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Netrin-1 Attracts Axons through FAK-Dependent

Mechanotransduction

Simon W. Moore, Xian Zhang, Christopher D. Lynch, and Michael P. Sheetz
Department of Biological Sciences, Columbia University, New York, New York 10027

The mechanism by which extracellular cues influence intracellular biochemical cascades that guide axons is important, yet poorly
understood. Because of the mechanical nature of axon extension, we explored whether the physical interactions of growth cones with
their guidance cues might be involved. In the context of mouse spinal commissural neuron axon attraction to netrin-1, we found that
mechanical attachment of netrin-1 to the substrate was required for axon outgrowth, growth cone expansion, axon attraction and
phosphorylation of focal adhesion kinase (FAK) and Crk-associated substrate (CAS). Myosin II activity was necessary for traction forces
>30 pN on netrin-1. Interestingly, while these myosin II-dependent forces on netrin-1 substrates or beads were needed to increase the
kinase activity and phosphorylation of FAK, they were not necessary for netrin-1 to increase CAS phosphorylation. When FAK kinase
activity was inhibited, the growth cone’s ability to recruit additional adhesions and to generate forces >60 pN on netrin-1 was disrupted.
Together, these findings demonstrate an important role for mechanotransduction during chemoattraction to netrin-1 and that mechan-
ical activation of FAK reinforces interactions with netrin-1 allowing greater forces to be exerted.

Introduction

Netrin-1 is a secreted protein that has been detected in all organ-
isms with bilateral symmetry studied so far (Moore et al., 2007). It
has known functions in axon guidance, tissue morphogenesis
and cancer. In the context of axon guidance, netrin-1 is recog-
nized by the transmembrane receptors Deleted in Colorectal
Cancer (DCC), UNC5, and Down syndrome cell adhesion mol-
ecule (dsCAM) (Lai Wing Sun et al., 2011).

The extension of axons is primarily guided by patterned pro-
teins in the extracellular space (Raper and Mason, 2010). In most
cases, these guidance cues are physically tethered to a surface
either because they span the membrane (e.g., ephrin-Bs and
sema-1, -4, -5 and -6), are glycophosphatidylinositol (GPI)-
linked (e.g., ephrin-As and sema-7A) or, if secreted, they associ-
ate with extracellular matrix components (e.g., netrins, bone
morphogenetic proteins, sema-3s and slits) (Hu, 2001; Manitt
and Kennedy, 2002; De Wit et al., 2005; Rider, 2006). Netrin-1
can diffuse a few hundred micrometers from its source before
adsorbing to surfaces. Specifically, when dorsal spinal cord ex-
plants were separated from netrin-1-expressing cells in a collagen
gel, outgrowth was observed at distances of up to ~250 wm
(Kennedy et al., 1994). Over a similar distance, a source of

Received Feb. 29, 2012; revised June 1, 2012; accepted June 29, 2012.

Author contributions: S.W.M., X.Z., and M.P.S. designed research; S.W.M.and C.D.L. performed research; S.W.M.
and X.Z. contributed unpublished reagents/analytic tools; S.W.M. analyzed data; S.W.M. and M.P.S. wrote the
paper.

This work was funded by the National Institutes of Health (NIH) Common Fund Nanomedicine program (PN2
EY016586) and NIH Grant 5R01GM03627. S.W.M. was supported by a postdoctoral fellowship from the Canadian
Institute of Health Research and NIH Award 1K99NS075135. We thank Florencia Marcucci for help setting up elec-
troporations and Sanaa Ansari for technical assistance.

Correspondence should be addressed to Dr. Simon W. Moore, Department of Biological Sciences, Columbia
University, 1212 Amsterdam Avenue, New York, NY 10027. E-mail: sm3030@columbia.edu.

DOI:10.1523/JNEUR0SCI.0999-12.2012
Copyright © 2012 the authors  0270-6474/12/3211574-12$15.00/0

netrin-1 deflected the trajectory of spinal commissural axons within the
neuroepithelium. However, it was also recognized that the majority of
netrin-1 was not present in the soluble fraction, but rather in the
membrane-bound fraction and could only be extracted with salt con-
centrations nearly 10 times higher than physiological (1.2 M) (Serafini et
al, 1994). As such there is a strong electrostatic interaction of
netrin-1 with the extracellular environment. Further, it has
been shown in different contexts that substrate attached
netrin-1 is sufficient to reorient axons, including: dissociated hip-
pocampal and commissural neuron axons on polylysine-coated sur-
faces (Mai et al., 2009; Moore et al., 2009) and for midline crossing of
commissural neurons within the developing Drosophila melano-
gaster (Brankatschk and Dickson, 2006).

The growth cone both senses guidance cues and mechanically
pulls the axon forward (Lamoureux et al., 1989; Davenport et al.,
1993; Huber et al., 2003; Moore and Sheetz, 2011). The mechan-
ical tethering of axon guidance cues raises the possibility that
growth cones pull directly on the cues that guide them. Indeed, in
the case of netrin-1, we have found that growth cones exert a
direct pulling force of >60 pN during chemoattraction (Moore et
al., 2009). To affect the trajectory of axons, guidance cues regulate
intracellular biochemical signaling pathways (Bashaw and Klein,
2010). The mechanical relationship of the growth cone with its
guidance cues could directly impact intracellular signaling events
through a process known as mechanotransduction whereby mechanical
forces alter the activity of physically linked intracellular proteins. A
growing list of proteins behave as mechanotransducers, including: ion
channels, intracellular kinases, extracellular matrix components and
several adhesion-associated proteins (Moore et al., 2010; Hoffman et al.,
2011). Here we report that mechanical forces on netrin-1 are necessary
for chemoattraction and for the regulation of two intracellular mecha-
nosensory proteins: focal adhesion kinase (FAK) and Crk-associated
substrate (CAS).
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Figure1.

Heparin or deletion of domain C prevents nonspecific adsorption of netrin-1but preserves DCC binding. A, Domain structure of netrin-1. Domain V and VI bind to netrin-1's receptor DCC,

while domain C contributes to substrate adsorption through its many positively charged amino acids. B—D, HEK293 cells were transfected with GFP-tagged DCC (DCC-GFP) and incubated with either
1 wg/mlfull-length mCherry-tagged netrin-1(B), 1 g/ml full-length NTN1-mCherry and 2 pug/ml heparin (€), or T wg/ml NTN1dC (D) for 90 min. As highlighted by the cells that do not express
DCC (white arrows), the presence heparin or deletion of domain C restricts binding to only the cells that express DCC. E-G, Differential interference contrast (DIC) images (bottom) and unmodified
fluorescent intensity images (top) of spinal commissural neurons incubated for 15 min with, either 1 wg/ml NTNT-mCherry (E), T peg/ml NTN1-mCherry with 2 wg/ml heparin (F), or T pg/ml
NTNdC-mCherry (G). Relative to full-length netrin applied alone, there is a decrease in background binding in the presence of heparin (37%, p << 0.01, n = 40) or when domain Cis deleted (20%,
p << 0.01,n = 40) and there is distinct labeling of both axon and growth cone. H, I, ELISA detecting the myc tag within recombinant, full-length netrin-1 when media containing 200 ng/ml are
incubated with either a collagen cushion for 16 h (H) or a polylysine-coated tissue culture well (/) for time periods of 15 min or less. Significant binding of full-length netrin is seen to collagen gels
(n=16,p < 0.01) and to polylysine dishes within 5 min (n > 15, p << 0.05) compared with media alone. Inclusion of 2 g/ml heparin significantly reduced the association of netrin-1to collagen
by 79% (n = 16, p < 0.01) and to a polylysine-coated dish by 90% after 15 min. Fluorescent intensity comparison based on average intensities of 10 1.m ? areas from images of equal exposure (5

s). Scale bars: B, 50 um; E, 10 em.

Materials and Methods

Plasmids. A C-terminal, mCherry-tagged, full-length chicken netrin-1
(NTN1-mCherry) plasmid was generated through site-directed mutage-
neis (QuikChange II, Agilent) of the stop codon within pGNET1 (gift
from Marc Tessier-Lavigne, Rockefeller University, New York, NY) and
subcloning into pmCherry-N1 (Clontech). mCherry-tagged chicken
netrin-1 lacking its entire C-terminal domain (amino acids 455—606m
NTN1dC-mCherry) was generated through mutagenesis of NTN1-
mCherry. For electroporations, wild-type mouse FAK (pRc/CMV-FAK)
and the FAK-Y397F mutant (pRc/CMV-FAK-397F; Calalb et al., 1995),
chicken FAK C-terminal domain (FRNK; pcDNA3-FRNK; Lin et al.,
1997), and pCS2-Venus (Nagai et al., 2002) were used. All plasmids were
verified by sequencing.

Reagents. Full-length and truncated netrin-1 proteins were purified
from stably transfected HEK 293 cells by liquid chromatography over a
heparin column (HiTrap Heparin HP, GE Healthcare Life Sciences) us-
ing 0.1 M phosphate-buffered (pH 7.4) 0.5 M NaCl and 2 M NaCl. Poly-
clonal rabbit antibodies against the heavy chains of NMM-IIA were
obtained as a gift from Dr. Robert Adelstein (National Institutes of
Health, Bethesda, MD). Monoclonal antibody against NMM II-B (clone
CMII 23) was from Developmental Studies Hybridoma Bank (University
of Iowa, Iowa City, IA). Monoclonal anti-B-tubulin (clone 3F3-G2) was
purchased from Santa Cruz Biotechnology. PP2, Blebbistatin, Y-27632
and ML-7 were purchased from EMD Biosciences. Antibodies against

FAK and CAS were obtained from BD Transduction Laboratories. Phos-
phospecific antibodies against CAS Y165 and Y410 were obtained from
Cell Signaling Technology. Alexa Fluor 546-tagged phalloidin and phos-
phospecific antibodies against FAK Y397 and Y861 were obtained from
Invitrogen. Antibodies against c-myc (9E10) and phosphorylated FAK
Y576 were obtained from Santa Cruz Biotechnology. PF-573228 (PF228)
was obtained from Tocris Bioscience. Heparin (grade I-A from procine
intestinal mucosa, 17-19 kDa) was obtained from Sigma.

ELISA. For netrin-1 binding to type I collagen gels, typical outgrowth
conditions were reproduced. Specifically, 10 ul of collagen solution was
allowed to gel for 30 min at the bottom in each well of a 96-well plate.
Each well was then incubated at 37°C with 5% CO, with 100 ul of Neu-
robasal/FBS media (see below). After 18 h, each well was washed three
times for 45 min with PBS with 0.1% BSA (and where appropriate, 2
ug/ml heparin) and then fixed for 1 h in 4% paraformaldehyde/PBS. The
wells were then blocked for 3 h in PBS with 0.1% BSA and 1% Triton
X-100. Labeling was achieved with sequential overnight incubations with
9E10 and HRP-tagged antibodies in PBS with 0.1% BSA and 1% Triton
with at least six 1 h washes in between and after, followed by a final
overnight wash.

For netrin-1 binding to polylysine-coated surfaces, typical culturing
conditions were reproduced. Each well of a plasma-treated 96-well plate
was incubated with 100 ul of 2 wg/ml poly-L-lysine for an hour at room
temperature and then washed several times with PBS. Each well was then
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incubated for 24 h with 100 ul of Neuro-
basal/FBS media (see below) at 37°C with 5%
CO,. Media containing 200 ng/ml netrin-1
and with in some cases 2 ug/ml heparin were
then included for the indicated times. Each
well was then washed with several changes of
PBS, and then blocked for an hour at room
temperature with PBS with 0.1% BSA,
followed by 1 h at room temperature of in-
cubations with 0.2 ng/ml 9E10 and then
HRP-tagged antibody with several washes of
PBS in between. Colorimetric detection of
o-phenylenediamine dihydrochloride (Pierce)
was achieved by taking the absorbance at 450 nm
after 30 min.

Explants and dissociated cultures. Dissections
of explants and dissociated spinal cultures were
performed as described except that embryonic
day 10 (E10; turning) or E12 (dorsal explants
and dissociated cultures) CD1 mice embryos of
both sexes were used (vaginal plug = EI;
Moore and Kennedy, 2008). Culture media
consisted of Neurobasal supplemented with
10% FBS, 2 mM GlutaMAX-1, 100 U/ml
penicillin, and 100 pg/ml streptomycin
(Neurobasal/FBS).

Electroporations. Plasmids were mixed at a
4:1 molar ratio with pCS2-Venus to a final con-
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this DNA solution was injected into E12 mice
spinal cords with the dorsal tissue still attached.
Five 30 V pulses lasting 50 ms were applied via
3 X 5mm Genepaddles (Harvard Apparatus)
attached to a BTX ECM 830 square wave electro-
porator (Harvard Apparatus). Following electro-
poration, the dorsal tissue was removed and
spinal commissural neurons were isolated and
cultured as described above.

Phosphoprotein analysis. Spinal commissural
neurons were pretreated for 1 h with 50 um
blebbistatin, 10 um PP2, or 10 um PF-228 and
then for 15 min with 200 ng/ml netrin-1. For
Western blot analysis, cells were lysed in radio-
immunoprecipitation assay buffer (contain-
ing, in mm: 10 phosphate, pH 7.5, 150 NaCl,
1% NP-40, 0.1% SDS, 0.5% deoxycholate, 2
ug/ml aprotinin, 5 ug/ml leupeptin, 1 EDTA,
and 1 PMSF). For immunofluorescent analysis,
cells were fixed with 37°C 4% paraformaldehyde/
0.1% glutaraldehyde for 2 min, followed by per-
meabilization (0.1% Triton), blocking (1% BSA),
and antibody labeling in Tris-buffered saline solution. Coverslips were
mounted with Slowfade (Invitrogen), immobilized with 2% agarose, and
imaged immediately.

Optical trap assays. Proteins were covalently coupled to 2.3-um-
diameter silica beads using cyanogen bromide (Technote #205, Bangs
Laboratories). Neurons were plated on PLL (poly-L-lysine, 30—70 kDa,
Sigma)-coated 22 X 22 mm coverslips (no. 1.5, Corning) in 6-well tissue
culture dishes. Before assaying, neurons were preincubated for 1 h with 2
wg/ml heparin and, where indicated, 50 wm blebbistatin, 10 um Y-27632,
10 wm ML-7, or 10 um PF-228. The optical trap was constructed using a
2W diode pumped 1064 nm laser (CrystalLaser) and calibrated using
viscous drag (Dai and Sheetz, 1998). Cultured neurons on coverslips
were enclosed into a 0.75-mm-thick sandwich, with media equilibrated
to 37°C and 5% CO,, that was sealed with vacuum grease and VALAP
(McGee-Russell and Allen, 1971). Assays were performed at 37°C and
within 1 h of mounting. The analysis of the dynamic motion of the bead
within the trap was performed by a home-written correlation plug-in for
ImageJ (Nanotrack).

Figure 2.
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Substrate adsorption of netrin-1 is required for outgrowth from dorsal spinal cord explants. A-D, Dorsal spinal cord
explants cultured for 16 h in a collagen gel. Netrin-1 (NTN1) elicits maximum outgrowth at 200 ng/ml (B, G). However, when 2
eg/ml heparin was coapplied to prevent substrate adsorption of netrin-1, all detectable outgrowth to netrin-1was eliminated at
100, 200, and 400 ng/ml netrin-1 (n > 10 explants, D). E, F, H, The presence of heparin in the media had no effect on this
netrin-independent outgrowth after 36 h (see white arrows in E and F, n = 4 explants). I-L, Transiently transfected HEK293
aggregates expressing either full-length netrin-1 (HEK FL) or netrin-1 lacking the substrate-binding, C-terminal domain (HEK
NTNdC) were cultured in close proximity to two dorsal explants for 16 h. /, Full-length netrin-1 triggered robust outgrowth (3.9
bundles per explants, n = 12). However, the presence of heparin within the media largely eliminated this outgrowth (0.1 bundles
per explants, n = 11, K) and expression of domain C lacking netrin-1 severely reduced outgrowth (0.9 bundles per explant, n =
11, L). Outgrowth in G and H was quantified at the total length of bundles from each explant. Outgrowth to in J~L was quantified
as the number of bundles per explant. Scale bars, 100 pem.

Results

Coapplication of heparin or deletion of domain C reduces
netrin-1 binding to substrates

Netrin-1 is a secreted protein of ~600 aa whose sequence can be
divided into three domains: VI, V, and C (Fig. 1 A). Domains VI
and V are homologous to the y-chain of laminin and mediate
interaction with the netrin receptors DCC, UNCS5, and dsCAM
(Keino-Masu et al., 1996; Leonardo et al., 1997; Geisbrecht et al.,
2003; Ly et al., 2008). Domain C has many basic amino acids and
a predicted a-helical secondary structure, and is homologous to
domains found in the complement C3, -4, and -5 protein family,
secreted frizzled-related proteins, type I C-proteinase enhancer
proteins, and tissue inhibitors of metalloproteinases. In contrast
to domains VI and V, domain C is not involved in binding the
netrin receptors but, rather, electrostatically binds negatively
charged glycosaminoglycans within the extracellular environ-
ment (Kappler et al., 2000; Yebra et al., 2003). As such, domain C
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or the attractive turning responses of spi-
nal commissural neurons (Moore et al.,
2009). Here we found that heparin did
not disrupt binding of mCherry-tagged
netrin-1 to HEK293 cells expressing GFP-
tagged DCC, but did reduce the nonspecific
binding to cells that do not express DCC
(Fig. 1 B,C).

To further rule out the possibility that
coapplication of heparin had effects in ad-
dition to maintaining netrin-1 in a diffus-
ible state, we developed mCherry-tagged
netrin-1 (NTN1dC-mCherry) lacking the
entire domain C (amino acids 455-606)
based on similar constructs that had re-
duced substrate adsorption (Mirzayan,
1997; Geisbrecht et al., 2003). Consistent
with a lower nonspecific binding affinity,
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Figure 3.

appears primarily responsible for nonspecific immobilization of
netrin-1 to the extracellular environment.

To test the importance of this immobilization, we explored strat-
egies that disrupted the binding of netrin-1 to surfaces, while leaving
its interaction with known receptors unaffected. One approach was
to coapply the negatively charged, heavily sulfated glycosaminogly-
can heparin. Heparin inhibited nonspecific adsorption of netrin-1 to
surfaces, but not its specific interactions with the DCC, UNCS5, and
dsCAM receptors (Keino-Masu et al., 1996; Leonardo et al., 1997;
Geisbrecht et al., 2003; Ly et al., 2008). Importantly, when netrin-1
was covalently attached to a surface, the presence of soluble heparin
was not disruptive to either DCC-mediated traction forces >60 pN

Substrate adsorption of netrin-1 is important for attracting spinal commissural neuron axons within the developing
spinal cord. 4, Schematic of the turning assay whereby mouse E10 dorsal cord were dissected and cultured alongside aggregates of
HEK293 cells expression either full-length or NTN1dC. B-D, HEK293-expressing full-length netrin-1 deflected axons over an
average distance of 164 um (n = 18). B, E, F, However, when cellular aggregates expressed NTN1dC, the average distance
decreased by 53% (mean of 77 um, n = 22). Scale bar, 100 m. **p << 0.01 (least significant difference, LSD).

the NTN1dC-mCherry construct eluted
from a heparin column at 0.7 M NaCl, which
was considerably lower than the 1.2 M NaCl
needed to elute full-length netrin-1. To de-
termine whether domain C was necessary to
support traction forces >60 pN, we cova-
lently attached NTN1dC-mCherry to beads
that were applied to spinal commissural
neuron growth cones using optical trap-
ping. Traction forces of >60 pN were gen-
erated that were indistinguishable from
those generated when full-length netrin-1
was used to coat beads (n = 6). Similar to
coapplication of heparin with full-length
netrin-1, we observed that NTNI1dC-
mCherry bound specifically to cells express-
ing DCC and not to cells lacking DCC (Fig.
1D). To examine whether coapplication of
heparin or deletion of domain C preserved
binding to DCC while reducing nonspecific
binding to the substrate within spinal com-
missural neuron cultures, we fluorescently
observed the binding of either full-length
netrin-1 (NTN1-mCherry) or NTN1dC-
mCherry after 15 min. We found that while
full-length NTN1-mCherry bound to cell
culture surfaces and neurons, coapplication
of heparin or deletion of domain C biased
binding to neurons (Fig. 1 E-G). This indi-
cated that binding to DCC expressed by spi-
nal commissural neurons was preserved in
the presence of heparin or upon deletion of
domain C. Moreover, compared with when
full-length netrin was applied alone, the fluorescent intensity of
10 um? areas where no cells were present was significantly
reduced in the presence of heparin (37%, p < 0.01, n = 40) or
upon deletion of domain C (20%, p < 0.01, n = 40).
Reduced substrate absorption was also detected through an
ELISA against the myc tag within recombinant netrin-1. We
tested adsorption of full-length netrin-1 to type I collagen gels
after a 16 h incubation, as well as upon acute addition to
polylysine-coated cell culture surfaces that had been incubated
for 24 h in culture media. These paradigms replicate commonly
used assay conditions that test for netrin-1-induced outgrowth
and intracellular biochemical events within dissociated neurons, re-

dC
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spectively. Consistent with the ability of
netrin-1 to adsorb to these surfaces, we
found significant binding to type I colla-
gen gels and a linear increase from 5 to 15
min in binding to polylysine-coated tissue
culture surfaces (Fig. 1 H,I). We then ex-
amined the ability of heparin to disrupt
these nonspecific interactions. Indeed, we
measured a 79% decrease in netrin-1 ad-
sorption to collagen (n = 16, p < 0.01)
and a 90% decrease in the binding to
polylysine-coated tissue culture plastic
(n > 10, p < 0.01, Fig. 1 H,I). Therefore,
coapplication of 2 ug/ml heparin or dele-
tion of netrin-1 domain C effectively re-
duced nonspecific substrate adsorption of
netrin-1 while preserving binding to its
receptor DCC.

Netrin-1 immobilization is important
for outgrowth and chemoattraction

We then tested the importance of netrin-1
substrate adsorption in prototypical as-
says for netrin-1 function—axon out-
growth from dorsal spinal cord explants
embedded in a collagen gel and turning of
spinal commissural neuron axons within
the developing spinal cord (Serafini et al.,
1994). In the outgrowth assay, netrin-1
diffuses though collagen matrix to stimu-
late the explant; however, as shown in Fig-
ure 1 H, netrin-1 also adsorbs to collagen
(Yebra et al., 2003). If a soluble form of
netrin-1 was causing outgrowth, then
blocking the binding of netrin-1 to colla-
gen should not affect outgrowth. Nor-
mally, netrin-1 induces outgrowth when
present at concentrations of 100, 200 and
400 ng/ml (Fig. 2G; Serafini et al., 1994).
However, when adsorption of netrin-1
was prevented with coapplication of hep-
arin, all detectable growth at each of these
concentrations was eliminated (n > 10
explants from three independent experi-
ments, Fig. 2A-D). Given the complete
inhibition of outgrowth, it was important
to verify that the general outgrowth po-
tential of these explants was unaffected.
Normal outgrowth occurs in the absence
of netrin-1 by 36 h in culture. When ex-
plants were cultured in the absence of
netrin-1 for 36 h, heparin had no effect on
this outgrowth (Fig. 2E, F,H ). As a further
test, we examined outgrowth evoked by
HEK293 explants expressing full-length
or netrin-1 lacking its substrate-binding
domain (NTNdC). Normally, aggregates
expressing full-length netrin-1 evoke ro-
bust outgrowth (3.9 bundles/explant).
However, consistent with an important
role for mechanical restraint of netrin-1,
outgrowth was largely eliminated in the
presence of 2 ug/ml heparin (0.1 bundles/
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Figure 4.  Netrin-1 Substrate adsorption is important for the phosphorylation of CAS and FAK. A, B, Diagrams of the domain
structure of CAS and FAK showing the examined tyrosine phosphorylation sites within the substrate domain (SD) of CAS and the
kinase domain of FAK. C, D, Top panels are immunofluorescent images of phosphorylated tyrosine 410 of CAS (pCASY410) or
tyrosine 397 of FAK (pFAKY397) within spinal commissural growth cones. Brightness and contrast values are unmodified, but to
highlight intensity differences, gray scale images were converted to the “Fire” LUT (Look Up Table) of ImageJ. Bottom panels show
DCClabeling. E, Normally, netrin-1increases average growth cones area approximately doubles (2.1-fold, n = 60, p << 0.01) after
15 min with 200 ng/ml netrin-1. However, reducing substrate adsorption of netrin with 2 t.g/ml heparin disrupts this expansion
(n = 60) as measured based on DCC staining. F, Addition of netrin-1 increases the integrated density of pCASY410 (3.1-fold, n =
50) and pFAK397 (2.2-fold n = 50) labeling. Coapplication of heparin significantly reduced the pCASY410 by 54% (1.7-fold of
baseline), n = 49) and pFAKY397 by 44% (1.0-fold of baseline, n = 47). G, Western blot images from spinal commissural neuron (SCN) cultures for
FAKand CAS phosphorylation following 15 min stimulation with 200 ng/mi netrin-1. H, Quantification of the change in netrin-induced phosphory-
|ation relative to the absence of netrin. The presence of heparin significantly reduced the amount of CAS-Y410 (57%, n = 6), FAK-Y397
(61%, n = 8) and FAK-Y576 (71%, n = 6) phosphorylation. **p << 0.01 (LSD). Scale bar, 5 xm.
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Myosin Il is required for traction on Netrin-1. A—C, Inmunofluorescent labeling of myosin Ila and lIb shows enrichment in the central region of the growth cone. D—F, Normally microtubule

filaments are concentrated in the central region of normal growth cones, while actin filaments are found throughout. G-/, However, inhibition of myosin Il with 50 pmblebbistatin for 1h resulted in growth cones
with dramatically longer filopodia and dense microtubule arrays that penetrate deep into the peripheral region of the growth cone (arrow). J, K, Five representative plots of the amount of force over time exerted
on netrin-1-coated beads normally (/) and in the presence of 50 rum blebbistatin (K). L, Growth cone pulling forces on netrin-1 within 8 min of initial contact were categorized into three responses: <<30 pN,
between 30and 60 pN, and 60 pN. Typically, approximately three quarters of spinal commissural neuron growth cones exert =60 pN of force on netrin-1within 8 min (74%, n = 50). However, in the presence
of the myosin Il inhibitor blebbistatin (Blebb) not a single growth cone was able to generate >60 pN. Instead the vast majority generated <30 pN (93%, n = 15). Similarly, significantly less growth cones
exerted =60 pN in the presence of Y-27632 (47%, n = 19) and ML7 (44%, n = 18). *p << 0.05, **p < 0.01 relative to Ctrl (LSD). Scale bar, 5 pem.

Movie 1. Normal pulling of netrin-1. Normal pulling of an optically trapped 2.3 xm bead
coated with netrin-1 by a spinal commissural neuron growth cone. The red circle denotes the
centerof the trap. Note the recruitment of additional contacts and expansion of the growth cone
after 3 min that leads to extraction of the bead from the trap after ~5 min. Time stamp =
hh:mm:ss.

explant) or when the aggregates expressed NTNdC (0.9 bundles/
explant, Fig. 2I-L).

We then examined the importance of substrate adsorption on
the chemoattractive ability of netrin-1 within the developing spi-
nal cord. To test this, we used an assay whereby the spinal cord
was dissected at a time before spinal commissural neurons ex-
tended. When explants of either the floor plate or aggregates of
cells expressing chemotactic cues are cultured on the rostral or
caudal edge, commissural neurons are deflected from their nor-
mally parallel dorsal-ventral trajectory (Fig. 3A; Moore and Ken-
nedy, 2008). Consistent with an important role for netrin-1
adsorption during chemoattraction to netrin-1 within the devel-
oping spinal cord, we observed a 53% reduction in the distance
over which spinal commissural axons were deflected to a source
of netrin-1 lacking the substrate-binding domain C (n = 18, Fig.

Movie 2.

Inhibition of myosin Il disrupts forces on netrin-1. Pulling of an optically trapped
2.3 m bead coated with netrin-1 by a spinal commissural neuron growth cone in the presence
ofthe myosin Il inhibitor blebbistatin. The red circle denotes the center of the trap. Note the long
filopodia that move laterally but not retrogradely, as well as, the much smaller forces generated
on the bead (as evidenced by the much smaller displacement of the bead from the center of the
trap). Time stamp = hh:mm:ss.

3B-F). Together, these observations demonstrate that netrin-1
binding to surfaces is important for both its outgrowth-
promoting and chemoattractive effects on spinal commissural
neuron axons.

Substrate binding of netrin-1 is important for the activation
of CAS and FAK

The importance of substrate adsorption was consistent with a
role for mechanotransduction in the response to netrin-1. If this
was indeed the case, then the intracellular signaling pathways
linked to netrin-1 chemoattraction should also be dependent on
the mechanical pulling forces on netrin-1. In axon chemoattrac-
tion settings, netrin-1 regulates numerous intracellular pathways
(Moore et al., 2007; Lai Wing Sun et al., 2011). In those experi-
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Myosin Il contractions underlie netrin-1-induced FAK Phosphorylation. A, Western blotimages of tyrosine phosphorylation within the substrate domain of CAS (Y165 and Y410) or the

kinase domain of FAK (Y397 and Y576) following 15 min netrin stimulations (200 ng/ml) in the absence of inhibitors or following preincubation for 1 h with the Src Family Kinase inhibitor PP2 (10
fum) or the myosin Il inhibitor blebbistatin (50 wum, blebb). B, Quantification of netrin-1 stimulated phosphorylation intensity changes relative to control cells (in the absence of both netrin and
blebbistatin). Inhibition of myosin Il reduced netrin-1-induced phosphorylation of FAK on the Y397 and Y576 sites by 77% (n = 8) and 62% (n = 5), respectively. No significant effects were seen
on the netrin-1-induced phosphorylation within the substrate domain of CAS (Y165 and Y410). C, Top panels are immunofluorescent images of phosphorylated tyrosine 410 of CAS (pCASY410) and
tyrosine 397 of FAK (pFAKY397) within spinal commissural growth cones. Brightness and contrast values are unmodified, but to highlight intensity differences, gray scale images were converted to
the Fire LUT of ImageJ. Bottom panels show DCC labeling. D, Inhibition of myosin prevented an increase in the integrated density of FAK-Y397, but not of CAS-Y410, labeling (n = 50 for each
condition) relative to control (in the absence of both netrin and blebbistatin). **p << 0.01(LSD). Scale bar, 5 um.

ments, soluble netrin-1 was added to the culture media and the
biochemical consequences were typically analyzed within 15 min.
This acute application of netrin-1 to the media could indicate a
soluble, unrestrained role. However, as shown in Figure 11, de-
tectable netrin-1 adsorption occurred to these cell culture sur-
faces within 5 min. To determine the importance of mechanically
restrained netrin-1 under these acute conditions, we examined
the consequences of preventing absorption on netrin-1’s ability
to expand of spinal commissural neuron growth cones within 15
min (Shekarabi et al., 2005). Consistent with an important role
for restrained netrin-1, we found that disrupting adsorption with
heparin prevented the expansion of growth cones (Fig. 4C-E).
We then explored the possibility that the intracellular signal-
ing cascades activated by netrin-1 were dependent on mechani-
cally restrained netrin-1. Previous studies had found that the
phosphorylation of CAS (p130Cas, BCARI) and FAK (Ptk2)
were increased upon acute (15 min) addition of netrin-1 (Lietal.,
2004; Liu et al., 2004, 2007; Ren et al., 2004). In the case of CAS,
netrin-1 addition promoted phosphorylation of tyrosine 410
within CAS’s substrate domain (pY410, Fig. 4A). Phosphoryla-
tion of tyrosines within this substrate domain underlie CAS’s
ability to function as a mechanosensor (Sawada et al., 2006). In
terms of FAK, netrin-1 increased phosphorylation on tyrosines
397 (Y397) and 576 (Y576) (Fig. 4B). The Y397 site is an auto-
phosphorylated site that upon phosphorylation is recognized by
the SH2 domains of several Src family kinases (SFKs) (Schaller et
al., 1994), while the Y576 site is phosphorylated by SFKs and is
thought to promote FAK kinase activity (Calalb et al., 1995).
We confirmed that netrin induced phosphorylation of these
sites within CAS and FAK in dissociated spinal commissural neu-
rons. Using Western blot analysis, we found that netrin-1 in-

creased the phosphorylation within the substrate domain of CAS
(Y410) by 62% (n = 18), and FAK phosphorylation by 58% on
Y397 (n = 18) and by 61% on Y576 (n = 14; Fig. 4G,H ). Simi-
larly, immunofluorescent detection of their growth cones dem-
onstrated a 3.1-fold increase in the phosphorylation of CAS-Y410
(n = 50) and a 2.2-fold increase in FAK-Y397 (n = 50; Fig.
4C,D,F). When the adsorption of netrin-1 to the surface was then
blocked by coapplication of heparin, the level of phosphorylation
of each of the sites on CAS and FAK was dramatically decreased.
By Western blot, the relative increase in the presence of heparin
was reduced by 57% (n = 6) on CAS-Y410, by 61% (n = 8) on
FAK-Y397, and by 71% (n = 6) on FAK-Y576. Immunofluores-
cent detection of their growth cones revealed a 54% (n = 49)
reduction of CAS-Y410 phosphorylation and a 44% (n = 47)
reduction of FAK autophosphorylation (Y397). Thus, mechani-
cal restraint of netrin-1 has an important role in the activation of
the major signaling pathways of CAS and FAK.

Traction on netrin-1 requires myosin II activity

If the phosphorylation of CAS and FAK is indeed a mechanosen-
sory process, traction forces on netrin-1 could be triggering their
phosphorylation. If so, inhibition of force on netrin-1 should
inhibit phosphorylation. According to the “substrate to cytoskel-
eton” model of axon extension, traction forces are generated
when liganded extracellular matrix receptors are bridged to ret-
rogradely flowing actin (Suter and Forscher, 2000). In neuronal
growth cones, non-muscle myosin II transports actin rearward
(Brown and Bridgman, 2003). We found an enrichment of myo-
sin ITa and IIb within the central domain of the growth cones in
spinal commissural neurons (Fig. 5A—C). When blebbistatin, a
small molecule inhibitor that locked the myosin II head in a
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low actin affinity conformation (Kovacs et al., 2004), was
added to growth cones, waves of actin stopped moving rear-
ward and the average length of growth cone filopodia grew
from 2.2 um to 7.9 wm (n > 40, p < 0.01). Further, microtu-
bules extended into the growth cone’s periphery (Fig. 5D-I).
Thus, inhibition of myosin II contraction should inhibit me-
chanical force generation on adhesion sites coupled to actin
flow.

To determine whether the traction forces on netrin-1 were
dependent on myosin II activity, we presented spinal commis-
sural neurons with optically trapped beads coated with netrin-1.
Normally, growth cones both progressively increase the number
of contacts with the bead and pull in excess of 60 pN within 8 min
(Fig. 5J; Movie 1; Moore et al., 2009). When myosin II activity was
inhibited with blebbistatin, filopodia were still capable of lateral
movement (Movie 2). However, none of the growth cones exam-
ined generated forces >60 pN on netrin-1 beads and the vast
majority (93%) generated forces <30 pN (Fig. 5K, L). When my-
osin activity was indirectly inhibited through inhibition of myo-
sin light chain kinase (with ML-7) or Rho-associated kinase (with
Y-27632), pulling of netrin-1 was also inhibited, but less effi-
ciently (Fig. 5L). Thus, inhibition of myosin II through blebbi-
statin treatment is an effective strategy to eliminate traction
forces on netrin-1 >30 pN.

Traction forces are required for netrin-induced
phosphorylation of FAK, but not of CAS

If forces >30 pN on netrin-1 are involved in the phosphorylation
of CAS and FAK, then inhibition of myosin II activity should

pPFAKY397 (5x mag.)

A, B, Mechanical force on netrin-1 triggers FAK autophosphorylation. DIC and immunofluorescent images of spinal commis-
sural neurons that were presented with netrin-1-coated beads, then fixed and immunofluorescently processed for FAK autophosphoryla-
tion (pFAKY397). In one scenario the bead was released from the optical trap 1530 afterits initial contact with the growth cone and then
processed 5" later (A). In the other scenario, the bead was held for the entire 5" period thus allowing the growth cone to build >30 pN of
force on the bead (B). The average immunofluorescent signal within each growth cone was normalized to the averageintensity of a 5 um >
area of the axon segmentimmediately adjacent to the growth cone. When Netrin-1-coated beads were held (B) there was a63% (n = 13,
p < 0.05) increase in FAK Y397 autophosphorylation within the growth cone compared with when it s released (4). Brightness levels of
immunofluorescent images are unmodified. Dotted circle denotes the location of the bead. Scale bars are 10 um (left) and 2 um (right).
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reduce the phosphorylation levels. We
found that inhibition of myosin II re-
duced the ability of netrin-1 to elevate
FAK phosphorylation. Specifically, by
Western blot analysis, we found that bleb-
bistatin reduced netrin-1-triggered FAK
autophosphorylation (Y397) by 77% (n =
8) and phosphorylation on Y576 by 62%
(n = 5; Fig. 6 A, B). Similarly, immunoflu-
orescence for FAK-Y397 phosphorylation
within the growth cones revealed no sig-
nificant difference upon netrin-1 stimula-
tion when myosin II was inhibited (Fig.
6C,D). In contrast to FAK, phosphoryla-
tion of CAS’s substrate domain was unaf-
fected by myosin II inhibition. We
observed that inhibiting myosin IT had no
significant effect on the phosphorylation
state of either CAS Y165 or Y410 by either
Western blot analysis or immunofluores-
cence within the growth cone (Fig.
6A-D).

Because myosin II inhibition dis-
rupted traction forces >30 pN, the above
Western blotting and immunofluores-
cence data indicated that traction forces
activated FAK phosphorylation. To fur-
ther test this hypothesis, netrin-1-coated
beads were presented to growth cones for
5 min with either a brief restraint (15-30
s) or with restraint throughout. We then
used immunofluorescence techniques to
detect FAK autophosphorylation within
the growth cones (Fig. 7). We found a
63% increase (n = 13, p < 0.05) in the amount of FAK autophos-
phorylation within the growth cones when beads were restrained
for 5" and growth cones were allowed to build larger forces (>30
pN) on the beads. Thus, myosin II contractile force on netrin-1
has an important role in the activation of FAK at the site of
attachment.

FAK’s kinase activity builds traction forces on netrin

In fibronectin adhesions, force production on fibronectin stabi-
lizes adhesions and results in greater force production (Choquet
et al., 1997). Similarly, activation of the FAK kinase by force
on substrate-bound netrin-1 may cause strengthening of the
netrin-1 adhesion, resulting in greater force generation on
netrin-1. When the FAK-specific inhibitor PF-228 (Slack-Davis
et al., 2007) was added, both endogenous and netrin-1-
stimulated autophosphorylation of FAK was inhibited (Fig. 8A).
Further, PF-228 addition caused a dramatic (86%) reduction in
the number of growth cones that exerted traction forces >60 pN
on netrin-1 (Fig. 8 B). Because PF-228 may have affected other
enzymes, we used the expression of FRNK or FAK-Y397F to in-
hibit FAK function in spinal commissural neurons. FRNK is a
variant of FAK that lacks the FERM and kinase domains, but has
the proline-rich and focal adhesion targeting domains responsi-
ble for binding p130Cas and DCC (Fig. 8C; Harte et al., 1996; Ren
et al., 2004). FAK-Y397F is a mutant of FAK with its Y397 auto-
phosphorylation site mutated to phenylalanine, thus impairing
the recruitment of numerous proteins including Src family ki-
nases (Schaller et al., 1994). Although transient expression of
wild-type FAK had no effect on traction forces on netrin-1 beads,
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expression of FRNK and FAK-Y397F re-
duced the fraction of growth cones that
exerted >60 pN of force on netrin-1 by 56
and 69%, respectively (Fig. 8 D). Thus, the
activation of the FAK kinase is an impor-
tant step in the generation of high forces
(>60 pN) on netrin-1.

To gain further insight into the under-
lying cause of the reduced pulling force,
we carefully examined the growth cone’s
interactions with an optically trapped
netrin-1-coated bead. Normally, initial
filopodial contacts with netrin-1 beads
grew in area through the recruitment of
additional filopodia and/or engulfment
by the growth cone’s lamellipodium
within 8 min (Movie 1). When the activity
of the growth cone filopodia was moni-
tored before and after netrin-1 bead bind-
ing, there was a clear increase in the
number of filopodia that contact and are
stabilized onto the bead. Pharmacologi-
cal and genetic inhibition of FAK dis-
rupted that activation and recruitment
process in a manner that mirrored the
reduction in pulling forces (Fig. 8 E, F).
Therefore, disrupting FAK function re-
duced the expansion of adhesions be-
tween the growth cone and netrin-1
beads.

Discussion

These findings define several important
steps in the process of axon guidance to
netrin-1. First, in contrast to unrestrained
netrin-1, substrate-bound netrin-1 sup-
ports axon outgrowth, growth cone ex-
pansion, and chemoattractive signaling
through FAK and CAS. Second, myosin
II-dependent traction forces on netrin-1
activate FAK’s kinase activity. Third, FAK
kinase activity produces increased traction
force on netrin-1 through the expansion of
filopodial contacts. Thus, we suggest that
guidance to netrin-1 is mediated by a gradi-
ent of substrate-attached netrin-1 and not a
soluble gradient.

Substrate attachment of netrin-1 in
axon guidance
The ability of pulsatile release of netrin-1
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Figure 8. Inhibition of FAK disrupts strong traction forces on netrin-1. A, Western blot images of the autophosphorylation site

within FAK (Y397) and total FAK. One hour preincubations with the FAK kinase inhibitor PF-228 (10 ) efficiently eliminated both
endogenous and netrin-induced (15 min, 200 ng/ml) phosphorylation. B, Inhibition of FAK with 10 um PF-228 reduced the
number of growth cones capable of pulling on netrin-1with >60 pN (10%, n = 30). €, Diagram of FAK domain structure indicating
selected protein association regions. FRNK lacks the FERM, the first proline-rich (PR) and kinase domains. DCC binds to FAK's FAT
domain. D, Overexpression of FAK had no significant effect on the ability of growth cones to pull on netrin-1with >60 pN (70%,
n = 23). However, fewer axons generated =60 pN on netrin-1 when expressing FAK-Y397F (22%, n = 18) or FRNK (35%, n =
17). E, F, Inhibition of FAK kinase activity or expression of FAKY397F and FRNK reduced the percentage of growth cones that
expanded their initial contacts on the netrin-1 beads. Adhesion expansion was quantified as the number of filopodia whose
contacts are stabilized on the bead. Numbers above each bar represent the number of growth cones examined for each condition.
G, A possible mechanism whereby traction force on netrin activates FAK's kinase activity through separation of FAK's FERM domain
fromthe kinase domain. The C-terminal FAT domain of FAK associates with the P3 intracellular domain of DCC, while its N-terminal
FERM domain indirectly associates with actin filaments. *p << 0.05, **p << 0.01 relative to Ctrl (B, E) or FAK (D, F) (LSD).

from a pipette to guide axons could be regarded as evidence of a
guidance activity of freely diffusible netrin-1 (de la Torre et al.,
1997; Ming et al., 1997). However, there are several lines of evi-
dence that it is substrate-adsorbed netrin-1 that is guiding axons
in these assays. First, there is rapid adsorption of netrin-1 (within
5 min) to polylysine-coated surfaces (Fig. 1I). We have also di-
rectly observed binding of netrin-1 using fluorescently coupled
netrin-1 that was pulsed for 30 min from a pipette onto glass
surfaces that were incubated for 12 h with Xenopus spinal neuron
culture media (49% L15, 50% Ringer’s, 1% fetal bovine serum;
S. W. Moore and M. P. Sheetz, unpublished observations). Fi-
nally, our evidence that disrupting substrate adsorption of

netrin-1 reduces outgrowth (Fig. 2), turning (Fig. 3), and intra-
cellular activation of FAK and CAS (Figs. 4-7) suggests that it is
substrate-bound netrin-1 that guides axons in these pipette axon-
turning assays.

The dependence upon substrate binding raises the question of
what netrin-1 adsorbs to in vivo. In the developing retina,
netrin-1 is closely associated with the glial cells that produce it
(Deiner et al., 1997). In the developing spinal cord, there is an
exponential decrease in density of netrin-1 more than ~250 um
from its source (Kennedy et al., 2006). Prime binding sites for
netrin-1 are the glycosaminoglycans found on both extracellular
matrix and cell surface proteins. They are emerging as key regu-
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lators of axon guidance cue function (de Wit and Verhaagen,
2007). The heparan sulfate polymerizing enzyme Extl, like
netrin-1 and DCC, is required for proper formation of major
commissural tracts (Serafini et al., 1996; Fazeli et al., 1997;
Inatani and Yamaguchi, 2003). When heparan sulfate proteogly-
can (HSPG) expression is disrupted within spinal commissural
neurons, there is a disruption of axon fasciculation (Matsumoto
etal., 2007). As such, HSPGs both on netrin-attractive axons and
along their trajectory are likely to provide substrate attachment
sites for netrin in vivo.

FAK as a mechanosensor in a variety of contexts

Mechanical force induces tyrosine phosphorylation of FAK in
aortic endothelial cells, tracheal smooth muscle, and fibroblasts
(Yano et al., 1996; Tang et al., 1999; Zhang et al., 2008), and
blocking FAK Y397 phosphorylation using antibodies disrupts
flow-induced dilation of coronary arteries (Koshida et al., 2005).
In the absence of FAK, fibroblasts have reduced migration rates
and altered responses to applied force, as well as impaired rigidity
sensing and traction forces on collagen substrates (Wang et al.,
2001). Therefore, FAK appears to function as a mechanosensor in
a variety of cellular contexts. In terms of axon guidance, FAK has
also been implicated in the guidance of axons to a growing num-
ber of cues, including: ephrins, Sema-3s, and brain-derived neu-
rotrophic factor (BDNF) (Ren et al., 2004; Falk et al., 2005; Woo
and Gomez, 2006). Notably, each of these cues are physically
restrained; Ephrins span the plasma membrane or are GPI-
linked, while Sema-3s and BDNF are secreted but are known to
bind to extracellular matrix components (De Wit et al., 2005;
Liangetal., 2010; Martino and Hubbell, 2010). As such, FAK may
have a ubiquitous function as a mechanosensor in the response to
these guidance cues.

Mechanism of FAK activation

There is mounting evidence that the activation of FAK is through
mechanical extraction of the FERM domain from its kinase do-
main. The FERM domain has been shown to interact with and
inhibit its kinase domain (Cooper et al., 2003). Using fluorescent
resonance energy transfer-based sensors in fibroblasts, confor-
mational changes of the FERM domain have been detected in
growing integrin adhesions (Cai et al., 2008; Papusheva et al.,
2009). As mentioned above, FAK tyrosine phosphorylation is
mechanically induced in a variety of cellular contexts (Yano etal.,
1996; Tang et al., 1999; Zhang et al., 2008; Pasapera et al., 2010),
and crystal structures have demonstrated that when FAK is phos-
phorylated, the FERM domain no longer blocks access to the
catalytic site (Lietha et al., 2007). The N-terminal FERM domain
of FAK interacts with the f-actin binding proteins Ezrin and the
Arp2/3 complex (Poullet et al., 2001; Serrels et al., 2007), while
the C-terminal focal adhesion targeting (FAT) domain interacts
with netrin-1’s receptor DCC (Ren et al., 2004). As such, one
possible mechanism of FAK activation is that it experiences trac-
tion forces that extract the FERM domain from its kinase domain
(Fig. 8G).

FAK in both adhesion assembly and disassembly

Deletion of FAK leads to a greater number of focal adhesions in
fibroblasts (Ili¢ et al., 1995) and reintroduction reduces steady-
state traction forces (Dumbauld et al., 2010). On the other hand,
several reports have shown that FAK activity is required for early
events in adhesion formation in both fibroblasts and neuronal
growth cones (Robles and Gomez, 2006; Michael et al., 2009).
Therefore, FAK is implicated in both the assembly and disassem-
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bly of adhesions. Similarly, the guidance of growth cones is a
multistep process that involves both adhesion assembly and dis-
assembly. While FAK has a significant role in the guidance of
axons to netrin-1 (Liu et al., 2004), it is not clear from those
studies how FAK is involved. Based upon these studies, it is clear
that myosin I mechanical forces are critical in activating FAK
and FAK activity is important for increasing the force on netrin-1
through the recruitment of additional contacts.

CAS as a myosin II-independent mechanosensor

The precise role of CAS in cell migration and axonal extension
remains largely unclear. CAS deficient fibroblasts have reduced
spreading and migration rates on a variety of substrates (Honda
et al., 1999; Carter et al., 2002; Sanders and Basson, 2005; Tazaki
etal., 2008). In terms of axon extension and guidance, disruption
of CAS slows extension rates and reduces the ability of axons to
chemoattract to netrin-1 (Huang et al., 2006; Liu et al., 2007).
Interestingly, while there are CAS homologues in vertebrates and
Drosophila, no homolog exists in Caenorhabditis elegans, where
netrin is known to have an evolutionary conserved axon guidance
function (Hedgecock et al., 1990; Singh et al., 2008). Thus, the
role of CAS in axon attraction to netrin-1 may not be ubiquitous
but, rather, may indicate there are different control or effector
systems.

CAS and FAK appear to cooperate in certain cellular events—
they bind each other and their ligand-induced phosphorylation
requires proper actin organization in a variety of contexts
(Nojima et al., 1995; Vuori and Ruoslahti, 1995; Ojaniemi and
Vuori, 1997). However, we found that, while inhibition of myo-
sin I reduces phosphorylation of FAK (on both Y397 and Y576),
it does not significantly affect CAS phosphorylation (Fig. 6).
Conversely, inhibition of SFKs reduces CAS phosphorylation but
does not significantly affect FAK Y397 phosphorylation. As such
there are independent pathways that activate FAK kinase activity
and CAS phosphorylation. Importantly, both require substrate-
bound netrin-1, which is consistent with both being downstream
of mechanosensory activation (Fig. 4). Determining the cellular
events that trigger CAS phosphorylation is therefore an impor-
tant topic to address.

Conclusion

Guidance of growth cones to netrin-1 involves a mechanosensing
process in the link between substrate-bound netrin-1 and the
actomyosin contractile network. FAK and CAS have important
roles in the steps of guidance that follow initial binding and in-
volve further recruitment of receptors to areas with substrate
bound netrin-1. In such a multistep process, there must be a
coordination of many motile systems and a rigid netrin-1 cue
provides a simple way to guide the process.
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