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Individual risk preferences have a large influence on decisions, such as financial investments, career and health choices, or gambling.
Decision making under risk has been studied both behaviorally and on a neural level. It remains unclear, however, how risk attitudes are
encoded and integrated with choice. Here, we investigate how risk preferences are reflected in neural regions known to process risk. We
collected functional magnetic resonance images of 56 human subjects during a gambling task (Preuschoff et al., 2006). Subjects were
grouped into risk averters and risk seekers according to the risk preferences they revealed in a separate lottery task. We found that during
the anticipation of high-risk gambles, risk averters show stronger responses in ventral striatum and anterior insula compared to risk
seekers. In addition, risk prediction error signals in anterior insula, inferior frontal gyrus, and anterior cingulate indicate that risk
averters do not dissociate properly between gambles that are more or less risky than expected. We suggest this may result in a general
overestimation of prospective risk and lead to risk avoidance behavior. This is the first study to show that behavioral risk preferences are
reflected in the passive evaluation of risky situations. The results have implications on public policies in the financial and health domain.

Introduction
To a great extent, our decision behavior is determined by indi-
vidual preferences. We all prefer higher rewards over lower re-
wards, but the picture is less clear when it comes to risk. In
decision making under risk, outcomes are not certain but occur
with known probabilities. Suppose a decision maker has a choice
between a sure payout of €10 and a risky lottery that pays €25 with
a probability of 50% and €0 otherwise. Here, the decision maker
faces a trade-off between the higher expected reward of the lottery
and the lower risk (the variance of outcomes) of the sure payout.
This trade-off is captured by economic models of choice under
risk. The trade-off may be explicit as in the mean–variance ap-
proach (Markowitz, 1952) or implicit as in prospect theory
(Tversky and Kahneman, 1992). These models, when applied to
choice behavior, reveal a wide range of individual preferences
toward risk. These preferences (risk aversion, risk seeking) are
reflected in our daily lives and may lead to suboptimal choices in
health, investment, and career decisions (Guiso and Paiella, 2005;
Dohmen et al., 2011). Although risk preferences are very hetero-
geneous across domains, they can be well predicted within do-
mains by experimental measures (Weber and Hsee, 1998; Blais
and Weber, 2006). In this regard, various disciplines could ben-

efit from the experimental investigation of risk preferences. Un-
derstanding how economic risk preferences are integrated in the
cognitive mechanism underlying decision making under risk, for
instance, may help us to improve investment strategies that not
only aim at the highest possible return, but take into account how
much risk the investor might tolerate. We therefore seek to un-
derstand whether risk preferences are reflected in the neural cor-
relates of risk.

In the example above, risk is present during the choice (“de-
cision risk”), and, if the lottery is chosen, after the choice while
the decision maker is awaiting the lottery’s outcome (“anticipa-
tion risk”) (Mohr et al., 2010). For decision risk, risk preferences
have been associated with neural responses: risk-seeking people,
for instance, are characterized by a lack of prefrontal inhibition of
risk-taking behavior (Gianotti et al., 2009). But it remains largely
unknown how risk preferences are reflected in the neural corre-
lates of anticipation risk, i.e., during the passive anticipation and
the subsequent realization of risky outcomes (Preuschoff et al.,
2006). In previous studies we showed that the ventral striatum
and anterior insula reflect anticipation risk (Preuschoff et al.,
2006; Preuschoff et al., 2008). When the risky gamble is resolved,
the deviation of the anticipated risk from the actual outcome
variance results in a “risk prediction error.” This risk prediction
error has been located in the anterior insula and the inferior
frontal gyrus (IFG) (Preuschoff et al., 2008). Here we ask whether
individual risk preferences are reflected in these representations.

Materials and Methods
Subjects. A total of 66 healthy subjects participated in the study. Three
subjects were excluded due to technical errors during magnetic reso-
nance image acquisition. Seven subjects did not meet the selection crite-
rion that demanded a correct report of the outcome on at least 90% of all
trials in the gambling task. The remaining 56 subjects (27 women; mean,
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25.4 � 3.2 SD years) answered correctly on a mean of 96.3 � 2.54% SD of
all trials. They won on a mean 50 � 4.64% SD of all trials.

Risk preference measure. To determine a subject’s risk type (risk averse,
risk neutral, risk seeking), we elicited certainty equivalents (CEs), i.e., the
lowest sure amount of money a subject prefers over playing a lottery. For
this, subjects were presented with 15 binary choices between a sure win
(increasing from 1 to 15 points) and a 50% chance lottery of winning 16
points or nothing (Dohmen et al., 2011). Initially, all subjects preferred
the lottery. The choice at which subjects switched to the sure win defines
the CE. The CE is monotonic— but typically not linear—in risk prefer-
ences as measured by different economic models. As such, this measure
allows us to identify risk averters, risk neutrals, and risk seekers in a
model-independent manner. Figure 1 illustrates that the distribution of
CE values in our sample is skewed in a way that single CE values above the
lottery’s expected value are overrepresented; in addition to the nonlin-
earity assumption regarding the CE, the skewed CE distribution further
supports the use of the risk type as a between-subject factor in the sub-
sequent analysis of the imaging data.

Basic economic theory defines subjects who prefer the safe option
when faced with a fair gamble as risk averse and those who are indifferent,
i.e., they are equally likely to choose the safe option or to gamble, as risk
neutral. Applied to the iterative binary-choice lottery paradigm used in
this study, risk averters switch to the safe option before the sure win
reaches the lottery’s expected value (CE, �8; Fig. 1). Subjects who are
indifferent about the fair gamble, i.e., they either choose the safe option
(CE, 8) or gamble and switch at the next choice (CE, 9), are defined as risk
neutral. Subjects who choose to gamble beyond that (CE, �9) are defined
as risk seeking. For the main analyses, data from risk-averse and risk-
neutral subjects were combined (n � 37) and compared with risk-
seeking subjects (n � 19). To see whether we could replicate the effects
with only the extreme risk preference types, we excluded all risk-neutral
subjects. For an exploratory analysis, we also compared all three types: 11
risk-averse, 26 risk-neutral, and 19 risk-seeking subjects.

Before answering the lottery questionnaire, subjects were informed
that, in addition to their win from the gambling task, 1 of the 15 lotteries
would be randomly chosen and paid off with 1 point representing €0.50.
On average, participants won a mean €4 � 3.51 SD in the lottery task.

fMRI gambling task. The event-related functional magnetic resonance
imaging (fMRI) paradigm consisted of a simple card gambling task
(Preuschoff et al., 2006) (Fig. 2). In this task, participants first place a bet
on whether a second presented card will be higher or lower than the first
card. Then they watch the two cards being consecutively drawn from a
randomly shuffled deck of 10 nonface spade cards, ranging from ace to
10. With display of the first card, the expected reward is updated and

results in a reward prediction error. Similarly, the anticipation risk, i.e.,
the expected outcome variance, is updated and results in a risk prediction
error. The updated anticipation risk maintains until the second card is
shown and the gamble is resolved, which results in another risk predic-
tion error. At the same time, a reward prediction error occurs if the
expected reward deviates from the actual gamble outcome. Finally, par-
ticipants are asked to indicate whether they have won or lost the gamble
to control for attention. Participants who failed to report the correct
outcome on at least 90% of all trials were excluded.

Within-trial sequences were randomized without replacement. Pseu-
dorandomization of between-trial sequences ensured a relatively wide
range of outcome probabilities and outcome variances as well as the
exclusion of repetition trials. Each participant played three sessions with
30 trials each, always starting off with an initial balance of €25. One euro
was at stake in each trial. To reduce wealth effects participants were
informed that one of the three sessions would be randomly chosen at the
end of the experiment and that the associated winning balance would be
paid off. If payments came to �€10 per hour (including payoff from the
lottery task; see above), the difference was compensated for.

MRI data acquisition. All MRI sessions were run on a Siemens Trio 3.0
T scanner with a standard eight-channel head coil. Structural scans in-
cluded T1-weighted images (TR, 1570 ms; TE, 3.42 ms; flip angle, 15°; 1
mm slices). Three functional sessions were run, each of which started off
with a localizer scan followed by the gambling paradigm implemented in
Presentation (Neurobehavioral Systems; http://www.neurobs.com) dur-
ing which T2*-weighted echoplanar images were collected (TR, 2500 ms;
TE, 33 ms; flip angle, 90°; 33 2 mm slices in ascending order; field of view,
230 mm; voxel size, 1.8 � 1.8 � 2.0 mm; �288 volumes per session).

fMRI data preprocessing. Preprocessing of the functional images was
implemented in the MATLAB based (MathWorks) software Statistical
Parametric Mapping 5 (SPM5; http://www.fil.ion.ucl.ac.uk/spm) and in-
cluded realignment, coregistration, slice timing correction, and spatial
smoothing with an 8 mm filter as well as normalization on the MNI
standard (Evans et al., 1993) (http://www.bic.mni.mcgill.ca).

fMRI data analyses. The statistical analyses of the fMRI data in SPM8
were based on five general linear models (GLMs; 1–5). In short, GLM 1
uses parametric modulations of the risk regressors. GLMs 2 and 3 model
anticipation risk and risk prediction error, respectively, as a five-level factor
(one for each possible risk or error value). GLMs 4 and 5 model
anticipation risk and risk prediction error, respectively, as a two-level
factor based on categories of high and low risk, and positive and
negative errors. All GLMs were estimated using a hemodynamic re-
sponse function and a high-pass filter of 128 Hz as well as correction
for autocorrelations and will be described in more detail below.

GLM 1 includes parametrically modulated regressors of interest for
risk prediction error and anticipation risk and was set up to run random
effects analyses at the group level to locate the mean neural sensitivities to
each regressor of interest (cf. Preuschoff et al., 2006, 2008). For this GLM,
we divided the onset regressor at Card 1 into a short epoch of 1 s and a
long anticipatory epoch of �6 s, depending on the jittered interval until
the onset of Card 2. As a whole, the GLM includes the modulating pa-
rameters expected reward and risk prediction error at onset of Card 1,
risk prediction during the long epoch in anticipation of Card 2 (antici-
pation risk), and risk prediction error and outcome (win or loss) at Card
2. As nuisance regressors we used visual and motor activation during bet
and attention check, and individual movement regressors. Table 1 gives
an overview of all mathematical parameters, Table 2 shows how the
parameters of interest correspond to reward probability at Card 1. For
more details, the reader is referred to Preuschoff et al. (2008). Single-
subject contrasts were computed for the parametrically modulated re-
gressor for risk prediction error at Card 1 and anticipation risk. These
contrasts were then tested in separate random effects analyses (one-
sample t tests) at the group level. We applied a voxelwise statistical
threshold of p � 0.05 and corrected for multiple comparisons based on
familywise error (FWE) control for the whole-brain volume. Based on
previous findings, we expected to find activations in ventral striatum and
anterior insula for anticipation risk (Preuschoff et al., 2006, 2008) (Table
3), and activations in anterior insula and inferior frontal gyrus for risk
prediction error (Preuschoff et al., 2008) (see Table 5).

Figure 1. Distribution of CEs in the sample. The CE is the lowest safe payment a subject
prefers over playing a lottery. The difference between the CE and the lottery’s expected value
(EV; indicated by the dashed line) is used to infer subjects’ risk preferences. Columns are shaded
in gray for risk averters and white for risk seekers. The diagonal line pattern indicates risk-
neutral subjects who were indifferent around the EV.
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To illustrate how the estimates of the blood oxygen level-dependent
(BOLD) activation in our sample correspond to the anticipation risk
values and the risk prediction error values, respectively, GLM 1 was
modified in two ways: in GLM 2, the anticipatory epoch before Card 2
was modeled by five separate onset regressors for each anticipation risk
level; in GLM 3 the onset of Card 1 was modeled by five separate onset
regressors for each risk prediction error value (Table 2). Next, we ex-
tracted the mean � estimates for each regressor and each subject using a
10 mm sphere around the group peak voxels from the previous random

effects analyses (for coordinates, see Tables 3, 5). Finally, we averaged the
� estimates across all subjects and plotted the overall mean estimates
against the anticipation risk values (Fig. 3) and the risk prediction error
values (see Fig. 5). Note that these � estimates were only used for descrip-
tive plots.

To test whether the individual CE is reflected in the mean BOLD
sensitivity toward anticipation risk and risk prediction error, we included
the CE as a covariate in the above described one-sample t tests on the
respective modulated regressors from GLM 1. For each covariate analy-
sis, we applied a statistical threshold of p � 0.05, FWE corrected for a
priori-defined regions of interest (Tables 3, 5). To avoid circular infer-
ences, we defined these regions of interest based on activation peaks
reported in previous studies: we used 10 mm spheres around coordinates
of ventral striatum and anterior insula in tests of anticipation risk (Table
3) (Preuschoff et al., 2006, 2008) and coordinates of anterior insula and

Figure 2. Time line of the gambling paradigm. Participants start off with an initial endowment of €25. In 30 trials they first place a bet of €1 on whether the second card will be higher or lower
than the first card. After placing the bet, they watch the first card being drawn, followed 6 s later by the second card. Finally, they are asked to indicate whether they have won or lost the gamble.
With display of the first card, risk is partially resolved, and a risk prediction error occurs. The anticipation risk is maintained until display of the second card, when the gamble is resolved.

Table 1. Formal definitions and numerical examples of reward and risk predictions
assuming the subject bets “lower”

Term and definition Example

Expected reward at Card 1
Pi � E�P2 � p * 1 � (1 	 p) *

(	1)
5/9 * 1 � 4/9 * (	1) � 1/9

Anticipation risk before Card 1 (con-
stant)

EP1
2 1/10 * [(	1)2 � (	7/9)2 � (	5/9)2 � . . . �

1] � 33/81
Risk prediction error at Card 1

P1
2 	 EP1

2 (1/9)2 	 33/81 � 	32/81
Anticipation risk before Card 2

E(P2 	 P1 )2 5/9 * (8/9)2 � 4/9 * (	10/9)2 � 80/81
Outcome at Card 2

P2 � {1, 	1} 1
Risk prediction error at Card 2

(P2 	 P1 )2 	 E(P2 	 P1 )2 (8/9)2 	 80/81 � 	16/81

The first card is a 6, the second card is a 2 (Fig. 2). P denotes the reward probability based on the bet and the value of
Card 1. Pi denotes the reward information revealed at card i. E�x
 denotes the expected value of a given parameter
x.

Table 2. Overview of decision parameters after display of Card 1

Reward probability p
at Card 1

Risk prediction error
at Card 1

Anticipation risk
before Card 2

1 0.59 0
0.89 0.20 0.40
0.78 	0.10 0.69
0.67 	0.30 0.89
0.56 	0.40 0.99
0.44 	0.40 0.99
0.33 	0.30 0.89
0.22 	0.10 0.69
0.11 0.20 0.40
0 0.59 0

The table shows how the 10 possible reward probabilities at Card 1 correspond to the parameter values for risk
prediction error and anticipation risk, rounded to two decimal places.
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inferior frontal gyrus in tests of risk prediction error (see Table 5)
(Preuschoff et al., 2008).

In addition to the mean sensitivity as captured by the parametrically
modulated regressors, we were particularly interested in how risk prefer-
ences are integrated in low- and high-risk conditions as well as in negative
and positive risk prediction errors. Based on time course analyses on the
current and previous data sets (cf. Preuschoff et al., 2008), we argue that
these categories can be related to separate cognitive processes that evoke
distinct BOLD signals and can thus be used as meaningful regressors in a
GLM. To accommodate for the mixed within- and between-subject de-
sign in the same group-level analysis, we used factorial designs. As a
between-subject factor, we used the subjects’ risk preference type because
the underlying CE values are assumed to be nonlinear with risk prefer-
ences and because the distribution of CE values in our sample is skewed
(see above, Risk preference measure). The within-subject factors were
modeled by categories of low and high anticipation risk, and negative and
positive risk prediction error, respectively. Table 2 illustrates how the
anticipation risk values correspond to reward probability p: the two
lower anticipation risk values were merged to the category “low risk”
(corresponding to p � 0.3, or 0.7 � p), and the two upper anticipation
risk values were merged to the category “high risk” (corresponding to
0.3 � p � 0.7). Trials with zero risk were excluded because they represent
reward information independent from risk. Based on these categories, we
generated GLM 4 for each subject, which included a regressor for low-
and high-risk trials, respectively, again including all of the other
above-mentioned regressors of no interest. Single-subject contrasts
were computed for low and high anticipation risk and entered into a
group-level analysis. On second level, we ran a two-by-two ANOVA with
a between-subject factor risk preference (averse and seeking) and a
within-subject factor anticipation risk (low and high). The ANOVA was
designed as a flexible factorial model with an internal replication factor
for the subjects. We first combined the data from risk-averse and risk-
neutral subjects (n � 36) and compared them with risk-seeking subjects
(n � 19), and then replicated the effect with only the extreme risk pref-
erence types (11 risk averters and 19 risk seekers) after excluding all
risk-neutral subjects (Fig. 1). In both cases we tested the interaction and
applied a threshold of p � 0.05, FWE corrected for the a priori-defined
regions of interest (Table 3).

The same procedure was repeated to test how risk preferences are
reflected in negative and positive risk prediction errors. The risk predic-
tion error is negative when the current risk is smaller than expected and
positive when the current risk is larger than expected. We generated GLM
5, which included a regressor for negative risk prediction errors (corre-
sponding to p � 0.2, or 0.8 � p) and positive risk prediction errors at
Card 1 (corresponding to 0.2 � p � 0.8), as well as the above mentioned
regressors of no interest Table 2 illustrates how the risk prediction error
values correspond to reward probability. Similar to the group-level anal-
ysis on GLM 4, we ran a two-by-two ANOVA with between-subject

factor risk preference (averse and seeking) and within-subject factor risk
prediction error (negative and positive). The analysis was done for the
combined dataset from risk-averse and risk-neutral subjects and then
replicated without risk-neutral subjects. Again, we tested for an interac-
tion and applied a threshold of p � 0.05, FWE corrected for the a priori-
defined regions of interest (see Table 5). To show the nature of the
interaction effects from both factorial analyses, we then extracted the �
estimates as follows. For each subject, we identified the peak voxel with
the maximum Z-score within the above-described regions of interest in
the single-subject contrast images for low and high anticipation risk
separately, as estimated in GLM 4 (the same for negative and positive risk
prediction errors as modeled in GLM 5). Next, we extracted the � value
that corresponded to the specific peak voxel. Then, we averaged the
individual � estimates across risk-averse and risk-seeking subjects sepa-
rately and plotted the respective mean estimates against low and high risk
(Fig. 4) and negative and positive risk prediction errors (Fig. 6). These
plots aim to illustrate the nature of the two-by-two interaction effects
supported by the above described inferential statistics. Note that the
individual peak voxel selection was based on the separate contrasts of low
and high anticipation risk (negative and positive risk prediction errors)
and is not biased by the interaction effect shown on group level or by a
main effect of high risk being greater than low risk.

To see whether we could find a similar interaction effect of the risk
preference types across all five levels of anticipation risk and risk predic-
tion error, we ran two three-by-five factorial analyses based on GLM 2
and GLM 3. Because these analyses divide the original parametrically
modulated regressors from GLM 1 into five separate onset regressors that
essentially model the same cognitive process, the regressors are not per-
fectly independent and their power to explain meaningful variance in the
BOLD signal decreases significantly. Also, some of the risk values were
less likely to occur in the experimental paradigm than others. As a con-
sequence, the subject groups are not equally represented in each regres-
sor, especially for the extreme risk prediction error values. We were thus
concerned that the five onset regressors in GLMs 2 and 3 would under-
estimate the BOLD signal across the increasing risk values, and we there-
fore refer to these analyses as exploratory. The first exploratory analysis
used the single-subject contrasts for five levels of anticipation risk as
modeled in GLM 2. At the group level, we ran a three-by-five ANOVA
with a between-subject factor risk preference (averse, neutral, seeking)
and a within-subject factor anticipation risk (0, 0.4, 0.69, 0.89, 0.99). The
same procedure was repeated in the second exploratory analysis in which
we used the single-subject contrasts for five levels of risk prediction error
as modeled in GLM 3. We ran a three-by-five ANOVA with a between-
subject factor risk preference (averse, neutral, seeking) and a within-
subject factor risk prediction error (	0.4, 	0.3, 	0.1, 0.2, 0.59). In both
cases we tested for a linear parametric interaction and applied FWE
correction to the regions of interest at p � 0.05 (Tables 3, 5). For descrip-
tive purposes, we extracted the individual mean � estimates as described
for GLM 2 and GLM 3 above, averaged them for each risk type, and
plotted them together with the overall average in Figures 3 and 5.

Risk-learning simulation. To obtain a qualitative picture of the impact
that asymmetrically represented risk prediction errors have on prospec-
tive risk perception, we implemented a simple reinforcement learning
algorithm for risk. The algorithm is based on the assumption that risk
learning parallels reward learning in that risk perception is updated with
every risk prediction error. We simulated 1000 consecutive trials for two
groups of subjects and two levels of risk: a low-risk condition with a small
expected outcome variance and a high-risk condition with a high ex-
pected outcome variance. In the subject group “risk seekers” (1), the
current risk estimate is correctly increased or decreased after positive or
negative risk prediction errors, respectively. In the subject group “risk
averters” (2), any negative risk prediction errors are underweighted by
20%, and thus the subsequent risk estimate is maladjusted. An illustra-
tion of this risk-learning simulation can be seen in the inset of Figure 4.

Statistical analyses of behavioral data. The reaction times during the
fMRI gambling task and the exact stimuli sequence of each trial were
logged by the Presentation software and then analyzed in MATLAB.
Two-sample t tests were run to compare (1) the sum of switch trials with
that of stay trials and (2) the reaction times after losing with those after

Table 3. Regions positively correlated with anticipation risk (i.e., expected
outcome variance)

MNI coordinates

Cluster size kE Max. tRegion Laterality x y z

Ventral striatum L 	9 12 	3 145 10.00*
From Preuschoff et al. (2006) (	10) (	3) (	4)

R 9 9 	3 112 9.21*
12 	3 	4

Anterior insula L 	30 24 3 104 10.16*
From Preuschoff et al. (2006) (	30) (21) (11)
From Preuschoff et al. (2008) (	31) (22) (10)

R 39 21 0 109 8.80*
From Preuschoff et al. (2006) (31) (24) (11)
From Preuschoff et al. (2008) (33) (21) (10)

Results from the random effects analysis are shown, and regions of interest for small-volume correction (with a
sphere of 10 mm) as reported by Preuschoff et al. (2006, 2008) are shown in parentheses. Height threshold, t �
5.28; extent threshold, 100 voxels.

*p � 0.05 (activation survives whole-brain correction for multiple comparisons based on FWE control at the peak
level).
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winning a gamble. Paired t tests were used to test whether the sum of
switch trials differed with respect to the preceding gamble outcome. Data
from risk-averse and risk-neutral subjects were combined for this analy-
sis and compared with risk-seeking subjects.

Results
Neuroimaging results
Increased anticipation risk signal reflects risk aversion
First, to identify the regions that process risk during the anticipa-
tion of the outcome, we tested the associated single-subject con-
trasts estimated in GLM 1 in a one-sample t test at the group level.
We confirmed that bilateral ventral striatum as well as anterior
insula code for anticipation risk (p � 0.05, FWE corrected for
whole-brain volume; Fig. 3; Table 3). The right panel in Figure 3
was derived from GLM 2 for descriptive purposes; it illustrates
that the mean activation in these regions increases linearly with
anticipation risk.

Second, to test whether the individual CE is reflected in the
mean neural sensitivity to anticipation risk in the regions of in-
terest (Table 3), we added the CE as a covariate to the one-sample
t test. We applied FWE correction at p � 0.05 to the regions of
interest and found no correlation of the CE with the mean sensi-
tivity to anticipation risk.

Third, we were particularly interested in the interaction
between neural sensitivities to low and high anticipation risk
and the individual risk preference, i.e., whether a subject is risk

averse or risk seeking. Based on time course analyses reported
elsewhere (Preuschoff et al., 2008), we argue that low- and
high-risk trials can be related to independent cognitive pro-
cesses that evoke distinct BOLD signals, and can thus be mod-
eled as separate regressors in a GLM. Contrast images for low
and high anticipation risk were estimated in GLM 4, and their
interaction with the risk preference type (risk averters and risk
neutrals compared to risk seekers) was tested in a mixed
within- and between-subject two-by-two ANOVA. The a
priori-defined target regions that are reported in Table 3
(Preuschoff et al., 2006, 2008) reveal a significant interaction
effect ( p � 0.05, FWE corrected for small volumes; Table 4).
Figure 4 illustrates the nature of this two-by-two interaction:
when anticipating high-risk gambles, risk averters show a
stronger BOLD response in ventral striatum and anterior in-
sula compared to risk seekers. This interaction effect remained
significant in all regions of interest after we excluded risk-
neutral subjects ( p � 0.05, FWE corrected for small volumes).
Moreover, the regions of interest showed a main effect of risk
aversion (risk averters � risk seekers; p � 0.05, FWE corrected
for small volumes).

To confirm this interaction effect across all five levels of antic-
ipation risk, we tested the contrast images estimated in GLM 2 for
a linear parametric interaction with all three risk preference types
in a three-by-five ANOVA. Because we were concerned that the

Figure 3. Anticipation risk coding. Neural activation in bilateral ventral striatum (vStr; top) and anterior insula (aIns; bottom) during anticipation of the second card that correlates with
anticipation risk, i.e., expected outcome variance. The figures (left) show statistical parametric maps of the random effects analysis, color coded for the t values as indicated by the color bar ( p�0.05,
FWE corrected for whole-brain volume). The graphs (right) show mean � estimates in the respective structures plotted against five anticipation risk values, averaged over all subjects and for each
risk preference type individually. On average, neural responses are lowest for sure wins and losses and highest for trials with uncertain outcomes. Risk-averse and risk-neutral subjects show greater
responses to higher risk values than risk-seeking subjects.
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regressors in GLM 2 were not indepen-
dent and would underestimate the linear
effect of anticipation risk in the BOLD sig-
nal, we refer to this analysis as explor-
atory. The results support our previous
finding: all regions of interest showed a
significant interaction effect (p � 0.05,
FWE corrected for small volumes; Table
4). Figure 3 illustrates that risk averters
and risk neutrals show a stronger increase
of the BOLD signal with increasing risk
levels compared to risk seekers.

Risk averters show an elevated risk
prediction error signal
Next, we tested for the BOLD effect of risk
prediction error at Card 1 in the associ-
ated contrast images estimated in GLM 1
in a one-sample t test over all subjects. We
found BOLD activation in bilateral ante-
rior insula, bilateral IFG, the anterior cin-
gulate cortex (ACC), and bilateral ventral
striatum (p � 0.05, FWE corrected for
whole-brain volume; Fig. 5; Table 5). The
plot in the right panel of Figure 5 is based
on contrast images from GLM 3; it was
generated for descriptive purposes and il-
lustrates that mean activation estimates in
the indicated brain structures increase lin-
early with risk prediction error.

We then included the individual CE as
a covariate in the one-sample t test and
applied a threshold of p � 0.05, FWE corrected for the regions of
interest (Table 5). We found a correlation of the CE with the
mean sensitivity to risk prediction errors in a single voxel in the
left ventral striatum. Because this effect is most likely driven by
the skewed CE distribution in our sample, which causes an over-
representation of higher CE values, we refrain from interpreting
this result.

Finally, we were interested in the interaction between the neu-
ral sensitivities to negative and positive risk prediction errors and
the individual risk preferences. Time course analyses in previous
studies (cf. Preuschoff et al., 2008) suggest that these categories
evoke distinct BOLD signals and can be used as separate regres-
sors. The corresponding contrast images estimated in GLM 5
were entered into a two-by-two ANOVA to test for an interaction
of the risk preference type (risk averters and risk neutrals com-
pared to risk seekers) and risk prediction errors (negative and
positive). All a priori-defined search volumes that are reported in
Table 5 (Preuschoff et al., 2008), i.e., bilateral anterior insula and
right IFG, showed a significant interaction effect (p � 0.05, FWE
corrected for small volumes; Table 6). In a test on whole-brain
activation, the ACC showed the same interaction effect (p � 0.05,
FWE corrected for whole-brain volume). The plots of peak �
activations in Figure 6 help us to understand the nature of this
interaction: risk seekers respond more to positive than to nega-
tive risk prediction errors. Risk averters, by contrast, respond
with an elevated, but equally strong BOLD signal to both negative
and positive risk prediction errors. After we excluded the subjects
who were indifferent around the lottery’s expected value (Fig. 1),
we found the same interaction effect in right IFG and ventral
striatum at a threshold of p � 0.005 (uncorrected). At the same
threshold, the bilateral anterior insula, right IFG, ACC, and ven-

tral striatum also showed a main effect of risk aversion (avert-
ers � seekers).

In an additional analysis, we wanted to confirm the interac-
tion of risk preference types across all five levels of risk prediction
error in a three-by-five ANOVA. Because the regressors in GLM 3
are not perfectly independent and the model might underesti-
mate the linear BOLD effect across the risk prediction error val-
ues, we refer to this analysis as exploratory. In line with our
previous results, we find a linear parametric interaction effect in
the IFG (FWE corrected at p � 0.05 for a priori-defined search
volumes; Table 5), in the right anterior insula (FWE corrected at
p � 0.05 for the whole-brain volume), and in the left anterior
insula and the ACC at a threshold of p � 0.001 (uncorrected;
Table 6). The plots in Figure 5 show that risk-averse subjects have
a generally elevated BOLD signal compared to risk-seeking sub-
jects, whereas risk seekers show a stronger increase across the risk
prediction error values.

Risk-learning simulation
To understand how an asymmetric representation of positive
and negative risk prediction errors would influence the eval-
uation of prospective risk, we simulated a simple risk-learning
model. The risk-seekers algorithm (1) incorporated the cor-
rect adjustment of the current risk estimate with every en-
countered risk prediction error. The risk-averters algorithm
(2) included a nonsufficient decrease of the current risk esti-
mate with every negative risk prediction error (Fig. 6). The
inset in Figure 4 illustrates that the impact of asymmetric risk
prediction error representations (Algorithm 2) on risk predic-
tion changes with the experienced risk level: a disproportion-
ate representation of negative risk prediction errors leads to an

Figure 4. Interaction effect of risk preferences and anticipation risk coding in a two-by-two ANOVA. During high-risk trials, the
neural response to anticipation risk is stronger in risk averters than in risk seekers (interaction effect, p � 0.05, FWE corrected for
small volumes). Plots show the mean (M) and SE of the individual peak � estimates within the indicated search volume. Data from
risk-averse and risk-neutral subjects were combined for these plots. The inset (right) illustrates subjective risk estimates based on
a simple reinforcement learning model using asymmetric risk prediction errors. This model predicts the interaction effect that we
observe for anticipation risk and risk preferences. vStr, Ventral striatum; aIns, anterior insula.
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even greater overestimation of prospective risk under high-
risk conditions than under low-risk conditions.

Behavioral results
We also analyzed subjects’ behavior at the time of placing the bet
in the gambling task. Notably, the task was designed so that stra-
tegic behavior would not improve the potential outcome
(Preuschoff et al., 2006). The total number of switch compared to
stay trials, i.e., how often the subjects change their bet as opposed
to repeatedly choosing the same bet, did not differ significantly

(t(55) � 	1.328; p � 0.19). Overall reaction times when placing
the bet were independent from the previous gamble outcome
(t(55) � 0.712; p � 0.48). When we investigated the risk prefer-
ence groups separately (combining data from risk averters and
risk neutrals in line with the main fMRI analyses), though, we
found that risk-averse subjects are unaffected by preceding out-
comes, whereas risk seekers change their bet significantly more

Figure 5. Risk prediction error coding. Neural activation in bilateral anterior insula (aIns; top), ACC, and vStr (bottom) correlate positively with deviations from previous risk predictions, i.e., risk
prediction error. The figures (left) show statistical parametric maps of the random effects analysis, color coded for the t values as indicated by the color bar ( p � 0.05, FWE corrected for whole-brain
volume). The graphs (right) show mean � estimates in the respective structures plotted against five risk prediction error values, averaged over all subjects and for each risk preference type
individually. On average, neural responses increase linearly with risk prediction error. Risk-averse subjects respond more strongly than risk-seeking subjects to any risk prediction error.

Table 4. Regions positively correlated with the interaction of risk preferences and
anticipation risk

MNI coordinates

Cluster size kE Max stat tRegion Laterality x y Z

Ventral striatum L 	12 6 	6 16 4.32*
(	9) (6) (0) (9) (4.28)*

R 12 6 0 12 3.31*
(9) (6) (	3) (5) (3.39)*

Anterior insula L 	30 24 9 58 3.95*
(	24) (24) (6) (8) (3.43)*

R 33 24 9 56 4.44*
(36) (24) (9) (12) (3.31)*

Results from the two-by-two ANOVA are shown. Data from risk-averse and risk-neutral subjects were combined for
this analysis. Results from the exploratory three-by-five analysis are shown in parentheses. Inclusion threshold, t �
2.62 (2.59).

*p � 0.05. The activation survives small-volume correction for multiple comparisons based on FWE control at the
peak level for a priori-defined regions of interest as reported by Preuschoff et al. (2006, 2008) (Table 3).

Table 5. Regions positively correlated with risk prediction error

MNI coordinates

Cluster size kE Max stat tRegion Laterality x y z

Anterior insula L 	33 21 	9 445 12.82*
From Preuschoff et al. (2008) (	31) (15) (	2)
Superior temporal gyrus 	27 15 	21 8.34*
Inferior frontal gyrus 	48 15 3 7.20*
Anterior insula R 33 24 	6 632 12.50*
From Preuschoff et al. (2008) (32) (16) (	3)
Superior temporal gyrus 48 21 3 8.88*
Inferior frontal gyrus 51 36 	9 7.28*
From Preuschoff et al. (2008) (48) (17) (18)
Anterior cingulate cortex L 	6 33 27 709 9.97*

R 9 36 24 8.49*
Ventral striatum, caudate L 	9 0 3 209 7.79*

R 6 	3 3 7.06*

Results from the random effects analysis are shown, and regions of interest for small-volume correction (with a
sphere of 10 mm) as reported by Preuschoff et al. (2008) are shown in parentheses. Height threshold, t � 5.27;
extent threshold, 100 voxels.

*p � 0.05 (activation survives whole-brain correction for multiple comparisons based on FWE control at the peak
level).
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often after losing than after winning a gamble (t(18) � 	6.263;
p � 0.006) and are slower when switching their bet (t(18) �
	2.606; p � 0.018).

Discussion
We examined the effects of individual risk preferences on the
neural coding of risk with a combination of an fMRI gambling

paradigm and a behavioral lottery task. We found that risk aver-
sion covaries with an increased anticipation risk signal in the
ventral striatum and anterior insula. Moreover, risk aversion is
reflected in an elevated response to negative risk prediction errors
in anterior insula, IFG, and ACC. Both risk evaluation signals
occur independent of choice, thus implying automatic cognitive
processes.

The ventral striatum has been reported to code for expected
reward and the corresponding reward prediction error on the one
hand (Schultz et al., 1997; Knutson et al., 2001; Preuschoff et al.,
2006) and anticipation risk on the other (Fiorillo et al., 2003;
Preuschoff et al., 2006). It is important to note that anticipation
risk, i.e., the expected outcome variance, also plays a significant
role in reward learning because it represents a predictability mea-
sure (Preuschoff and Bossaerts, 2007). In other words, in an un-
certain, highly variable environment, a deviation from the
forecast is not surprising. Under low risk conditions, though,
where the outcome can be predicted with high confidence, any
prediction error is much more informative and should thus have
more impact. On a neural level, the sustained anticipation risk
signal in the ventral striatum may serve as such an amplifier for
the subsequent reward prediction error.

The anterior insula, in contrast, is involved in risk learning
(Preuschoff et al., 2008). Our study shows that the anterior insula
reflects both anticipation risk and the corresponding risk predic-
tion error. This is an important function because only under
uncertain conditions (e.g., risk) can an organism experience pre-
diction errors and thus learning (Rescorla and Wagner, 1972).
Hence, both risk-seeking and risk-averse behavior can be appro-
priate at times. The choice of which risk behavior to engage in is
likely to depend on the individual risk evaluation. Our results
show that the individual risk behavior indeed corresponds to
differential evaluation and updating of risk information. In risk
averters, the response to negative risk prediction errors is ele-
vated, implying that negative errors are not perceived as strongly
(i.e., as negatively) as in risk seekers. Interestingly, this can be
reconciled with the finding that risk averters show a stronger
response in high-risk situations. Assume that risk learning paral-
lels reward learning in that risk is updated based on past risk
prediction errors. A decision maker who places too little empha-
sis on negative as compared to positive risk prediction errors will
on average overestimate risk because she or he does not suffi-
ciently reduce her or his estimate after experiencing negative er-
rors. This effect is stronger for high-risk than for low-risk
situations as seen in the inset of Figure 4, which qualitatively
resembles our results. As such, a simple reinforcement learning
model using asymmetric risk prediction errors predicts the inter-
action effect that we observe for anticipation risk and risk prefer-
ences in anterior insula.

In addition, the anterior insula has been associated with the
representation and updating of internal body states (Paulus and
Stein, 2006) as well as the anticipation of aversive stimuli (Yágüez
et al., 2005). An altered interoceptive prediction mechanism in
the anterior insula has even been discussed to account for anxiety
(Paulus and Stein, 2006): the avoidance of fearful stimuli that is
characteristic for anxiety patients may be caused by the exagger-
ated anticipation of feared stimuli. This increased anticipatory
anxiety itself may be a consequence of an enhanced prediction
error feedback that leads to an overestimation of prospective
fearful occurrences. The purpose of avoidance behaviors may be
to attenuate the experience of prediction errors. Likewise, risk
aversion may be due to a hypersensitive anticipation risk signal
that in turn is driven by a continuous risk prediction error signal.

Table 6. Regions positively correlated with the interaction of individual risk
preferences and two categories of risk prediction error (negative and positive)

MNI coordinates

Cluster size kE Max stat tRegion Laterality x y z

Anterior insula L 	33 21 	9 51 5.35*
(	42) (24) (	3) (77) (4.35)**

R 30 21 	9 57 4.53*
(48) (21) (6) (3) (4.82)***

Inferior frontal gyrus R 51 21 12 19 3.45*
(51) (21) (12) (9) (4.20)*

Anterior cingulate cortex R 6 42 15 3 5.24***
(6) (42) (12) (16) (4.23)**

Results from the two-by-two ANOVA are shown. Data from risk-averse and risk-neutral subjects were combined for
this analysis. Results from the exploratory three-by-five analysis are shown in parentheses.

*p � 0.05. The activation survives small-volume correction for multiple comparisons based on FWE control at the
peak level for a priori-defined regions of interest as reported by Preuschoff et al. (2008) (Table 5). Inclusion thresh-
old, t � 2.62 (2.59).

**p � 0.001. The activation does not survive correction for multiple comparisons. For the sake of completeness the
activation in this region of interest is reported at p � 0.001, uncorrected (height threshold t � 3.12).

***p � 0.05. The activation survives whole-brain correction for multiple comparisons based on FWE control at the
peak level. Height threshold, t � 4.92 (4.76).

Figure 6. Interaction effect of risk preferences and risk prediction error coding in a two-by-
two ANOVA. Risk averters show an elevated but equally strong BOLD signal to both positive and
negative risk prediction errors. Risk seekers respond significantly less to gambles that are not as
risky as expected, reflected by negative risk prediction errors (interaction effect, p � 0.05, FWE
corrected for small volumes; ACC, p � 0.05, FWE corrected for whole-brain volume). Plots show
the mean (M) and SE of the individual peak � estimates within the indicated search volume.
Data from risk-averse and risk-neutral subjects were combined for these plots. aIns, Anterior
insula; L, left; R, right.
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Accordingly, our data show that risk averters respond equally
strongly to positive and negative risk prediction errors, and have
an increased BOLD signal for the anticipation of risky stimuli.
Risk-averse behavior may thus serve the purpose to avoid future
risk prediction errors, coded by the anterior insula, and the ac-
companying subjective feeling (Craig, 2002, 2009).

At first sight, the purely mathematical tracking of objective
risk (Preuschoff et al., 2008) and the generation of interoceptive
prediction signals (Craig, 2002, 2005) may seem contradictory
(Bossaerts, 2010). But a wide range of literature shows that emo-
tional reward anticipations are necessary for advantageous deci-
sion making (Bechara et al., 1994, 1997). Given its role in the
generation of subjective feelings (Craig, 2009), the anterior insula
may code for both objective and subjective risk, i.e., mathemati-
cal risk prediction and individual risk preference, respectively
(Singer et al., 2009). Other imaging studies that included choice
during risk anticipation did not find effects of risk preferences in
the insular cortex (Christopoulos et al., 2009). Here, we focus on
passive risk evaluation and do observe an altered insula signal in
risk averters. This suggests that insula signals of risk learning,
rather than signals during choice, may indeed reflect, at least in
part, subjective risk.

It is of interest whether this subjective risk signal can predict
risk behavior. A previous study implied such a link between an-
ticipatory insula activation and subsequent risk behavior (Xue et
al., 2010): depending on whether subjects had previously chosen
to gamble and won, the evaluation of the subsequent fair gamble
elicited stronger insula activation. The same enhanced evaluation
signal predicted risky choices on the following trial. Since trials in
our current design were independent from each other, we refrain
from interpreting between-trial effects on BOLD responses.
However, the paradigm could easily be adapted to include risk-
taking behavior after an experimental manipulation of anticipa-
tion risk and risk prediction error.

In a previous study, Tobler et al. (2007) found risk-related
activation in IFG that covaries with individual risk preferences.
The authors reported an area in the IFG that not only codes for
expected reward, but also shows increased activation with risk
only for risk-seeking subjects. Given its role in reward and uncer-
tainty coding (Tobler et al., 2007) and in the updating of risk
information (Preuschoff et al., 2008), the IFG seems to be an
important node in the risk processing network that is biased by
the individual risk attitude. This is supported by our result of a
differential IFG signal for risk prediction errors in risk seekers
compared to risk averters.

The ACC is assumed to be involved in processes of conflict
monitoring and error detection (Michelet et al., 2009). It has
been speculated that the ACC activation provides a general alert-
ness for error detection and supports the avoidance of future
errors. The differential ACC signal for risk prediction errors that
we detect for risk seekers may thus represent a reduced monitor-
ing of negative compared to positive risk prediction errors. This
could bias risk seekers’ learning experience toward positive errors
that contribute to their general risk-seeking strategy. In contrast,
risk averters show an elevated ACC signal that does not discrim-
inate appropriately between positive and negative risk prediction
errors. This may indicate an increased level of alertness for both
risk prediction errors.

In summary, this study shows that risk preferences are not
only reflected in behavioral differences but already in the under-
lying evaluation process. More specifically, risk aversion is asso-
ciated with increased risk anticipation as well as enhanced
neurophysiological signals for any risk prediction errors in risky

situations without an actual choice. Thus, risk-averse subjects
seem to be more sensitive to the variance of outcomes, which
implies that they perceive risk more strongly. This result comple-
ments previously reported effects of risk preferences on risk pro-
cesses during or after choices. The striatal anticipation risk signal
may modulate the impact of subsequent reward learning,
whereas the anterior insula activation may represent the integra-
tion of objective and subjective risk and the corresponding antic-
ipation of somatosensory states. We suggest that the exaggerated
risk prediction error signals in risk averters drive the overestima-
tion of prospective risk. This is supported by the risk averters’
increased risk anticipation signal. Risk preferences may thus be
due to alterations on different steps of risk processing, such as the
emotional risk evaluation as well as the cognitive inhibition of
risk-taking behavior.

Our study supports the notion that individual risk attitudes
should be taken into account for an ecologically valid risk-
learning model. As stated in the introduction, the finding that
risk averters and risk seekers differ in their risk evaluation has
practical implications for many domains: the interindividual het-
erogeneity in risk learning could, for example, inform the predic-
tion of stock market investments. The result that risk seekers
show a weaker response to risk might also motivate changes in
health campaigns; focusing on health risks in smoking preven-
tion campaigns might be ineffective in risk-seeking smokers. In
general, public policies dealing with decision making under risk
should encompass how the subjective risk evaluation might bias
the actual decision.
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