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Encoding of Coordinated Reach and Grasp Trajectories in
Primary Motor Cortex

Maryam Saleh, Kazutaka Takahashi, and Nicholas G. Hatsopoulos

Committee on Computational Neuroscience, University of Chicago, Chicago, lllinois 60637

Though the joints of the arm and hand together comprise 27 degrees of freedom, an ethological movement like reaching and grasping
coordinates many of these joints so as to operate in a reduced dimensional space. We used a generalized linear model to predict single
neuron responses in primary motor cortex (MI) during a reach-to-grasp task based on 40 features that represent positions and velocities
of the arm and hand in joint angle and Cartesian coordinates as well as the neurons’ own spiking history. Two rhesus monkeys were
trained to reach and grasp one of five objects, located at one of seven locations while we used an infrared camera motion-tracking system
to track markers placed on their upper limb and recorded single-unit activity from a microelectrode array implanted in MI. The kinematic
trajectories that described hand shaping and transport to the object depended on both the type of object and its location. Modeling the
kinematics as temporally extensive trajectories consistently yielded significantly higher predictive power in most neurons. Furthermore,
a model that included all feature trajectories yielded more predictive power than one that included any single feature trajectory in
isolation, and neurons tended to encode feature velocities over positions. The predictive power of a majority of neurons reached a plateau
for a model that included only the first five principal components of all the features’ trajectories, suggesting that MI has evolved or

adapted to encode the natural kinematic covariations associated with prehension described by a limited set of kinematic synergies.

Introduction

Reaching and grasping is a complex, ethologically relevant move-
ment. Our earliest primate ancestors developed a mobile fore-
limb and an opposable thumb to reach and grasp for fruits and
insects in the trees (Marzke, 1994). To perform this task, the CNS
must coordinate the proximal and distal muscles of the arm and
hand to simultaneously bring the hand toward an object’s loca-
tion, rotate the wrist so as to orient the hand with the object and
slowly hone in and wrap the fingers around the object. Psycho-
physics studies have demonstrated that proximal and distal arm
movements are coordinated both in time and space during nat-
ural reach-to-grasp behaviors and that this coordination is re-
vealed as specific patterns of covariation between reach and grasp
trajectories (Haggard and Wing, 1998). Little is known, however,
about how the nervous system encodes these coordination
patterns.

Several studies, using cortical electrical stimulation and spike-
triggered averaging of EMG activity, have shown that there is an
overlap between reach and grasp regions in the primary motor
cortex (MI) and that single neurons can activate movements
about multiple joints involved in a reach-to-grasp movement
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(Donoghue et al., 1992; McKiernan et al., 1998; Park et al., 2001).
MI neurons have been shown to modulate their discharge rates
with respect to reach and grasp parameters (Vargas-Irwin et al.,
2010), but limited research has investigated how the covarying
kinematic patterns of a reach-to-grasp movement are encoded at
a single-neuron level. Studies that have examined reaching or
grasping in isolation suggest that MI neurons encode these move-
ments as kinematic trajectories that extend in time (Hocherman
and Wise, 1991; Saleh et al., 2010; Hatsopoulos et al., 2007). The
goal of this study was to extend previous work by developing a
detailed, kinematic-based encoding model to characterize how
single neurons simultaneously represent hand shaping and trans-
port during a prehensile movement. We used a generalized linear
model to estimate the firing rate of single units in 4 ms time bins
from a set of reach and grasp kinematics and each neuron’s firing
history. For a majority of neurons, the predictive power of the
encoding model continued to improve as the duration of the
kinematic trajectories increased up to ~350 ms, starting ~50 ms
before the occurrence of a spike. We show that M1 is intermingled
with neurons that encode reach-related, grasp-related, and com-
bined reach- and grasp-related neurons. Furthermore, encoding
models that included all relevant kinematic features instead of
just one yielded the highest predictive power for a majority of
neurons. We modeled the natural coordination patterns in the
reach and grasp kinematics by calculating the principal compo-
nents (PCs) of the joint kinematic trajectories. For a majority of
neurons, the predictive power of the encoding model reached a
plateau with just the first five principal components. These results
suggest that neurons encode a limited set of spatiotemporal kine-
matic trajectories that represent the natural motions of the arm
and hand in a reach-to-grasp paradigm.
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at least 140 trials where the seven locations
were presented in pseudorandom order.
Neural data acquisition. Each monkey was

(0) chronically implanted with a 100-electrode
(400 wm interelectrode separation, 1.5 mm
electrode length; Blackrock Microsystems) mi-
croelectrode array in the arm—hand area of MI
in the left hemisphere, contralateral to the
hand they used to grasp the objects. The array

was placed parallel as close as possible to the

start object grasp
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hold release
1.5sec ~0.6sec

rest movement
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Side vi .
ik diarid central sulcus, medial from the spur of the ar-
cuate sulcus (Fig. 1D). Surgical details have
@ been described previously (Rousche and Nor-

mann, 1992; Maynard et al., 1997, 1999). Dur-
ing each recording session, signals were
amplified (gain 5000 ), bandpass filtered be-
tween 0.3 and 7.5 kHz, and digitized at 30 kHz

medial

rostral (%} caudal
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using the Cerebus Neural Data Acquisition sys-
tem (Blackrock Microsystems). For each chan-
nel, a threshold was set above the noise band: if

medial  ,gal the signal crossed the threshold, a 1.6 ms dura-
tion of the signal—so as to yield 48 samples

given a sampling frequency of 30 kHz—was

rostral areral sampled around the occurrence of the thresh-

old crossing. To classify the waveforms as noise
or units on the given channel, the waveforms

Subject O Subject A

Figure1.

Materials and Methods

Behavioral task. Two nonhuman primates (female rhesus macaques:
monkey O, 6.6 kg; monkey A, 6.5 kg) were trained to reach and grasp
objects with their right hand. A trial consisted of four different periods: a
premovement period; a reach period preceding the grasp; a hold period
when the monkey held the object; and a release period when the robot
retracted the object (Fig. 1A). During the premovement period, the ex-
perimenter blocked the animal’s vision, and the animal rested her hand
on a static button while the robot moved the object to the prepro-
grammed location for the given trial (Fig. 1). The experimenter then
retracted the vision blocker, and the animal started to move her hand
toward the object to grasp it. Once the object was grasped, the animal was
instructed to hold the object until the robot retracted it (~2 s). Four
objects were presented, requiring a total of five hand configurations (Fig.
1B). The first object was a key-like object (a thin, flat object) that elicited
akey grip, where the monkey held the object between the thumb and the
side of the middle phalanx of the index finger; the second object, the
D-ring, was presented twice, in configurations that elicited a whole-hand
power grip in two different wrist orientations. These two different con-
figurations will be treated as separate objects—the horizontal D-ring and
the vertical D-ring—in the rest of this article. The third object, a sphere,
elicited a whole-hand grip with a fanning of the fingers. The fourth
object, the small D-ring, elicited a precision grip where the tips of the
index and thumb were opposed. These objects were designed to evoke a
variety of coordination patterns among the joint angle kinematic trajec-
tories. A robot (RV-1A-S11 6-axis Robot; www.rixan.com) was pro-
grammed to place the objects at seven different locations in the monkey’s
reaching space (Fig. 1C). The object locations were presented in pseudo-
random order so that the monkey could not predict the object location
on any given trial. Each object was presented to the monkey in a block of

Methods. A, Task timeline: at the start of a trial, the monkey rested her hand over a button while the robot moved the
object to one of seven locations in the subject’s reaching range. After 2 s elapsed, the experimenter pulled a vision block out of the
monkey's visual space at which point the monkey was instructed to reach and grasp the object (object presented). The monkey was
trained to hold the object until the robot retracted it. After releasing the object, the monkey was instructed to place her hand back
on the button. Twenty-three retro-reflective markers were placed on the monkey’s arm and fingers. Their 3-D positions were
captured with infrared cameras and used to calculate the joint angle kinematics of the arm and hand. B, Five objects were used in
the reach-to-grasp task (top to bottom): the key grip, the horizontal D-ring, the vertical D-ring, the sphere, and the small D-ring. C,
Seven target locations. Aerial (top) and side view (bottom). D, Ml electrode array implants in subject O (left) and subject A (right).
Monkey O's array was implanted a little more medially than monkey A’s array. The other arrays were used for different studies.

were spike sorted off-line using a semiauto-
mated Matlab routine (Mathworks) devel-
oped in our laboratory, incorporating some
elements of a previously published algorithm
(Vargas-Irwin and Donoghue, 2007).
Motion tracking. The three-dimensional
(3-D) positions of monkey’s right arm, wrist,
hand, and fingers were recorded using a video-
based motion analysis system (Vicon Motion
Tracking System, Workstation 460). We used
six M2 cameras at 1.2 megapixel resolution.
Twenty-three spherical retro-reflective mark-
ers (3 mm diameter) were glued to the mon-
keys’ fingers, hand, and forearm (Fig. 1A). To compute the inverse
kinematics (i.e., the joint angles from the marker positions), we used a
scaled version of a skeletal model of the arm (Holzbaur et al., 2005)
developed using the OpenSim platform (https://simtk.org/home/
opensim). We calculated the following angular positions and velocities:
at the shoulder, the three degrees of freedom were rotation about the
coronal plane [i.e., variability in abduction/adduction (ELV)], rotation
about the sagittal plane [elevation angle of the shoulder (SHEL), i.e.,
flexion/extension], and rotation (SHR). At a neutral ELV angle (i.e., 0°),
the humerus is perpendicular to the thorax and on the coronal plane. At
aneutral SHEL angle (i.e., 0°), the shaft of the humerus is parallel to the
vertical axis of the thorax, and at a SHEL angle of 90°, the humerus is
perpendicular to the thorax and elevated in the sagittal plane. We also
modeled elbow flexion and extension (ELBFLX) where a neutral angle
(i.e., 0°) represents full extension, and 130°, full flexion. Forearm rotation
(WRPRO) is defined from 90° (pronation) to —90° (supination). Wrist
flexion and extension (WRFLX) range from —70° (extension) to 70°
(flexion), while wrist deviation (WRD) ranges from —10° (radial) to 25°
(ulnar). For the fingers, we modeled flexion and extension at the carpal-
metacarpal joint of the thumb (1CMC), at the metacarpo-phalangeal
joints of the thumb, index, and ring fingers (1IMCP, 2MCP, and 4MCP,
respectively), and the proximal interphalangeal joints of the thumb, in-
dex, and ring finger (1PIP, 2PIP, and 4PIP, respectively). Neutral angles
(i.e., 0°) for the joints of the thumb, index, and ring finger are defined
when the long axes of the phalangeal bones of each digit are aligned with
the long axis of the respective metacarpal bone. We also modeled abduc-
tion and adduction of the thumb (1ABD), index (2ABD), and ring
(4ABD) fingers. Thumb abduction/adduction ranged between —25° (ad-
duction) and 25° (abduction). The MCP joints of the index finger ranged
between —15° (adduction) and 15° (abduction). Our encoding model
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also included the 3-D Cartesian position and velocity of the wrist to
yield a total of 40 kinematic variables. A custom software package
(TheGame, version 2) was used to remotely control the trial capture
and align the kinematics data with the neural data via a synchronizing
pulse that was sent to both systems every 150 ms. The kinematic data
were sampled at 250 Hz and bidirectionally filtered with a fourth-
order Butterworth low-pass filter with 6 Hz cutoff. All data filtering
and calculations were done in MATLAB. The start of movement and
the time of grasp were determined by analyzing the kinematics—the
start of movement corresponded to the time at which the speed pro-
file of the first marker position exceeded 10 cm/s. To determine the
grasp time, we calculated the time at which the speed profile of the last
joint angle dropped to <10 cm/s.

Computational model. We extended the neural encoding model de-
scribed by Saleh et al. (2010) to include reach components. A generalized
linear model was used with a log link function and assumed Poisson
noise. Specifically, the logarithm of the conditional intensity function A,,
the neuron’s instantaneous spike count in a 4 ms time bin, was estimated
as a linear combination of a set of extrinsic and intrinsic covariates. The
extrinsic covariates consisted of the kinematic trajectories of a group of
finger, wrist, and arm joints. The intrinsic covariates included the history
of spiking responses of the neuron on multiple time scales. The log trans-
form has the nice consequence of ensuring non-negative estimated rates.
That is, the logarithm of the firing rate of the neuron is a linear function
of the covariates. More details about the application of the generalized
linear model to neural data can be found previously (Paninski et al., 2004;
Truccolo et al., 2005).

Spike history. Setting aside the effects of external covariates, the
current spiking response of a neuron depends on the neuron’s own
spiking response in the past. Such spike history effects may include
short time-scale phenomena, such as refractoriness and bursting, and
longer time-scale oscillations, such as facilitation and depression phe-
nomena occurring on the order of tens to hundreds of milliseconds
(Hille, 2001; Keat et al., 2001; Chen and Fetz, 2005). To model these
spiking history components, we filtered the spike train with a basis set
of raised cosines of the form:

= %cos(a log[t + ] — ¢) + %, (1)

bi(t)
for t, such thata log(t + ¢) € [d¢; m, ¢; + w]and 0 previously
(see Fig. 10A) (Pillow et al., 2008). The d)j are the time axis positions of
the peaks of the cosine curves. Their positions were selected as equidis-
tant on the regular x-axis scale—that is, before applying the log trans-
form, the basis centers were equidistant from each other. After the log
transform, the basis centers were at 8, 12, 20, 32, 60, 108, and 208 ms. The
resulting basis set b, where j € [1, 7] accounts for both fine temporal
correlations near the spike and broader correlations at longer time lags
from the spike. Each basis vector was convolved with the spikes p(t) to
give rise to ] = 7 spike history vectors H;, representing the effect of spike
history up to 200 ms in the past:

H, = > b(np(t — ), )

T=t—T

where T is the duration of the basis vector.
The following spike history model is used as a control model excluding
all external covariates:

j
logA(H) = B, + XBI'H, (3)

j=1

The B]H terms represent the weights associated with the history terms, and
By can be taken to be the baseline firing rate of the neuron. Since spiking
history during movement may reflect aspects of movement, we chose to
calculate the coefficients on data collected during the premovement pe-
riod, when the monkey’s arm was at rest.
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Kinematic variables. To model spike history together with velocity and
position, we used the following model:

j F  t+372
log A(H, 0,0) = B + 2 BTH, + X > Blby
j=1 f=1r=t-200
F t+372
+ 2 > Bty (4)
f=1 r=t-200

where r represents the time lags between the kinematics and the spiking,
ranging from —200 to 372 ms after the spiking activity, with a step size of
52 ms; fdenotes a particular kinematic feature; and F is the total number
of position or velocity features (F = 20; 6 is the joint angle or marker

position and @ is the joint angular velocity or marker velocity). Each term
associated with a coefficient 8 is a covariate. The total number of kine-
matic terms is, therefore, 480 = (20 angles or positions + 20 angular
velocities or velocities) X 12 time lags. Our trajectory analysis (see Re-
sults) indicated that only eight time lags were necessary to optimize the
model. Therefore, the total number of kinematics terms that were ulti-
mately used was 320. In the remainder of the text, we use “trajectories” to
denote joint angles or angular velocities of the fingers, wrist, and arm at
multiple time lags relative to the spikes. The spike history terms and
kinematic terms on the right-hand side of the equation are also referred
to as covariates of the conditional intensity function.

Task-related neurons. To find the task-related neurons, a 200 ms win-
dow of spike times was extracted before the start of movement (interval
1) and was compared with a 200 ms window of spike times sampled after
the start of movement (interval 2). This second window was also com-
pared with a third interval, a 200 ms window sampled 200 ms after the
end of movement. If a paired t test showed a significant difference in
firing rate (at p < 0.05) between either intervals 1 and 2 or intervals 2 and
3, then the neuron was considered to be task related.

Prediction accuracy. To test for the prediction accuracy of a model, we
computed the area under the receiver operating characteristic curve
(AUCQ) for all test data, using 10 folds of cross-validation (i.e., 10 distinct
sets of test data that were not used to build the model). The receiver
operating characteristic curve is a plot of the true-positive versus false-
positive rates of prediction. To calculate true-positive and false-positive
rates at different thresholds, we started by aligning the real spike counts
with the predicted spike counts. We then looped through a set of thresh-
olds that matched the range of conditional intensity estimates (the pre-
dicted data). The conditional intensity estimate represents the firing rate
estimation in a 4 ms bin and typically ranged from 0 to ~0.2. A value of
0.2 would correspond to a firing rate of 50 Hz. We looped through 50
equidistant thresholds between 0 and the maximum value of the condi-
tional intensity estimate. For each threshold, we calculate the total num-
ber of positives, namely the number of timestamps for which the
estimated conditional intensity was above the threshold. Of these, the
hits or true positives correspond to actual spikes, and the rest are false
positives. For each fold, we computed the AUC. Numerically, this was
computed by connecting the dots associated with one fold and comput-
ing the piecewise trapezoidal area between each set of two consecutive
dots. These areas were summed to yield the total AUC for each fold. The
AUC provides an assessment of the predictive power of the encoding
model and ranges between 0.5 and 1.0, where 0.5 represents chance level
prediction and 1.0 is a perfect prediction. We report the predictive power
as2* AUC — 1, so that the values range between 0 and 1—the predictive
power will be termed “AUC” in the rest of the document. Specifically,
when two different samples are randomly drawn from the data (one
sample contains a spike and the other does not), the AUC represents the
probability that the model will yield a higher probability for the sample
with a spike. More details about receiver operating characteristic curve
analysis can be found in studies by Fawcett (2006), Hatsopoulos et al.
(2007), and Truccolo etal. (2008, 2010). We used a Wilcoxon signed rank
test (ranky,;) to compare the AUCs of neurons for different tested mod-
els. If the test involved multiple comparisons, we applied a Bonferroni
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Figure 2.

Spike trains across trials, categorized by object and location conditions. 4, Breakdown of direction selectivity across object conditions. In this example neuron, spike trains are shown

across trials, aligned on the start of movement, for the left, right, and center locations (left to right), and for reaches to the vertical D-ring, sphere, and small D-ring object (top-down). The last column
displays the mean firing rates and SEs across the location conditions. When the monkey reached for the vertical D-ring or the small D-ring, the neuron discharged for reaches to the right only. For
reaches to the sphere, the neuron also discharged for reaches to the center target. B, Breakdown of object selectivity across locations. In this other example neuron, spike trains are displayed across
trials, aligned on the start of movement, for the vertical D-ring (vertD), sphere, and horizontal D-ring (horizD) (left to right), and for the left, center, and right locations (top-down). The last column
displays the mean firing rates and SEs across the object conditions. In the left direction, this example neuron does not preferentially fire for reaches to the sphere object.

correction to the p values and used Kruskal-Wallis ANOVA (KW ) be-
fore computing the pairwise significance tests.

Optimal lag between the spikes and the kinematics. We computed the
cross-correlation between each kinematic variable and the spike train of
each neuron. Then, we averaged the cross-correlation traces across trials
and computed the optimal lag L that corresponded to the maximum
value M of the rectified mean trace. To assess the significance of M, we
computed cross-correlations between shuffled trials and each neuron’s
spike train to yield 100 additional traces. We used a t test to assess
whether M was significantly larger than the rectified cross-correlation
values of the shuffled trials measured at the optimal lag L ( test, p <
0.05). Before performing the cross-correlation, spikes were binned in 4
ms windows and convolved with a Gaussian kernel with (mean, SD) =
(0, 100 ms) then cross-correlated with the kinematic trace for the given
trial.

Principal components. We took advantage of the fact that the kine-
matic terms are correlated during reaching and grasping (Santello and
Soechting, 1998; Santello et al., 1998, 2002; Mason et al., 2001), and
computed the principal components of all the kinematic terms to reduce
the number of parameters in the model. The kinematic data were sam-
pled in 4 ms bins, where one observation corresponded to a set of sample
trajectories over all the kinematic parameters (see procedure outlined in
Fig. 3B). The next observation corresponded to the same parameters
sampled 4 ms after the samples from the previous observation such that
total number of observations corresponded to the number of trials mul-
tiplied by the number of 4 ms samples per trial. We computed the prin-
cipal components of the normalized kinematic variables for these
observations such that the last two terms from the right-hand side of

equation 4 were replaced by the number of principal components that
accounted for 80% of the variance. The kinematics were normalized by
taking their z-scores: that is, for each variable, we subtracted the mean
and divided by the SD. The input variables were normalized because the
position and velocity terms displayed largely different ranges of values.
For neurons that encoded reach and grasp kinematics, 30 principal com-
ponents accounted for 80% of the variance (Pin Eq. 5). The covariates PC
in Equation 5 refer to the first P principal components; that is, the pro-
jections of the kinematic data onto the first P eigenvectors, as follows:

] P

log A, (H, PC) = By + >, BI'H, + >, B, PC,.

j=1 p=1

(5)

We refer to the “full model” as a model that included all the terms in the
right-hand side of Equation 5.

Results
Two datasets with a minimum of 15 trials for each combination
of the five objects and seven positions were collected from each
monkey (monkeys O and A). The two experiments in monkey O
yielded 33 of 37 and 39 of 44 task-related units, respectively. The
two experiments in monkey A yielded 32 of 50 and 39 of 82
task-related units, respectively.

In the population of units, we found examples of neurons that
modulated their firing rate with respect to a given location or
object. However, a neuron’s selectivity for a given location was
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Kinematic traces for nine different features of the arm, hand, and wrist. 4, Trajectories collected for reaches to 6 different locations for the small D-ring object. D1 was 12 cm away from

the starting position, D2 was 10 cm away from the starting position and D3 was 8 cm away from the starting position. Lft and Rgt represent left and right targets; azimuthal angle between center
and side targets was ~35°. El represents an elevated target—10 cm from the start position, 0°in azimuth, and ~45°in elevation. Row 1, X, ¥, and Zlocations of the hand. Row 2, Flexion/extension
at 1PIP (IPFLX), flexion/extension of the 2MCP, and abduction/adduction of 2ABD. B, Trajectories for the reach to the left target for all objects: key (red), vertical D-ring (vertD; black), horizontal D-ring

(horizD; pink), small D-Ring (yellow), sphere (green).

not always consistent across objects. Figure 2 A shows an example
of a unit that increases its firing rate when the monkey reached to
the right for the vertical D-ring and the small D-ring but lost its
direction selectivity when reaching for the sphere. Similarly, a
neuron’s selectivity for a given object was not always consistent
across locations. Figure 2B shows an example of a unit that
showed a preference for the sphere but only when the monkey
reached to her right or in the center, not to the left. The fact that
neurons show inconsistent tuning properties across objects and
locations suggests that M1 neurons are not always uniquely tuned
to direction or to object type. Rather, we postulate that they are
tuned to a combination of proximal and distal kinematic features
of the forelimb.

We varied the types of objects and their locations to model
large differences in kinematic trajectories across conditions. Ex-
amples of mean traces of the arm-, hand-, and wrist-related ki-
nematic parameters are given for the small D-ring, across six
locations in Figure 3A. Varying the object location elicits changes

in the kinematic trajectories related not only to the arm, but also
to the wrist and hand. Figure 3B exhibits the mean traces of the
arm-, hand-, and wrist-related kinematics for the left location,
across the five tested objects. Varying the object type elicits
changes in the kinematic trajectories related to not only the hand,
but also the arm and wrist. These observations suggest that the
arm, wrist, and hand kinematics interact and covary so as to yield
different joint trajectories for different combinations of objects
and locations.

We developed an encoding model to predict the spiking re-
sponses of individual MI neurons based on the kinematic trajec-
tories of the arm, wrist, and finger joints as well as the spike
history of the neuron measured on multiple time scales. We used
a generalized linear modeling framework where the neuron’s fir-
ing rate was estimated as a function of these extrinsic and intrinsic
covariates (i.e., the joint kinematics and the neuron’s firing his-
tory) (see Materials and Methods for more details). A generalized
linear model is a more general version of standard multiple linear



Saleh et al. @ Encoding of Reach and Grasp Trajectories in MI

J. Neurosci., January 25,2012 - 32(4):1220-1232 « 1225

A . D o v i higher predictive power than the kine-
TR bty g TR0 Ny O matics at their optimal lag, we tabulated
(I} |l|| I ] ] LI R B | |l [} h do . f h
. cooge Lt 0 the predictive power of each neuron as we
ol |I IR BTN 3 o increased the duration of the trajectory
e T ! N starting at the optimal lag for the given
] [ | T tnrimnna ] . . .

L L L LLLIE R Rt . . monkey (Flg. SB). Tra)ectory duration

i . ' : y was increased in the following three dif-

PV 'II'II * e :IIII: & II th g ferent orders: in the first case, positive and

ol N e T TR o | negative lags were added consecutively. In

] vifm i m the second case, positive lags were added

g ¥ TN s |I i 'I,' I| Y ','II,'I:' I| ! " ol | ' first, then negative lags. In the third case,

| | S PR & 1 negative lags were added first, then posi-

o . 0! . tive lags. Positive lags should be inter-

1 . ! preted as spikes preceding movement. For

[ B e ] o X i X
/W each unit, we tabulated the difference in

B | : ‘, : predictive power between a model that in-
e 4 cluded all the kinematics at increasing du-

o —_— g rations and a model that only included the
'f:(; ﬁ 2 optimal lag. Figure 5B shows these differ-
p— - _ i dicti la-

aE> _ 4 ences in predictive power across cumula
= — tive increases in trajectory duration for
% R two example neurons (monkey O on the
left and monkey A on the right). The box

1 L I I #- = 1 plot shows the variability across the cross-

-300 -200 -100 0 100 200 300 400 validation folds. We found that the pre-
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Figure4. Kinematicinputs to the generalized linear model. Spike trains and kinematic data for one trial. A, Spike trains from all

neurons simultaneously recorded in one trial. The spikes were counted in 4 ms bins such that they yielded binary samples. For each
4ms bin (either a Tora0), we extracted a 364 ms window of all the 40 kinematic features. The gray boxes provide two examples

of the windows. B, The 40 kinematic features for a given trial in normalized units.

regression that is suited to predict discrete integer responses (i.e.,
numbers of spikes emitted in a time bin) that are not normally
distributed as assumed by standard regression but rather are
Poisson distributed. On each trial, spike trains were simultane-
ously recorded from a population of neurons (Fig. 4 A), while the
monkey performed a reach-to-grasp behavior. To build the en-
coding model for each neuron, sliding windows of joint angular
positions and velocities (i.e., kinematic trajectories) were associ-
ated with each 4 ms sample of the spike train whether or not a
spike actually occurred or not (Fig. 4 B). Unless otherwise noted,
the full encoding model was used, which also included spike his-
tory terms as shown in Equation 5.

Trajectory analysis
We used this encoding model to test whether neurons encode
temporally extensive kinematic trajectories, instead of kinematic
parameters at just their optimal lag from the spiking activity.
First, we calculated the optimal lags between each feature and
neuron’s response using standard cross-correlation methods
(see Material and Methods). All neurons exhibited significant
cross-correlation peaks for atleast 35 of the 40 kinematic features.
In monkey O, a plurality of neurons exhibited an optimal lag at
100 ms across all features—where spikes precede movement by
100 ms (Fig. 54, left panels). In monkey A, a plurality of neurons
exhibited an optimal lag at 0 ms (Fig. 5A, right panels). The goal
of this analysis is to show that even though we can extract an
“optimal lag” across all features and neurons, the significant lags
across all features are quite spread out (Fig. 5A, bottom plots),
suggesting that we should consider more than one lag time be-
tween the spiking and the kinematics in the encoding model.

To test whether kinematic trajectories yield significantly

monkey A) reached a plateau for a trajec-
tory of at least 364 ms in duration. For
each neuron, the duration of the trajec-
tory was determined by increasing its du-
ration until the predictive power of the
neuron was no longer significantly lower than the maximum
achievable predictive power across all durations—the plateau
(ranky;, p > 0.05). Using a trajectory duration of 364 ms, we
tested which starting lag yielded the highest predictive power. On
a population level, we found that starting the 364 ms trajectory at
—44 ms yielded significantly higher predictive power than start-
ing a trajectory of the same duration at 8, —148, or —200 ms
(paired rankyy;, p < 0.05 in all cases). However, starting the
trajectory at —96 ms did not yield a significantly higher predictive
power (paired ranky;, p = 0.07 monkey 0, p = 0.1 monkey A),
suggesting that the optimal starting lag could range between —44
and —96 ms. For the remainder of the study, we opted to test 364
ms trajectories that started at —44 ms and ended at +320 ms (i.e.,
eight lag times). Over the population of neurons in both mon-
keys, the predictive power of the model with all features using a
364 ms trajectory beginning at —44 ms was significantly stron-
ger than a model that used all features at just their optimal lags
(paired rankyy;;, p < 0.05 in both monkeys; Fig. 5C).

Feature analysis

To test whether each neuron encoded reach and/or grasp com-
ponents, we compared the predictive power of a model that in-
cluded all features versus one where the reach or grasp features
were removed. We define a neuron as encoding a category of
features—reach or grasp category—if there was an associated
significant drop in predictive power (paired rankyy;, p < 0.05)
when all kinematic features associated with a given category (i.e.,
proximal limb kinematics of the arm for the reach category and
distal limb kinematics including wrist and fingers for the grasp
category) were removed from the encoding model. The distribu-
tions of the reach- and grasp-related neurons were different
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Figure 5.  Trajectory analysis. Results across two experiments from monkey O (left) and
monkey A (right). A, Optimal lag analysis. Top, Percentage of cells with significant lags across
features. Colorbar represents percentage of cells. Each feature has a position (X) and velocity (V)
term. Bottom, Mean percentage of cells across features as a function of lag time. Optimal lag
across features for monkey 0 was found to be 100 ms. Optimal lag for monkey A was found to be
0 ms. B, Difference between predictive powers of trajectory model (AUC;) and optimal lag
model (AUC, |,4) for an example neuron in each monkey. Using a combination of a Kruskal—
Wallis test followed by pairwise Wilcoxon rank sum tests, we assessed that the predictive power
attained a value that was not significantly different than its maximum at a duration of 364 ms.
C, Scatter plot showing difference in predictive power between the trajectory model (364 msin
duration) and the optimal lag model (where all features were included at their optimal lag)
across neurons. Each point represents a neuron.

across monkeys. In monkey O, 9%, 15%, and 72% of neurons,
respectively, encoded grasp, reach, and both categories (Fig. 6 A,
first panel). In monkey A, 31%, 17%, and 33% of neurons, re-
spectively, encoded grasp, reach, and both categories (Fig. 6A,
third panel). Using the same paradigm, we also tested whether
neurons encoded position or velocity features. Velocity and po-
sition encoding was similar across monkeys. For monkey O, 25%
of neurons encoded velocity, 8% encoded position, and 56% en-
coded both velocity and position (Fig. 6 A, second panel). For
monkey A, 23% of neurons encoded velocity, 8% encoded posi-

Saleh et al. @ Encoding of Reach and Grasp Trajectories in MI

50 50 50 50

% Neurons J>

V X V&X

G R RG

V X V&X

central sulcus

C
enl‘ra/SuICUS central sulcus

Figure6.  Summary of tuning properties of neurons. A, Left, Bar graph plot the percentage of
neurons that are tuned to grasp (G), reach (R), and both reach and grasp (RG) for monkey 0. Left
middle, Bar graph plot the percentage of neurons that are velocity-tuned (V), position-tuned
(X), and velocity and position-tuned for monkey 0. Middle right and right, Same as first two
panels but for monkey A. B, Spatial locations of neurons tuned to grasp (yellow), reach (red),
and reach and grasp (light blue) on the electrode array for two different datasets in monkey 0
(left) and monkey A (right).

tion, and 46% encoded both position and velocity (Fig. 6A,
fourth panel). We also examined the topographic organization of
reach, grasp, and reach and grasp neurons across the implanted
array. Across all four datasets, two in each monkey, we found a
highly distributed pattern of proximal and distal representations
of the limb on the precentral gyrus with no clear spatial structure
(Fig. 6B).

Though most features increased the predictive power of the
neurons, some features yielded a more significant increase in
predictive power. To test which features were most significant for
each neuron, we compared the predictive power of a set of en-
coding models built with each feature trajectory separately. Fig-
ure 7A displays the difference in predictive power between each
feature and the mean predictive power across single features. The
features are broken down into reach-related (top panels) and
grasp-related (bottom panels) features. On a population level, the
reach-related features tended be more significant than the grasp-
related features (monkey O: ranky;, p < 0.001; monkey A: ranky;,
p <0.001). For both reach- and grasp-related features, the veloc-
ity terms tended to be more significant than the position terms
(monkey O: paired rankyy;, p < 0.001, monkey A: paired rankyy;,
p < 0.001). Among the reach-related features, Y and Z Cartesian
velocity of the hand were the most significant features (KW, test,
followed by pairwise rankyy;;, p < 0.05). Among the grasp-related
features, flexion/extension velocities at the metacarpo-phalangeal
joints of the index and ring finger and pronation/supination ve-
locity of the wrist were the most significant features (KW, fol-
lowed by pairwise rankyy;, p < 0.05). Finally, we tested whether
there was a significant increase in predictive power when the
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pared with the other components (KW,
test, followed by pairwise rank,y; test, p <
0.05). For monkey A, the first and third
principal components were the most sig-
nificant: in both cases, 75% of neurons
showed a significant increase in predictive
power (KW, test followed by pairwise
rankyy; test, p < 0.05).

We also tested how many principal
components were required to reach the
maximum predictive power of each
neuron. The increase in predictive
power relative to the history model as
principal components were cumula-
tively added to the model is shown for
an example neuron from each monkey
in Figure 9A. In the example neuron for
monkey O, four principal components
were required to reach a predictive
power that was not significantly differ-
ent from the full model (paired rankyy;,
p < 0.05 up to third component, p =
0.17 for the fourth component). In the
example neuron for monkey A, three
principal components were required to
reach a predictive power that was not
significantly different from the full
model (paired ranky;, p < 0.001 up to
second and p = 0.25 for the third com-

Figure 7.

Each point represents a neuron.

model included all feature trajectories versus just the one feature
trajectory that yielded the highest predictive power. For both
monkeys, the model that included all features significantly in-
creased the predictive power of neurons (Fig. 7B, pairwise rank-
wib P < 0.001 for O on the left; pairwise rankyy;;, p = 0.0015 for A
on the right).

Principal component analysis

Throughout our analyses, we calculated the principal compo-
nents of all the external covariates to reduce the dimensionality of
the kinematics. Thirty principal components accounted for 80%
of the variance in the 320 dimensions of kinematics in our model
(Fig. 8A). To test which PCs were most significant for each neu-
ron, we built encoding models that included each principal com-
ponent and tested which model yielded a predictive power that
was significantly higher than the mean across all components
(KW, followed by rankyy;, p < 0.05). Figure 8 B displays the
increase in predictive power for each PC model, with respect to
the mean predictive power across all tested models for each re-
corded neuron. Figure 8 C shows the median and range of predic-
tive powers across neurons for each PC model. The most
significant principal components for monkey O were the first,
second, and fourth principal components: 61%, 64%, and 50% of
neurons displayed a significant increase in predictive power com-

Reach and grasp-related cells in Ml in two monkeys; subject O (left) and subject A (right). 4, Difference in predictive
power between a model that only included the feature denoted on the y-axis and the mean predictive power across all single
features. Colors represent the predictive power of a model with a given feature subtracted by the mean predictive power across all
single features (AUC — << AUC >). Top, Includes neurons that encoded reach features and reach and grasp-related features.
Bottom, Includes neurons that encoded grasp-related and reach and grasp-related features. Each column corresponds to a single
neuron. B, Comparison of predictive power between amodel that included all the feature trajectories (full model) and one that only
included the feature trajectory that yielded the highest predictive power for each neuron for monkey O (left) and monkey A (right).

ponent). Across all neurons for monkey
O, a mean of five principal components
was required to reach the predictive
power of the full model (Fig. 9B, left),
while for monkey A a mean of four prin-
cipal components was required to reach
the predictive power of the full model
(Fig. 9B, right). The first five eigenvec-
tors were highly similar across experi-
ments for a given monkey and also
across monkeys: the correlation coefficients between pairwise
comparisons of each eigenvector across all four datasets were
all significant and high (75, = 0.87 £ 0.04, 15, = 0.65 = 0.08,
Feigs = 0.66 % 0.08, rigy = 0.60 % 0.10, 15 = 0.55 = 0.11).
Further, the correlation coefficients of the eigenvectors within
monkeys were generally higher than the correlation coeffi-
cients across monkeys.

We examined the first five principal components to determine
which kinematic features were emphasized. To do this, we com-
puted the percentage variance accounted for per feature, as prin-
cipal components were cumulatively added. Figure 9C displays
our results for the cumulative addition of five components, and
the result for reconstructions using the full 30 principal compo-
nents. The variability in the position trajectories was captured
with fewer components than the velocity trajectories. However,
some features were better captured than others (i.e., inhomoge-
neous capture of features), and these features were consistent
across positions and velocities: the first five principal compo-
nents captured more variability in ELV of the shoulder, the
SHEL, flexion and extension of the elbow, wrist positions Y and
Z, pronation and supination of the wrist, and the flexion and exten-
sion of the metacarpo-phalangeal joints of the index and ring
fingers. For the position terms only, abduction and adduction of
the thumb, index, and ring fingers and ulnar and radial deviation
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about the wrist were also captured by the
five principal components.

Spike history

We sought to determine which spike his-
tory terms were most significant across
the population of recorded neurons. To
model these spiking history components,
we defined a set of basis vectors (Fig.
10A). The vectors were designed to ac-
count for broader windows of time as his-
tory went further back into the past. The
spike train was filtered with each of these
basis vectors (Fig. 10B). The first spike
history term is the original spike train
convolved with Bl from Figure 10A: it
represents spiking history immediately
preceding the present and is filtered over a
narrow time window, compared with the
last spike history term, filtered over a very
large time window, B7.

To find the significant spike history
terms, we first calculated the coefficients
using training data that were sampled
during the premovement period. We then
calculated the predictions using the data 1
sampled during the entire trial duration.
A model was built using the kinematic co-
variates and each of the single spike his-
tory terms. A spike history term was
considered to be significant if its predic-
tive power was significantly larger than at
least one of the other spike history terms
(KW 4, followed by rankyy;;, p < 0.05). The
difference in predictive power of each
model and the mean predictive power across all single spike his-
tory terms was calculated for each neuron separately in monkey
O (Fig. 10C, left) and monkey A (Fig. 10C, right). We found that
for monkey O, the first and second spike history terms, at respective
basis centers of 8 and 12 ms, were more significant than the other
terms (pairwise comparisons, rankyy, prerm; << 0.001 in all cases, and
Prermz < 0.001 for all terms except term 1 since predictive powers
tended to be larger than those for term 2). For monkey A, only the
second term was found to be more significant than the spike history
term at a basis center of 60 ms (rankyy;, p < 0.001).

We also compared the predictive power of a model that only
included the kinematic covariates to one that only included the
spike history covariates. Because of their slow temporal fre-
quency, the kinematics are designed to capture slower fluctua-
tions in firing rate, whereas spike history is designed to model
faster fluctuations in rate due to refractoriness, bursting, and
oscillations (Fig. 11 A). Notice the middle panel in Figure 11A
shows “blurred” versions of the original spike trains because the
slowly varying kinematics did not model the fast changes in spik-
ing activity. On the other hand, there were many examples where
the slow fluctuations were well modeled by the kinematics,
whereas the faster fluctuations were not well captured by spike
history (Fig. 11B). In fact, we found that the kinematic model
yielded significantly higher predictive power than the spike his-
tory model on a population level for both animals (paired rank-
wib P < 0.001 for both monkeys) (Fig. 11C).

Although generally not capable of capturing fine temporal
modulations in rate, the kinematics could more precisely predict
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the onset time of the slow but large movement-related modula-
tion. Onset times were calculated by finding the lag at which
there was a significant peak in the cross-correlation between the
actual spikes and the predictions of the kinematic and spike his-
tory models. The kinematic model yielded significant peaks in the
cross-correlations that were closer to alag of 0 ms, compared with
the spike history model. In monkey O, the median lag was 4 ms
for the kinematic model and 16 ms for the spike history model; in
monkey A, the median lag was 8 ms for the kinematics model and
28 ms for the spike history model. In both cases, the predictions
of the history model lagged behind the predictions of the kine-
matic model. These results suggest that the kinematic model
more precisely predicts the onset of spike rate modulation.

Generalization

To test whether the encoding model is context dependent, we built
the model on training data collected from four of the five objects and
tested its predictive power on data from the fifth object. The five
resulting models are called “restricted” models. The actual spike
trains for leftward reaches toward the five objects are given for an
example neuron in Figure 12 A. The predicted spike counts for the
full model and the restricted model are then given in Figure 12, Band
C, respectively. The predictive power of the restricted models across
all neurons was well above chance (rank; against a median of 0.5,
p < 0.001 in all cases) indicating that all the models generalized to a
certain extent. To compare the performance of the restricted models
to the full model, we used a Kruskal-Wallis ANOVA test followed by
pairwise Wilcoxon rank sum tests (Fig. 12 D). We found that the full



Saleh et al. @ Encoding of Reach and Grasp Trajectories in MI

J. Neurosci., January 25,2012 - 32(4):1220-1232 « 1229

components. Our results also suggest that
MI neurons may have adapted to encode
natural coordination patterns that emerge
during reach-to-grasp movements in-
stead of movements about single joints.

Trajectory encoding

Our results show that neurons encode
multiple reach and grasp features as tem-
porally extended trajectories, rather than
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static movement parameters. That is, MI
neurons encode a reach-to-grasp move-
ment by means of time-varying trajecto-
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= . rather than single joint angle kinematics
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trajectories (bottom).

model was not significantly different than any of the restricted mod-
els, except for the restricted model that omitted the vertical D-ring in

monkey O (monkey O: pi., = 0.85, pyeyep = 0.01, pryoripn = 0.0742,
Psmap = 0.90, psphere = 0.99; monkeY A pkey = 006’ Pvern =
0.39, PHorizp = 0.07, Psmanp = 0.80, psphere 048)
Discussion

Individual MI neurons control movement by forming synergies
that involve both proximal and distal musculature of the upper
limb (Shinoda et al., 1981; McKiernan et al., 1998). Furthermore,
their firing activity has been shown to correlate to kinematics that
represent both reach and grasp (Stark etal., 2007; Vargas-Irwin et
al., 2010). This study extends these findings by modeling the
time-varying interactions between reach and grasp kinematics.
To reduce the dimensionality of the movement, we took the prin-
cipal components of the 320 kinematic parameters. Though 30
principal components accounted for 80% of the movement vari-
ability, our encoding model of single-neuron activity reached a
plateau with just five components. These results suggest that MI
neurons on the precentral gyrus encode the more general aspects
of a reach-to-grasp movement, rather than the finer adjustments
in movement that would be captured by the higher principal

o
o
P

Principal component analysis for monkey O (left) and monkey A (right). A, Increase in predictive power with each
added principal component for an example cell in monkey O (left) and one in monkey A (right). The predictive power of the full
model s displayed by the black line. B, Number of PCs required to reach a predictive power that was not significantly different from
the predictive power of the full model (30 PCs). Monkey O required a mean of five principal components, whereas monkey A
required a mean of four principal components (see orange lines). €, Percentage of variance accounted for across trajectories with
the cumulative addition of principal components up to 30 components (see legend) for position trajectories (top) and velocity

instead of static movement parameters,
we were able to characterize how MI neu-
rons encode the time-dependent covari-
ance between the kinematic features. We
have previously tested trajectory-based
encoding models on constrained and iso-
lated grasping and reaching behaviors
(Hatsopoulos et al., 2007, 2010; Saleh et
al., 2010). A similar trajectory-based ap-
proach has been applied to muscle activity
instead of cortical activity during con-
strained human arm movements
(Pruszynski et al., 2010). We now extend
these findings by examining a more etho-
logically relevant and unconstrained
movement, where reaching and grasping
are examined as a single coordinated
movement (Hatsopoulos et al., 2010).
Our findings that the discharge of mo-
tor cortical neurons is captured by a
movement trajectory of such long dura-
tion may seem at first glance counterin-
tuitive. However, two experimental
observations should be noted. First, the
fact that the trajectory extends back in time before the occurrence
of a spike is consistent with data demonstrating that motor cor-
tical neurons exhibit somatosensory responses during passive
movement (Fetz and Cheney, 1980; Suminski et al., 2009). There-
fore, the negative time lags in the encoded trajectory may repre-
sent sensory effects on motor cortical discharge. Second, the
extended duration of the trajectory following the spike could be
explained by persistent inward currents that have been shown to
generate plateau potentials in motor neurons in the spinal cord that
extend for long periods of time even after inputs to the neurons are
terminated (Lee and Heckman, 1998; Heckman et al., 2003).

¥
e

Feature encoding

Multiple psychophysics studies have described the spatiotem-
poral dependencies between the kinematics that describe
reach-to-grasp behavior, focusing on hand transport and
grasp aperture measured between the thumb and index finger
(Jeannerod, 1984; Jakobson and Goodale, 1991; Paulignan et
al., 1991a,b, 1997; Haggard and Wing, 1998). This study ex-
tends the number of features that represent hand shape (i.e.,
26 grasp features) and transport (i.e., 14 reach features) during
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Spike history termsin the generalized linear model. A, The seven basis vectors of the raised cosines. The higher-numbered basis vectors were designed to represent effects over larger

time windows as they reflected spike history further back in time. B, Example spike train and associated seven spike history terms. Each term represents the original spike train convolved with its
respective hasis vector. The last row displays the velocity of the hand in the z-direction (elevation). The coefficients representing the spike history terms in the generalized linear model were built
using spike history data that were sampled before movement onset (gray box). C, Increase in predictive power compared with the mean AUCacross all terms, for each neuron. The models with spike
history terms at centers of 8and 12 ms were significantly higher (pairwise rank;, p << 0.05) than the models built with the other terms formonkey O (left). Only the model built with the spike history
term at 12 ms was significantly higher (pairwise rank,;, p << 0.05) than one other term for monkey A (right).
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movements surrounded by a proximal
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distal and proximal arm musculature.
Given that we encountered a plurality of 0
neurons that encoded both reach- and
grasp-related kinematics, these results
suggest that our electrode arrays tar-
geted this intermediate zone.

Among the grasp features, pronation
and supination of the wrist, along with
flexion and extension of the metacarpo-
phalangeal joints of the index and ring
fingers, accounted for more of the vari-
ance in spike rate modulation than other features. Interest-
ingly, we did not see a strong neural representation of thumb
movements. This may partially be due to the fact that mon-
keys, compared with humans, have a shorter thumb relative
to the length of the other fingers and make less use of it in the
prehensile movements we tested (Marzke, 1994). It may also

Figure 11.
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Predictive power of spike history versus kinematics. A, Actual spikes for 50 randomly selected trials of a neuron that
yielded significantly higher predictive power for the spike history model—see green circle in € (left). Spike predictions of the
kinematics model (middle) and predictions of the spike history model (right). B, same as A but for a neuron that yielded higher
predictive power for the kinematics model—see red circle in C. C, Predictive power of an encoding model with kinematic covari-
ates compared with the predictive power of an encoding model with spike history covariates for monkey 0 (left) and monkey A
(right). Each point in the scatter plot is a neuron.

indicate that the microelectrodes were not ideally placed to
record from thumb movement-related neurons. In terms of
the reach features, abduction/adduction and flexion/exten-
sion of the shoulder, flexion and extension of the elbow, and
hand velocity in the Y and Z directions accounted for more of
the variance in spike rate modulation than the other features.
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tory terms were built from data extracted
during the premovement period. We did
this on purpose to characterize the intrinsic
neural dynamics that are not confounded
with movement-related activity. In our pre-
vious study, the spike history terms could be
capturing movement-related activity and,
thus, unfairly inflating the predictive power
of spike history.

Prediction results

The median predictive power that could be
achieved with our encoding model was 0.58
in monkey O and 0.5 in monkey A, consis-
tent with the results we report for a similar
model, evaluated for an isolated grasping
task (Saleh et al., 2010). It is important to
note that in the previous study, the predic-
tive power was taken to be the AUC, which
takes a value between 0.5 and 1. In the cur-
rent study, the predictive power was calcu-
lated as 2 * AUC — 1, so that it could take on
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values between 0 and 1. The variability in
predictive power across neurons was quite
large, with values ranging between 0.22 and
0.89. This variability suggests that neurons
encode the tested intrinsic and extrinsic co-
variates to various extents. Neurons with
lower predictive power may be involved in
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Figure 12.  Testing for model generalization. A, Example neuron’s spike trains across trials while monkey reached for objects
(illustrated to the left) positioned in one location (from monkey 0). Trials are aligned on movement onset. B, Predicted firing rate
using a model that was built with all the training data. , Predicted firing rate using amodel that was built using only data from the
other four objects (omitted object, from top to bottom row, is represented by the illustration at the left and corresponds to the key
grip, the vertical D-ring (Vert D), the horizontal D-ring (Horiz D), the small D-ring and the sphere. D, Box plots showing median and
range of predictive power for full and restricted models for monkey O (left) and monkey A (right) across the two experiments. The
median predictive power for monkey 0 was 0.58, while the median predictive power for monkey A was 0.50.

Spike history

Though all spike history terms were significant for the majority of
neurons, the first and second terms, representing faster changes
in firing activity, on the order of 8—12 ms, tended to yield larger
increases in predictive power. The third to seventh terms repre-
sent slower changes in a neuron’s spiking history and may pro-
vide information that is redundant with the kinematics, which
occur on a similar time scale. We also show that a model built
with the kinematic trajectories alone consistently performed bet-
ter than a model built with just the spike history terms. This result
is somewhat inconsistent with those of our previous article, which
showed that a significant number of MI neurons yielded spike his-
tory models that performed better than the kinematic models for an
isolated grasping behavior (Saleh et al., 2010). There are two reasons
that likely explain this discrepancy. First, since the array was placed
in an area that represents both arm- and hand-related parameters, it
is possible that some of the neuronal variability unaccounted for
during isolated grasping could be accounted for during reach-to-
grasp movements, thus resulting in consistently stronger predictive
power from reach and grasp kinematics relative to spike history.
Second, unlike our previous study, the coefficients of the spike his-

other cortical functions that are not repre-
sented by the tested covariates.

Intermonkey differences

There were some interesting differences in
our results between the two monkeys.
First, monkey A had significantly more
neurons that were tuned to grasp kine-
matics than did monkey O. This may be
explained by the fact that monkey A’s ar-
ray was placed slightly more lateral and
closer to the sulcus than monkey O’s array
(Fig. 1D). According to several studies,
distal representations of the hand tend to be located closer to the
central sulcus and lateral to the proximal representations of the
arm (Kwan et al., 1978b; Strick and Preston, 1978; He et al., 1993;
Park et al., 2001). The somatotopy of MI would dictate that an
array that is placed closer to the center sulcus and more lateral,
like monkey A’s array, would record more neurons that are tuned
to distal features, so that monkey A’s higher density of grasp-
related neurons are compatible with this finding. Second, al-
though most restricted models built on a subset of objects
generalized quite well, the restricted model that was tested on the
data from the vertical D-ring object in monkey O did not perform
as well as the other restricted models. This may be explained by a
difference in movement strategies between the two monkeys. The
vertical D-ring elicited considerably more supination about the
wrist than any other object for monkey O, unlike monkey A.

Concluding remarks

By showing that MI neurons encode spatiotemporal patterns of ki-
nematics of the arm and hand that can be described by as little as five
principal components, our results support Bernstein’s classic notion
that the cortex simplifies the control of multiple degrees of freedom
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by coupling output variables at the kinematic level (Bernstein, 1967).
Though we show that using these kinematic synergies yields robust
predictions of single neuron responses tied to reach-to-grasp behav-
iors to different locations and objects, it remains to be examined how
these same synergies—and the neurons that encode them— con-
tribute to other upper limb behaviors (Tresch and Jarc, 2009). Fu-
ture studies might investigate how MI neurons control other
ethologically relevant movements like climbing or feeding (Macfar-
lane and Graziano, 2009). It also remains to be tested how popula-
tions of neurons work together to encode ethologically relevant
movements along with finer adjustments, such as those observed in
response to perturbations of a planned movement (Paulignan et al.,
1991a,b; Haggard and Wing, 1995).
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