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Tourette syndrome (TS) is a common, chronic neuropsychiatric disorder characterized by the presence of fluctuating motor and phonic
tics. The typical age of onset is �5–7 years, and the majority of children improve by their late teens or early adulthood. Affected
individuals are at increased risk for the development of various comorbid conditions, such as obsessive– compulsive disorder, attention
deficit hyperactivity disorder, school problems, depression, and anxiety. There is no cure for tics, and symptomatic therapy includes
behavioral and pharmacological approaches. Evidence supports TS being an inherited disorder; however, the precise genetic abnormality
remains unknown. Pathologic involvement of cortico-striatal-thalamo-cortical (CSTC) pathways is supported by neurophysiological,
brain imaging, and postmortem studies, but results are often confounded by small numbers, age differences, severity of symptoms,
comorbidity, use of pharmacotherapy, and other factors. The primary site of abnormality remains controversial. Although numerous
neurotransmitters participate in the transmission of messages through CSTC circuits, a dopaminergic dysfunction is considered a
leading candidate. Several animal models have been used to study behaviors similar to tics as well as to pursue potential pathophysio-
logical deficits. TS is a complex disorder with features overlapping a variety of scientific fields. Despite description of this syndrome in the
late 19th century, there remain numerous unanswered neurobiological questions.

In the 1880’s, Georges Gilles de la
Tourette published a two-part article in
which he emphasized differences between
tics and chorea. Although many of the de-
scriptions about the disorder, which now
bears his name [Tourette syndrome (TS)],
have been revised, his belief that tics are a
neurological movement disorder and not
a psychiatric condition persists to the
present (Goetz and Klawans, 1982). Nev-
ertheless, despite multiple advances and
widespread acceptance of TS being a bio-
logical disorder, the precise etiology and
underlying pathophysiological mecha-
nisms remain unknown. The goals of the
present review are to briefly describe the
clinical phenomenology of TS and related

tic disorders, to review current information
on genetic and neurobiological mecha-
nisms, and to identify areas in need of fur-
ther investigation.

The Clinical Problem
The hallmark of TS is the presence of
chronic, fluctuating motor and vocal tics.
Best diagnosed by observation, tics are
sudden, repetitive, involuntary move-
ments or vocalizations with differing
degrees of intensity and frequency, and
unpredictable durations (Kurlan, 2010).
Tics are currently classified as motor or
vocal (phonic), although this separation
has been questioned, and further subclas-
sified into simple or complex categories.
Simple tics generally involve fewer muscle
groups, are briefer in duration, and tend
to be more meaningless in their appear-
ance/phonation. Common examples of
simple tics are as follows: motor: eye
blinking, head jerking, facial grimacing,
or shoulder shrugging; and phonic: sounds

or noises such as throat clearing, sniffing, or
grunting. In contrast, complex tics typically
involve more elaborate manifestations and
appear to have a more purposeful action or
verbalization. Examples of common com-
plex tics are as follows: motor: touching ob-
jects, clapping, obscene gestures, or body
contortions; and phonic: the repetition of
words including echolalia, palilalia, and
coprolalia. Characteristics that help to dif-
ferentiate tics from other paroxysmal
movement disorders include a waxing and
waning course, the presence of particular
factors that exacerbate (stress, anxiety, fa-
tigue) or reduce (concentrating or focusing)
symptoms, a suggestible nature, the pres-
ence of a premonitory sensation, and brief
suppressibility.

Tics are common in childhood, with
epidemiological studies showing that �20-
30% of children exhibit brief, repetitive,
involuntary movements or sounds in a
classroom setting (Kurlan et al., 2001). The
diagnosis of a tic disorder is based solely on
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historical features and a clinical examina-
tion that confirms their presence and elimi-
nates other etiological conditions. There is
no reliable diagnostic test for TS or the spec-
trum of disorders that have tics as their car-
dinal feature. The formal criteria for TS
require an age of onset before 18 years, the
presence of multiple motor and at least one
vocal tic (not necessarily concurrently), a
waxing and waning course, the addition and
subtraction of various tics, the presence of
tic symptoms for at least 1 year, and the
absence of a precipitating illness (e.g., en-
cephalitis, stroke, or degenerative disease)
or tic-inducing medication. Motor tics have
a typical age of onset of �5–7 years, and the
course of TS can be quite variable. Most pa-
tients, however, have a decline in symptoms
during the adolescence or early adulthood
(Leckman et al., 1998; Bloch et al., 2006),
leading to suggestions of a developmental
disorder. In addition to tics, children with
TS often have a variety of comorbid psycho-
pathologies, including attention deficit
hyperactivity disorder (ADHD), obsessive–
compulsive disorder (OCD), learning diffi-
culties, sleep abnormalities, anxiety, and
other behaviors, all of which can have a sig-
nificant impact on the individual’s progno-
sis (Channon et al., 2003; Sukhodolsky et al.,
2003; Cavanna et al., 2009). The frequent
occurrence of ADHD and OCD in affected
individuals has led to suggestions of over-
lapping pathophysiology between tic disor-
ders and these conditions.

A discussion of treatment is beyond the
scope of this review and has been described
previously (Singer et al., 2010). In brief,
there is no specific cure for tics. The indica-
tions for initiating tic-suppressing therapy
include psychosocial problems, functional
difficulties, disruptions in the academic or
work environment, or physical discomfort.
Available therapies include both behavioral
(habit reversal, cognitive behavioral, and re-
laxation therapies) and pharmacological
approaches. The beneficial response to
medications affecting specific neurotrans-
mitter systems is often used to support a
pathological involvement, e.g., improve-
ment of tics following the use of dopamine
receptor antagonists.

Etiology
Numerous studies have confirmed Gilles de
la Tourette’s initial suspicion that tic disor-
ders are inheritable, but the genetics under-
lying the disorders have proven complicated
(State, 2010). Familial studies have repeat-
edly demonstrated significant increases in
the incidence of TS or other tic disorders in
first degree relatives of affected individuals
(McMahon et al., 2003). Studies in twins

also support a genetic disorder with a con-
cordance of chronic tics in 77–94% of
monozygotic compared to just 23% in dizy-
gotic twins (Price et al., 1985; Hyde et al.,
1992). Despite these reports, the precise pat-
tern of transmission and the specific genes
involved remain elusive. Linkage analy-
ses have suggested several chromosomal lo-
cations, but without a clear reproducible
locus (Pauls, 2006; O’Rourke et al., 2009).
Similarly, candidate gene studies have failed
to yield consistent results for specific suscep-
tibility genes. Much attention has been paid
to dopaminergic candidates, and there is ev-
idence of a significant association between
TS and a dopamine transporter polymor-
phism (DAT1 Ddel) (Yoon et al., 2007b).
Several recent candidate genes have includ-
ed: a heterozygous loss of function mutation
in L-histidine decarboxylase, which encodes
the rate limiting enzyme in histamine bio-
synthesis (Ercan-Sencicek et al., 2010);
functional variations of the SLITRK1
gene, with homology to a known axon guid-
ance molecule (Scharf et al., 2008); and
DLGAP3, a postsynaptic scaffolding protein
highly expressed in striatal glutamatergic
synapses (Crane et al., 2011).

Multiple factors contribute to the on-
going difficulty in identifying a specific
means of genetic transmission, including
phenotypic heterogeneity, the variable ex-
pression of comorbid conditions, genomic
imprinting [sex of the transmitting parent
affecting clinical phenotype (Lichter et al.,
1995; Eapen et al., 1997)], bilineal versus
unilineal transmission (Hanna et al., 1999;
Lichter et al., 1999), and epigenetic factors.
Several studies have suggested that a variety
of prenatal and perinatal risks may be asso-
ciated with the subsequent development of
TS, including the timing of perinatal care,
severity of mother’s prenatal nausea and
vomiting, proband birth weight, the 5 min
Apgar score, and prenatal maternal smok-
ing (Leckman et al., 1990; Burd et al., 1999;
Mathews et al., 2006; Young et al., 2008;
Pringsheim et al., 2009). Further replica-
tion, however, is necessary before any signif-
icance can be attributed to these factors. The
emergence of genomic methods that enable
comprehensive investigation of both rare
and common genetic variations and the
availability of large patient cohorts is ex-
pected to provide valuable insights in the
near future (Grados, 2010; State, 2010).

Another proposed theory is that tics
can be an acquired consequence of auto-
immune mechanisms following a Group
A �-hemolytic streptococcal infection
(GABHS) (Swedo et al., 1998; Snider and
Swedo, 2003), a condition labeled as pediat-
ric autoimmune neuropsychiatric disorder

associated with a streptococcal infection
(PANDAS). Indirect support of such a the-
ory includes a significantly higher incidence
of autoimmune disease in the mothers of
children with tics (Murphy et al., 2010).
Nevertheless, the existence of this etiological
entity is extremely controversial based on
both epidemiological and autoimmune
studies (Kurlan, 1998, 2004; Singer and Loi-
selle, 2003; Kurlan and Kaplan, 2004; Singer
et al., 2005b; Kurlan et al., 2008; Singer et al.,
2008; Morris et al., 2009; Leckman et al.,
2011).

Neurobiology of TS
Circuits
A series of parallel cortico-striatal-thalamo-
cortical (CSTC) circuits that link specific re-
gions of the frontal cortex to subcortical
structures has provided a framework for un-
derstanding the interconnected neurobio-
logical relationships that exist between TS
and its multiple comorbid problems (Singer
and Harris, 2006; Leckman et al., 2010;
Mazzone et al., 2010). In classical models of
movement disorders the basal ganglia was
believed to influence behavior by changing
cortical excitability through the interplay of
the “direct” [striatum to globus pallidus in-
terna (GPi)] and the multisynaptic “indi-
rect” [striatum to globus pallidus externa
(GPe) to subthalamic nucleus (STN) to
GPi] pathway (Albin et al., 1989). Accord-
ing to this model, hyperkinetic disorders
were the result of increased cortical excit-
ability, due to either a reduction of direct
pathway excitatory effect or an increase in
the indirect inhibitory effect. Since this di-
rect/indirect pathway approach failed to ad-
dress the specificity of tics, other hypotheses
have been developed that view the basal
ganglia as performing a process of action se-
lection, i.e., focused facilitation of selected
movements and inhibition of competing
motor patterns (Mink, 2003). Within this
system, tics are viewed as a focal excitatory
abnormality in the striatum that causes an
erroneous inhibition of a group of neurons
in the GPi and in turn a disinhibition of cor-
tical neurons (Mink, 2001; Albin and Mink,
2006).

Animal models
Several animal models have been used to in-
vestigate TS on different bases: (1) face va-
lidity, i.e., behaviors or movements that
have some characteristics resembling motor
tics (e.g., motor stereotypies, sequential
super-stereotypy, repetitive grooming, cir-
cling, and self injurious behaviors) (Dod-
man et al., 1994; Campbell et al., 2000;
Berridge et al., 2005; Löscher, 2010; Taylor
et al., 2010); or (2) construct validity, i.e., the
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animal model has a pathophysiological or
developmental neural circuit deficit that is
consistent with current knowledge concern-
ing TS. Examples in this latter category
include the following: a psychostimulant-
induced model; the D1CT-7 transgenic and
dopamine transporter knockdown (DAT-
KD) mutant mice; a monkey model with
striatal disinhibition-induced tics; and ro-
dent models with immunologically related
basal ganglia dysfunction.

Psychostimulant model
The psychostimulant model derives some
relevance based on the ability of dopami-
nergic enhancing medications to exacer-
bate tics and stimulate locomotor behavior.
This rodent model has provided important
understandings about the role of the basal
ganglia, especially striasomes, and the acti-
vation of stereotypic behaviors (Canales and
Graybiel, 2000; Graybiel, 2000).

D1 receptor cholera toxin transgenic model
The D1CT-7 transgenic mouse (produced
using a transgene made by fusing the pro-
moter region for the human D1 receptor
with the intracellular A1 subunit of chol-
era toxin) clinically demonstrates com-
pulsive behaviors (repetitive climbing,
digging, and leaping), biting behaviors,
and jerking movements (flurries of “twitches”
of the head, limbs, and trunk) that begin
as early as postnatal day 16 (Burton et al.,
1991; Nordstrom and Burton, 2002).
Jerky movements, similar to what occurs
in TS, are reduced following treatment
with clonidine and D2 antagonists. Ani-
mals have a reduced seizure threshold
which is atypical for children with TS. The
construct validity of this model for tics is
based on hyperactivity within cortical,
limbic, and corticostriatal circuitry, although
its correlation to TS has been questioned
(Swerdlow and Sutherland, 2005).

DAT-KD mutant mouse
The DAT-KD mouse has a markedly re-
duced expression of DAT in striatal dopa-
mine neurons, and extracellular dopamine
levels are 170% of wild-type controls
(Zhuang et al., 2001). Behaviorally the ani-
mals are hyperactive and have perseverative
behaviors and a pattern of more stereotyped
and syntactic grooming sequences that re-
sist disruption (Berridge et al., 2005). This
model lacks tic-like jerking movements and
is more consistent with obsessive–compuls-
ive-like behaviors.

Monkey focal striatal disinhibition
In two cynomolgus monkeys, focal disin-
hibition of the sensorimotor putamen, us-
ing the GABAA antagonist bicuculline,

produced repetitive motor tics predomi-
nantly in the orofacial region (McCairn et
al., 2009). Local field potential spikes,
which correlated with tics, were identified
throughout the cortico-basal ganglia path-
way. Results suggest that output nuclei of
the basal ganglia provide a temporally exact
and spatially distributed release signal, but
that the final activation of tics likely occurs
downstream from basal ganglia output.

Autoimmune models
Primarily two types of models have been
used to investigate immune mechanisms
in tic disorders.

Passive transfer of antibodies. This ap-
proach evaluates behavioral effects fol-
lowing the infusion of sera or IgG from
individuals with TS into rodent striatum.
Results remain very controversial. Some
investigations have shown that sera from
TS subjects produced a significant in-
crease in stereotypic behaviors (e.g., licks
and forepaw shakes) as well as episodic
utterances (Hallett et al., 2000; Taylor et
al., 2002; Liu et al., 2008). In marked con-
trast, other studies infusing TS or PANDAS
sera at the same coordinates showed no sig-
nificant increase in stereotypic behaviors
and no rat developed any audible abnor-
mality (Loiselle et al., 2004). Negative stud-
ies were also confirmed in a blinded,
collaborative three-center effort involving
several of the previously reporting institu-
tions (Singer et al., 2005a).

Immunization with GABHS. This model
evaluates the appearance of autoantibodies
and behavioral effects following immuniza-
tion of mice with GABHS. Female SJL/J
mice, immunized and boosted with a ho-
mogenate of GABHS in Freund’s adjuvant,
developedimmunoreactiveantibodiesagainst
mouse cerebellum, globus pallidus, and
thalamus (Hoffman et al., 2004). Rearing
and ambulatory behavioral abnormalities
correlated with IgG deposits in deep cere-
bellar nuclei. This model relates more to
mechanisms for GABHS-mediated CNS
damage than to either TS or PANDAS
(Swerdlow and Sutherland, 2005).

Structural changes in TS
Basal ganglia
Volumetric MRI studies, used to identify
neuroanatomical (particularly subcorti-
cal) changes in TS, vary extensively. In the
largest cohort to date, Peterson et al.
(2003) identified a mild but consistent de-
crease in basal ganglia volume in a cohort
of �150 TS patients. Subdivided by age,
the reduced volume was most apparent in
the caudate of children, with adults show-
ing reductions across all basal ganglia re-

gions. This finding is supported by a twin
study that showed more severely affected
siblings to have a smaller right caudate
(Hyde et al., 1995) and a longitudinal
study demonstrating that caudate volume
in childhood varied inversely with tic se-
verity in adulthood (Bloch et al., 2005). In
contrast, a study using stricter exclusion
criteria to control for confounders failed
to demonstrate any changes in caudate
volume, but did show increased volume of
the putamen bilaterally in TS boys (Roess-
ner et al., 2011). This finding was also
identified using an automated image anal-
ysis technique capable of assessing differ-
ences throughout the brain rather than
focusing on specific selected areas (voxel-
based morphometry) (Kassubek et al.,
2006). Asymmetry of the putamen, with-
out any change in the absolute volumes,
has been reported, but results were incon-
sistent and possibly affected by gender
(Singer et al., 1993; Zimmerman et al.,
2000). Diffusion tensor imaging (DTI),
which measures the movement of water,
provides several indices that can reflect
microstructural changes. Using this tech-
nique, one group has demonstrated mi-
crostructural changes in the putamen
compared to healthy controls (Makki et
al., 2008). These findings were not repli-
cated in a subsequent study, but a correla-
tion was identified between the diffusion
parameters and tic severity among TS pa-
tients (Neuner et al., 2011).

Neuropathological studies of TS pa-
tients are rare, but a few studies have pro-
vided evidence of cellular alterations in
the basal ganglia to support imaging stud-
ies. In a small study (three TS patients and
five controls), Kalanithi et al. (2005)
found increases in the total number of
neurons in the GPi with concomitant
decreases in the number and density of neu-
rons in the GPe and caudate. The distribu-
tion of parvalbumin-positive GABAergic
interneurons was markedly different in TS pa-
tients, with a larger percentage residing in the
GPi. This same group confirmed their find-
ings in two additional patients and further
demonstrated a decrease in striatal cholinergic
neurons (Kataoka et al., 2010). Although the
results are limited by a small sample size and
multiple potential confounders, including
possible effects of pharmacologic therapy, it is
proposed that these findings strongly impli-
cate the associative and sensorimotor regions
of the basal ganglia in the pathogenesis of TS.

Cortex and subcortical white matter
Significant evidence exists for a primary
cortical dysfunction in TS. MRI analyses
have detected volumetric changes in the
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cortex of TS patients including larger dor-
sal prefrontal and parieto-occipital re-
gions, and a smaller inferior occipital
region (Peterson et al., 2001). In a limited
but well controlled male-only study that
excluded medicated patients and those
with comorbidities, voxel-based mor-
phometry and magnetization transfer imag-
ing (methods sensitive to tissue alterations
and macrostructural integrity) have de-
tected changes in prefrontal, frontal, senso-
rimotor, and anterior cingulate regions
(Müller-Vahl et al., 2009). Using parcella-
tion methods, variable changes have been
reported in subcortical white matter, with
increases in the right frontal region (Freder-
icksen et al., 2002) or decreases in left deep
frontal white matter (Kates et al., 2002).
Cortical thinning has been observed in fron-
tal and parietal lobes, particularly in the sen-
sorimotor cortex; the degree of thinning
correlated with tic severity (Sowell et al.,
2008). In another study of adults with TS,
strength of premonitory sensations corre-
lated with increased sensorimotor cortical
volume (Draganski et al., 2010). Other re-
ports evaluating subgroups of TS patients
(e.g., those with simple tics, complex tics,
and obsessive–compulsive symptoms) found
a correlation between the location of cortical
thinning and clinical symptoms (Worbe et al.,
2010).

Interhemispheric connectivity abnor-
malities have been suggested by volumetric
changes in the corpus callosum (Baumgard-
ner et al., 1996; Mostofsky et al., 1999;
Plessen et al., 2004; Cavanna et al., 2010;
Roessner et al., 2011), abnormal func-
tional [transcranial magnetic stimulation
(TMS)] and structural (DTI) connections
between the left and right motor hand ar-
eas (Margolis et al., 2006; Plessen et al.,
2007; Bäumer et al., 2010), and altered
performance on a modified verbal di-
chotic listening task (Margolis et al., 2006;
Plessen et al., 2007; Bäumer et al., 2010)
and the bimanual Purdue Pegboard (Mar-
golis et al., 2006; Plessen et al., 2007;
Bäumer et al., 2010). Diffusion-weighted
imaging has revealed microstructural al-
terations in the corpus callosum and other
white matter (Jackson et al., 2011). Addi-
tional support for frontoparietal network
abnormalities are based on alterations of
MRI resting-state functional connectivity
(Church et al., 2009b), tic generation in
association with coactivation of the sup-
plementary motor area (Hampson et al.,
2009), appearance of secondary tics after
resection of the frontal lobe (Yochelson
and David, 2000), and investigations on
postmortem tissue showing a greater
number of biochemical changes in pre-

frontal rather than striatal regions (Min-
zer et al., 2004; Yoon et al., 2007a).

Thalamus
Structural studies of the thalamus have
yielded contradictory results. In two small
studies of treatment-naive boys with TS,
one found larger left hemithalami (Lee et
al., 2005), whereas a second showed bilat-
eral decreases in volume as well as micro-
structural changes based on alterations in
fractional anisotropy using DTI (Makki et
al., 2008). A third study, using an auto-
mated computational anatomy technique,
showed no difference in thalamic size be-
tween a small group of TS patients and
healthy controls, although this study did
not control for numerous variables (Wang
et al., 2007). In the largest MRI analysis, in-
cluding 149 children and adults, there was a
5% increase in thalamic volume, primarily
the lateral thalamus (Miller et al., 2010). Post
hoc testing suggested that the differences ob-
served were not due to IQ, treatment his-
tory, or comorbid conditions.

Other brain regions
Several additional brain regions have been
implicated in TS. Based on the role of do-
pamine and known lesions associated
with other disorders that involve tics, it
was postulated that the midbrain and
periaqueductal gray matter might be in-
volved in TS (Devinsky, 1983). This hy-
pothesis is supported by voxel-based
morphometry demonstrating increased mid-
brain gray matter in 31 adult TS patients
compared to controls (Garraux et al.,
2006). Expanded perivascular spaces in
the midbrain, usually considered a benign
incidental finding on MRI, have also been
correlated with stereotyped behaviors
(Dávila et al., 2010). Disruption of corti-
cocerebellar regulatory loops has been
postulated based on MRI findings of re-
duced volumes of the cerebellum, primar-
ily gray matter in crus I and lobules VI,
VIIB, and VIIIA (Tobe et al., 2010). Last,
altered MRI volumes of the hippocampus
and amygdala (Peterson et al., 2007) and
DTI diffusion indices (Neuner et al.,
2011) has led to suggestions of direct lim-
bic involvement in TS. This hypothesis is
supported by hippocampal and amygdala
volumes that are larger in pediatric patients
and significantly smaller in adult patients
with persistent tics (Peterson et al., 2007).
The latter suggests a possible failure of nor-
mal hippocampal plasticity in the minority
of patients whose symptoms persist into
adulthood.

Functional changes in TS
Transcranial magnetic stimulation
One pathogenic mechanism proposed for
TS is decreased inhibitory control of the
CSTC circuits. Using TMS to compare 20
adult TS subjects to healthy controls, in-
vestigators demonstrated normal motor
thresholds but decreased intracortical in-
hibition and a shortened cortical silent pe-
riod in TS patients (Ziemann et al., 1997).
A similar shortening of the cortical silent
period was observed in children with TS,
but the changes in intracortical inhibition
were not found in this group (Moll et al.,
1999). Across a broad age range, the de-
gree of reduction of intracortical inhibi-
tion appears to correlate with tic severity
(Gilbert et al., 2004).

Functional neuroimaging
Event-related PET scanning has corre-
lated tic occurrence with activity in a
number of brain regions, including the
prefrontal cortex, premotor and primary
motor cortex, anterior cingulate cortex,
putamen, and caudate (Stern et al., 2000).
During active tic suppression, there is in-
creased activity in the right frontal cortex
and caudate with decreased activity in the
globus pallidus, putamen, and thalamus
using fMRI (Peterson et al., 1998). Several
PET studies have also identified changes
in regional blood flow consistent with in-
creased activity in the sensorimotor corti-
ces and decreased activity in the striatum
and thalamus (Braun et al., 1993; Eidel-
berg et al., 1997). A small study using
fMRI demonstrated increased activation
of the motor cortex during voluntary mo-
tor tasks in TS patients, suggesting altered
motor organization (Biswal et al., 1998).
One study has also shown that tic severity
correlated positively with activation of the
substantia nigra and ventral tegmentum,
lending credence to a dopaminergic role.
This same study found that higher tic se-
verity correlated with slower cognitive
task performance, independent of comor-
bid OCD or ADHD symptoms (Baym et
al., 2008). In two of the largest fMRI stud-
ies, age-related abnormalities in frontos-
triatal networks and in frontoparietal
connectivity were identified, suggesting
that TS patients do not undergo normal
maturational changes (Marsh et al., 2007;
Church et al., 2009a,b). These findings
lend support to hypotheses suggesting
that TS is a developmental disorder.

Neurotransmitter studies
Numerous neurotransmitters (dopamine,
glutamate, GABA, serotonin, acetylcholine,
norepinephrine, and opiates) are involved
in the transmission of messages through
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Table 1. Summary of TS studies with notes of methods and limitations

Reference Technique N (TS) Primary results Comments

Structural studies
Peterson et al., 2003 Volumetric MRI 154 Reduced caudate volume in TS Post hoc analyses by age, meds, comorbidity
Hyde et al., 1995 Volumetric MRI 10 Reduced right caudate volume correlated with symptom

severity
Twin study; no control for age, treatment, or common comorbidities

Bloch et al., 2005 Volumetric MRI 43 Caudate volume in childhood varies inversely with tic
severity in adulthood

Longitudinal design; includes assessment of OCD but not ADHD
effects; no follow-up imaging

Roessner et al., 2011 Volumetric MRI 49 Enlarged putamen and corpus callosum in TS Children/adolescents only, controlled for age and IQ; exclusion
criteria included prior treatment and comorbid ADHD/OCD

Kassubek et al., 2006 Voxel-based morphometry 14 Enlarged putamen in TS Children only; controlled for age and gender, not treatment;
assessed ADHD but not OCD effects

Singer et al., 1993 Volumetric MRI 37 Altered hemispheric asymmetry of putamen and globus
pallidus

Children only; controlled for age; post hoc analysis of ADHD
comorbidity

Zimmerman et al.,
2000

Volumetric MRI 19 No putamen asymmetry in girls with TS Controlled for age; assessed for ADHD effect

Makki et al., 2008 Diffusion tensor imaging 23 Microstructural abnormalities in thalamus in TS Controlled for age; no analysis of medication or comorbidity effects
Neuner et al., 2011 Diffusion tensor imaging 28 Correlation of BG diffusivity and symptom severity Adults only; excluded comorbidities
Peterson et al., 2007 Volumetric MRI 154 Larger hippocampus and amygdala in TS Post hoc analyses by age, meds, comorbidity
Peterson et al., 2001 Volumetric MRI 155 Enlarged dorsofrontal and parieto-occipital cortices;

diminished inferior occipital cortex
Post hoc analyses by age, meds, comorbidity

Müller-Vahl et al., 2009 Voxel-based morphometry 19 Decreased prefrontal, sensorimotor, anterior cingulate,
and left caudate gray matter; decreased white matter
in right inferior frontal gyrus, left superior frontal
gyrus, and anterior corpus callosum

Adult males only; untreated at least 1 year; no significant
comorbidities in population

Müller-Vahl et al., 2009 Magnetization transfer
imaging

19 White matter reductions in right medial frontal gyrus,
inferior frontal gyrus bilaterally, and right cingulate
gyrus

Adult males only; untreated at least 1 year; no significant
comorbidities in population

Baumgardner et al.,
1996

Volumetric MRI 37 Larger corpus callosum in TS Children; controlled for age, gender, overall brain volume

Mostofsky et al., 1999 Volumetric MRI 19 No difference in corpus callosum Girls only; assessed effect of ADHD comorbidity
Plessen et al., 2004 Volumetric MRI 158 Alterations of corpus callosum, variable with age Post hoc analyses by age, meds, comorbidity
Cavanna et al., 2010 DTI 1 Lower fractional anisotropy of corpus callosum Twin comparison
Draganski et al., 2010 Voxel-based morphometry

and DWI
40 Cortical thinning diffusely, modulated based on comor-

bidity and symptom severity; increases in primary
somatosensory cortex correlated with premonitory
sensations

Post hoc analysis of comorbidities; infers ongoing structural
plasticity based on a single study

Jackson et al., 2011 DWI 13 Diffuse abnormalities in white matter microstructure;
enhanced motor control in TS patients

Adults; excluded comorbidities; wide range of tic severity

Functional studies
Ziemann et al., 1997 Transcranial magnetic

stimulation
20 Shortened cortical silent period and reduced intracortical

inhibition
Adolescent/adult; post hoc analysis by age, sex, comorbidity, and

treatment
Moll et al., 1999 Transcranial magnetic

stimulation
21 Shortened cortical silent period Children; post hoc analyses of age, OCD, neuroleptic treatment

Gilbert et al., 2004 Transcranial magnetic
stimulation

36 Correlation of cortical disinhibition with tic and ADHD
severity

Children and adults; assessed effects of ADHD and OCD
comorbidities

Stern et al., 2000 PET 6 Tic correlation with activity in cortex, putamen, and
caudate

Adults; no control for medication; no discussion of comorbidity

Peterson et al., 1998 fMRI 22 Increased cortical activity with decreased striatal and
thalamic activity during active tic suppression

Adults; post hoc analyses of gender, treatment, and comorbidity

Braun et al., 1993 PET 16 Increased activity of sensorimotor cortex; reduction of
activity in limbic cortex and striatum

Adults; nonmedicated

Eidelberg et al., 1997 PET 10 Increased activity in sensorimotor cortex; decreased in
caudate and thalamus

Adults; nonmedicated; no assessment of comorbidity effects

Biswal et al., 1998 fMRI 5 Increased motor cortex activity during voluntary motor
tasks in TS

Adults, few from same pedigree; variable severity and comorbidities

Church et al., 2009b fMRI 33 Abnormal maturation of functional networks Adolescents; included comorbidities
Marsh et al., 2007 fMRI 66 Abnormal age-related activation of neural circuits Adults and children; post hoc analysis of medication and comorbidity

effects
Baym et al., 2008 fMRI 18 Tic severity correlated with enhanced activation of dopa-

minergic nuclei and slower response time
Children; mostly medication-naive; post hoc analysis of comorbidity;

Table continued
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CSTC circuits, and each has been proposed
as a potential pathophysiologic mechanism
(Singer and Minzer, 2003). Dopamine dys-
function is considered a prime abnormality
in TS based on tic suppression with the use
of dopamine antagonists (antipsychotics),
results from various nuclear imaging proto-
cols (Wolf et al., 1996; Wong et al., 1997,
2008; Singer et al., 2002; Albin et al., 2003;
Serra-Mestres et al., 2004; Liu et al., 2010),
CSF analysis (Singer et al., 1982), and post-
mortem studies (Singer et al., 1991, 1995;
Minzer et al., 2004; Yoon et al., 2007a). One
hypothesis is that either an overactive dopa-
mine transporter or central abnormality
leads to an alteration in phasic dopamine
release, which in turn, results in a hyper-
responsive spike-dependent dopaminergic
system (Singer et al., 2004; Wong et al.,
2008). This dopaminergic tonic-phasic
hypothesis could potentially involve ei-
ther the cortex or striatum. Although most
neurotransmitter-related studies have fo-
cused on the striatum, support for an extras-
triatal dopaminergic dysfunction includes
PET findings of decreased cortical receptor
binding potentials and increased dopamine
release (Steeves et al., 2010) and postmor-
tem identified cortical dopaminergic abnor-
malities (Minzer et al., 2004; Yoon et al.,
2007a).

Recognizing the various clinical mani-
festations seen in TS, it is highly likely that
this disorder involves a dysfunction of
more than one neurotransmitter system
or a second messenger defect (Singer and
Minzer, 2003). An altered modulatory effect
of serotonin in TS has been suggested by the
combination of diminished levels of the se-
rotonin transporter and elevated serotonin
2A receptor binding (Wong et al., 2008), as
well as PET studies identifying abnormali-
ties of tryptophan metabolism in cortical
and subcortical regions (Behen et al., 2007;
Haugbøl et al., 2007; Wong et al., 2008).
Glutamate has an essential role in pathways
involved with CSTC circuits and an exten-
sive interaction with dopaminergic systems
(Harris and Singer, 2006). Several lines of
evidence support a possible role of the glu-
tamatergic system in TS including results of

familial genetic studies (Barr et al., 1999;
Tourette Syndrome Association Interna-
tional Consortium for Genetics, 2007; Adam-
czyk et al., 2010) and reduced levels of
glutamate in globus pallidus interna, glo-
bus pallidus externa, and substantia nigra
pars reticulata in a small number of post-
mortem brains (Anderson et al., 1992).
Altered cholinergic neurotransmission
has been implicated by the postmortem
finding of decreased numbers of cholin-
ergic interneurons in the striatum of TS
patients (Kataoka et al., 2010). Although
there is little direct evidence, it has been
hypothesized that an alteration of GABAergic
projections from the striatum or an impair-
ment of cortical inhibition could cause
TS. Last, since multiple neurotransmitters
interact with adenosine 3�,5�-monophos-
phate (cAMP), a postreceptor defect could
explain an involvement with multiple trans-
mitter systems. In a small number of post-
mortem brain samples, the amount of
cAMP was reduced in several brain regions
(Singer et al., 1991), but a further study
showed no abnormality of phosphatidyl-
inositol second messenger generating sys-
tems (Singer et al., 1995). In summary,
further investigations are required to iden-
tify the underlying biochemical defect in
this complex disorder.

Limitations and Future
Directions
After decades of extensive research, the
pathophysiology underlying TS remains
poorly understood. Interpretation of
studies is often limited by small sample
sizes, incomplete characterization of the
subjects, varying ages and clinical severity,
concurrent use of pharmacotherapy, and
diverse statistical methodologies. Table 1
summarizes the studies discussed in this
review, commenting on their methodolo-
gies and limitations. Even in the studies
containing relatively large numbers of pa-
tients, there is often little discussion of
how variation in TS symptomatology and
related comorbidities relates to the find-
ings. It is certainly possible that simple
tics, complex tics, and tic disorders asso-

ciated with different comorbidities result
from distinctly different underlying pa-
thologies, yet few studies analyze or con-
trol for this. Many studies peripherally
address the comorbid conditions of ADHD
and OCD, but again there have been few stud-
ies to adequately and systematically explore
the differences between these disorders.
Questions also remain regarding the mean-
ing of the neuroanatomical changes ob-
served in TS patients. Although they may be
representative of the underlying pathophys-
iology, they may also be indicative of com-
pensatory changes that have occurred as a
result of tics. It would be interesting to study
unaffected but at-risk individuals, such as
siblings of TS patients, to see whether there
are neuroanatomic alterations that exist be-
fore the development of tics. As has been
suggested in a few studies, developmental or
maturational changes are likely important
in the pathophysiology, but longitudinal
studies exploring changes over time are
sparse.

Tourette syndrome provides clinicians,
clinician-scientists, and basic researchers with
abundant possibilities for future research.
On the clinical level, it is essential to fur-
ther characterize variations in phenotype,
understand the relationship between tics
and associated comorbidities, clarify fac-
tors that modify tic behavior, and con-
tinue the search for new and improved
behavioral and pharmacologic therapies.
Advanced techniques for evaluating the
human genome need to be applied to large
cohorts with well defined clinical charac-
teristics. The role of the epigenetic modu-
lation requires further attention, both in
terms of its ability to potentially modify
genetic actions as well as to influence clin-
ical behavior. Clarifying the precise neu-
roanatomical location and underlying
biochemical mechanism would be a major
scientific advance not only for TS, but for
multiple other neuropsychiatric disorders
such as OCD and ADHD. Knowledge of a
specific biological alteration will enable
the direct pursuit of new ways to treat af-
fected individuals and, dare one say, a
possible cure. A highly recommended

Table 1. Continued

Reference Technique N (TS) Primary results Comments

Neurotransmitter studies
Wong et al., 2008 PET 16 Increased phasic dopamine release in ventral striatum Adults; included assessment of OCD comorbidity
Steeves et al., 2010 PET 8 More widespread phasic dopamine release compared to

controls
Adults; controlled for medication exposure and comorbidity

Liu et al., 2010 SPECT 18 Higher dopamine transporter expression Adolescents and adults; drug-naive; no discussion of comorbidities
Behen et al., 2007 PET 29 Abnormal tryptophan metabolism in dorsolateral

prefrontal cortex and thalamus
Children; subgroup analyses of medication and comorbidities

Haugbøl et al., 2007 PET 20 Increased serotonin receptor binding in TS Adult; no assessment of medication or comorbidity effects
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source for additional information on TS is
the Tourette Syndrome Association, 42-40
Bell Boulevard, Bayside, NY 11361-2820;
telephone 718-224-2999; www.tsa-usa.org.
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