematic change in the shape of the re-
corded waveforms may occur during ep-
ochs of synchronous spiking and may be
resolved only by the use of electrodes with
a smaller exposed tip.

Inspect for stationarity
The temporal stability of the waveforms in
each cluster can be determined by plotting
both the instantaneous spike rate and the
amplitude of the waveforms as a function
of time (Fig. 2E). The electrodes may have
physically drifted or the state of the neu-
ron may have changed if either of these
values systematically varies over the
course of an experiment.

Inspect for refractory violations
A histogram of the interspike interval
(ISI) for the spike times of each waveform
in a cluster is expected to show a refrac-
tory period, i.e., a dearth of spikes that
occur within milliseconds of each other
(Fig. 2F). An alternate graph is a histo-
gram of the autocorrelation of the spike
times, which preferentially highlights pat-
terns of spikes. Note that the value of the
ISI asymptotes to zero at large time lags,
while that of the autocorrelation asymp-
totes to the mean firing rate.

Verification of waveform threshold
Independent of what metric was used to
detect spikes, e.g., the peak voltage, a his-
togram of the value of that metric for each
waveform can be inspected for a sharp
cutoff at the threshold level (Fig. 2G). In
general, the vast majority of waveforms in

a cluster must lie well above the threshold
for detection.

Inspect residuals
The residuals of a cluster, i.e., the standard
deviation at each sample of the waveform,
can indicate whether multiple neurons
contributed to a cluster (Pouzat et al.,
2002) (Fig. 2D). Ideally, the variability of
a cluster arises only from background
noise and matches the statistics of back-
ground noise, which appears to be sta-
tionary over the duration of the waveform
(Fee et al., 1996a). The presence of strong
temporal structure in the background
noise may indicate contamination from
other neurons.

We now turn to comparisons that in-
volve pairs of potential single-unit clus-

ters as a means to identify cross-
contamination (Fig. 3A,B).

Projection onto Fisher’s linear
discriminant
The optimal one-dimensional projec-
tion to separate two known Gaussian
distributions, given by Fisher’s linear
discriminant (Fisher, 1936), may be cal-
culated from the mean and covariance
matrix of two clusters, even if the data
are not strictly Gaussian. As noted by
Pouzat et al. (2002), the projection of
both clusters onto the discriminant pro-
vides a rapid means to visualize poten-
tial overlap in their distribution of
waveforms (Fig. 3C). A caveat is that an
apparent overlap in one dimension may
hide a separation in higher dimensions.

Figure 3. Plots that demonstrate the separation and independence of 3 clusters recorded from the same stereotrode. A,
Scatter plot of spike waveforms from all clusters using the first two principal components. Cluster membership is indicated by
color. For clarity, noise events were not plotted. B, Autocorrelation of each cluster; bin width is 2 ms. The autocorrelation as
calculated as Ci(�) � �i	j�[� � (ti � tj)], where ti is a spike time. C, Pairwise comparison of clusters via histograms of the
projection of each cluster onto Fisher’s linear discriminant between the given pair of clusters. The linear discriminant, denoted H,
between the waveforms of clusters labeled n and m is given by H � (�� n ��� m) �1(�n ��m) where �n and �m are the mean
vectors and �� n and �� m are the covariance matrices of the waveforms in clusters n and m, respectively. The projection of a
waveform v onto the linear discriminant is given by Hv. D, Pairwise comparison of the three pairs of clusters via the cross-
correlation between the spike times in each pair of clusters; bin width is 2 ms. The cross-correlation is calculated as Cij(�) �
�i,j�[�� (t

i

m � t
j

n)], where t
i

m and t
i

n are the spike times of clusters m and n. For both the autocorrelation and cross-correlation,
values were normalized into terms of firing rate.
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Cross-correlation
The correlation between the spike times
of two clusters reveals whether the two
clusters are independent (Fig. 3D). A
correlation function that appears con-
stant indicates two autonomous spike
trains. However, temporal structure in
the cross-correlation can arise from
many sources, including functional
connectivity, receptive field similarity,
or cross-contamination of clusters.

Outlier removal
The final step of spike sorting is the removal
of outlier data points from each cluster. An
outlier is a waveform that does not resemble
any of the mean waveforms. A principled
way to remove outliers is to use the �2 prob-
ability distribution. For a random variable v
drawn from a multivariate Gaussian distri-
bution with mean vector � and covariance
matrix �� , the distribution of (v � �)T�� �1

(v ��) follows a �2 distribution. One could
remove from a cluster all waveforms that
have a probability of 
1/N, where N is the
number of events in the cluster. This process
should be performed last so that the mean
waveform is defined for each unit repre-
sented in a dataset.

Quality metrics
Manual inspection provides a qualitative
means to evaluate the success of spike
sorting. Yet an estimate of false-positive
and false-negative errors should be re-
ported as a means to evaluate a given level
of modulation of a unit’s firing rate rela-
tive to the contamination of the cluster.
We propose that the following four esti-
mates of false-positive and false-negative
errors be included in publications that
make use of spike sorting, independent of
the algorithm used to sort.

False positives based on refractory period
violations, denoted f1

p

We assume that the majority of spikes in a
cluster arise from a single neuron. We
consider these the true events and recall
that the absolute refractory period of a
neuron implies that the ISI distribution
should drop to zero below a minimum
time. Thus, ISIs that are shorter than the
absolute refractory period represent
contamination by a rogue unit. One can
compute the fractional level of contam-
ination, f1

p, with the assumption that re-
fractory period violations arise from a
point process that is uncorrelated with
the true spikes of the cluster (Meunier et
al., 2003).

We denote the number of spike events
in a cluster as N, the width of the refrac-
tory period as �R, the width chosen for the
censored period as �C, and the duration of
the experiment as T. In terms of these def-
initions, the number of true spikes in the
cluster is N(1 � f1

p) and the number of
rogue spikes is Nf1

p. The total duration
during which refractory period violations
could occur around true spikes is 2(�R �
�C)N(1 � f1

p); the factor of two arises
since refractory period violations occur
whether a rogue spike appears immedi-
ately before or after a true spike. The ex-
pected number of refractory period
violations, r, is given by the total duration
of refractory periods around true spikes
multiplied by the rate of rogue spikes, or
r � 2 (�R � �C) N 2(1 � f1

p)f1
p/T, which can

be solved for f1
p. For example, under the

typical conditions of mean firing rate, N/T
� 10 Hz, �R � 3 ms, �C � 1 ms, and T �
1000 s, an observation of r � 20 refractory
period violations yields an estimate of f1

p

� 0.05. These values, particularly the re-
fractory period, are typical for measure-
ments from neocortical pyramidal cells
in awake rat (Curtis and Kleinfeld,
2009) and have to be adjusted for other
cell types and experimental conditions.

False negatives from the threshold for
detection, denoted f1

n

The histogram of the values of the spike
detection metric (Fig. 2G) may be used to
estimate the number of spikes whose
waveforms were below the threshold for
detection. For the case of a voltage thresh-
old, as used here, the histogram may fol-
low a Gaussian distribution. However, as
the tail of the data is missing, the estimate
of the mean and variance of this distribu-
tion may require a special fitting proce-
dure. Once the parameters are fit, the
percentage of missing spikes is the value of

Figure 4. Consequences of false-positive and false-negative errors in poorly sorted units. A, Tuning histogram of a poorly
sorted unit that contains all spikes simulated from the neuron of interest (solid theoretical tuning curve) and contaminating spikes
from a simulated rogue neuron (dashed theoretical tuning curve) with a 20% false-positive error rate. The observed tuning
histograms were generated as Poisson-distributed spike counts with 10 s of averaging at each orientation. B, Tuning histogram
of a poorly sorted unit that contains spikes of simulated neuron (solid curve) but with a 20% false-negative error rate. The
observed tuning histogram was generated as a Poisson-distributed spike count with 10 s of averaging at each orientation.

Table 1. Summary of cluster statistics for three “single” units in Figure 3: false-positive events

Single cluster error Multiple cluster error Composite

Overlap of clusters

ISI violations, f1
p 1 – 2 2 - 3 3 - 1 Sum, f2

p Computed as Maximum (f1
p, f2

p)

Unit 1 0 0 0 0 0
Unit 2 0.01 0.001 0.005 0.006 0.01
Unit 3 0.12 0.026 0 0.026 0.12

Table 2. Summary of cluster statistics for three “single” units in Figure 3: false-negative events

Single cluster error Multiple cluster errors Composite

Overlap of clusters
Censored
spikes, f3

n
Computed as
�1 � (1 � f1

n) (1 � f3
n)� � f2

nUndetected spikes, f1
n 1 – 2 2 - 3 3 - 1 Sum, f2

n

Unit 1 0 0 0 0 0.028 0.03
Unit 2 0 0 0.017 0.017 0.016 0.03
Unit 3 0.001 0.008 0 0.008 0.021 0.03
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the cumulative Gaussian distribution up
to the detection threshold.

False positives and false negatives from the
overlap between pairs of clusters of sorted
spike waveforms, denoted f2

p and f2
n,

respectively
We estimate the overlap between a pair of
clusters in terms of fits with multivariate
Gaussian waveforms to each cluster. Let V
represent the voltage waveform of an ex-
tracellular spike that is assigned to either
cluster 1, with mean waveform �1, or clus-
ter 2, with mean waveform �2. We use a
model in which the variability of the
waveforms in either cluster are character-
ized by Gaussian noise with a covariance
matrix �� 1 for units assigned to cluster 1 or
�� 2 for those assigned to cluster 2; the di-
mensionality of the �� values is the number
of samples in the composite waveform. All
of these parameters are estimated from the
data with the expectation-maximization
(EM) algorithm (gmdistribution.fit in
MATLAB) to a mixture model of two mul-
tivariate Gaussians; as a technical aside, one
must calculate pseudoinverses of the �� val-
ues as they are not typically full rank. The
relative number of spikes in each cluster is
given by the prior distributions, i.e., P(C �
1) and P(C � 2), where C labels the cluster,
also found by the EM algorithm, where
P(C � 1) � P(C � 2) � 1.

The probability that a cluster generates
a particular waveform, v, is thus P(V�

v�C � c) � (2�)�
nk

2 ��� c��
1

2 e�
1

2
(v��c)T �� c

�1(v��c),
where c indexes the cluster. The inverse prob-
lem of finding that a particular waveform be-
longs to cluster c, denoted P(C � c�V � v), is
found using Bayes’ rule, i.e., P(C� c�V�v)�
P(V � v�C � c)P(C � c)/P(V � v), where
P(V�v)��i�1,2P(V�v�C� i)P(C� i).To
calculate the fraction of false positives in clus-
ter 1, we calculate the probability that each
waveform assigned to cluster 1 was generated
bycluster2, i.e., falsepositivesassignedtoclus-
ter 1, as fp(1;2) � (1/N1)�v � cluster 1 P(C �
2�V � v), where N1 is the number of spikes in
cluster 1. The expressions for the remaining
fractions of false negatives and positives are
fn(1;2) � (1/N1)�v � cluster 2 P(C � 1�V � v),
fp(2;1) � (1/N2)�v � cluster 2 P(C � 1�V � v),
and fn(2;1)�(1/N2)�v � cluster 1 P(C�2�V�
v), where N2 is the number of spikes in cluster
2. This pairwise analysis can be generalized for
n clusters for which the (n � 1) fractions of
false positives for a given cluster, k, sum to
form f2

p � �i	k
n fp(k; i). A similar summation

of the(n�1) fractionsof false-negativeevents
yields f2

n for a given cluster.

False negatives from censored events,
denoted f3

n

All detected events outside of a cluster cre-
ate a brief period of time that potentially
censors the detection of true spikes for
that cluster. One can estimate the total
time that the dataset was censored by mul-
tiplying the duration of the censored period,
denoted �C, by the total number of detected
events minus the number of events in the
cluster of interest, i.e., Mk��i	k

all clusters Ni,
where Ni denotes the number of spikes in
the ith cluster. The fraction of time that was
censored contributes to the estimate of
false-negative errors, i.e., f3

n � Mk �C/T.

Summary matrices
The summary statistics from the above anal-
ysis form two matrices, one for the fraction
of false-positive events and the other for the
fraction of false-negative events. The ISI vi-
olations should include false positives from
the fractional overlaps of a cluster with all
other clusters, i.e., we expect f1

p � f2
p. As a

hedge against the possibility that ISI vio-
lations were underestimated, the compos-
ite fraction of false-positive events is taken
as the larger of the false-positive estimates
based on ISI violations or cluster overlaps
(Table 1). The fraction of undetected
spikes and the fraction of censored spikes
are independent, so these fractions are com-
bined as a product of their complements
(Table 2). However, these detection errors
are mutually exclusive of false-negative
errors that result from the overlap of clus-
ters, so these fractions are added to form a
composite fraction of false-negative
events (Table 2).

Discussion
Extracellular recording is the oldest and
most common method of recording elec-
trical activity across populations of neu-
rons in awake behaving animals, from
invertebrates to human primates. Yet sim-
ple criteria for acceptable data, particu-
larly with regard to claims of single unit
responses, are largely missing. Such crite-
ria are critical since interpretations of
spike trains that are based on inadequately
sorted units can lead to erroneous claims
on neural coding. For the case of false-
positive errors, contamination can result
in sorted units that exhibit false multi-
modal responses (Fig. 4A). This occurs
when spike trains from two differently
tuned cells are combined into a single
spike train. For the case of false-negative
errors, the true firing rate is underesti-
mated (Fig. 4B) and thus the signal-to-
noise ratio is decreased for statistics that
are calculated with the spike train. In ad-

dition, false-negative errors may include
temporal structure, such as when spikes
are hidden by stimulation artifacts or are
misassigned because of a reduction in am-
plitude and an increase in width for the
trailing spikes of a burst.

We suggest that investigators include a
matrix of criteria that define the levels of er-
rors for their units (Tables 1, 2) (see http://
physics.ucsd.edu/neurophysics/links.html
for accompanying MATLAB code), or at the
minimum report a matrix of upper bounds
for these errors across all units. Further,
any analysis of neuronal modulation must
be made in light of the estimated contam-
ination of the unit; e.g., a feature based on
a 20% modulation of the firing rate is not
significant for that unit if the measured
count contains a 20% false-positive error
rate (Fig. 4 A). Following Joshua et al.
(2007), we note that while calculation of
errors involves statistical assumptions
about the dataset, even if these assump-
tions do not hold true, it is more useful to
report estimated false-negative and false-
positive events for a dataset rather than
declare that “only well-isolated units were
included in our study.”

Our analysis is practical for even par-
ticularly large datasets, such as those that
originate from arrays of electrodes (Blum
et al., 1991; Churchland et al., 2007). Con-
tinuous storage of signals from a large
number of channels may be streamed to
disk in real time and is compatible with
the bandwidth of radio telemetry systems
(Tillery and Taylor, 2004); e.g., recordings
from 100 stereotrodes leads to a data rate
of only 10 Mbytes/s. For well separated
electrodes, or sets of stereotrodes or te-
trodes, one can cluster the waveform data
in parallel. The computational methods
we discuss may be scaled up and the re-
sults may be subject to rapid visual inspec-
tion (Figs. 2, 3). For situations with
hundreds to thousands of electrodes in
which continuous data storage is cur-
rently impractical, we suggest that the
threshold for detection be biased low and
a time series that is at least twice the period
of the spike waveform plus censored pe-
riod around each event be saved. Overlap-
ping epochs may need to be saved when
the spike is high. This procedure allows
the threshold to be raised post hoc to
minimize the number of censored events
(Fig. 2C).

Notes
Supplemental material for this article is avail-
able at http://physics.ucsd.edu/neurophysics/
links.html. This material has not been peer
reviewed.
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