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Anxiety-Like Behavior of Prenatally Stressed Rats Is
Associated with a Selective Reduction of Glutamate Release

in the Ventral Hippocampus
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Abnormalities of synaptic transmission and plasticity in the hippocampus represent an integral part of the altered programming trig-
gered by early life stress. Prenatally restraint stressed (PRS) rats develop long-lasting biochemical and behavioral changes, which are the
expression of an anxious/depressive-like phenotype. We report here that PRS rats showed a selective impairment of depolarization- or
kainate-stimulated glutamate and [ *H]p-aspartate release in the ventral hippocampus, a region encoding memories related to stress and
emotions. GABA release was unaffected in PRS rats. As a consequence of reduced glutamate release, PRS rats were also highly resistant to
kainate-induced seizures. Abnormalities of glutamate release were associated with large reductions in the levels of synaptic vesicle-
related proteins, such as VAMP (synaptobrevin), syntaxin-1, synaptophysin, synapsin Ia/b and Ila, munc-18, and Rab3A in the ventral
hippocampus of PRS rats. Anxiety-like behavior in male PRS (and control) rats was inversely related to the extent of depolarization-
evoked glutamate release in the ventral hippocampus. A causal relationship between anxiety-like behavior and reduction in glutamate
release was demonstrated using a mixture of the mGlu2/3 receptor antagonist, LY341495, and the GABA receptor antagonist, CGP52432,
which was shown to amplify depolarization-evoked [*H]p-aspartate release in the ventral hippocampus. Bilateral microinfusion of
CGP52432 plus LY341495 in the ventral hippocampus abolished anxiety-like behavior in PRS rats. These findings indicate that an
impairment of glutamate release in the ventral hippocampus is a key component of the neuroplastic program induced by PRS, and that
strategies aimed at enhancing glutamate release in the ventral hippocampus correct the “anxious phenotype” caused by early life stress.

Introduction

The effects of stress on the brain have long been associated with
the onset and exacerbation of several neuropsychiatric disor-
ders such as depression, anxiety, drug addiction, and epilepsy
(McEwen, 2012). Alterations in glutamate neurotransmission are
believed to play a role in the pathophysiology of such disorders
(Ongiir, 2008; Chen et al., 2010). Exposure to stress and treat-
ment with glucocorticoids alter glutamatergic neurotransmis-
sion and neuroplasticity in brain regions related to depression
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and anxiety, such as the hippocampus, amygdala, and prefrontal
cortex (Mozhui et al., 2010; reviewed by Popoli et al., 2012).
Musazzi et al. (2010) have shown that acute stress led to an accu-
mulation of presynaptic SNARE complexes in cortical synaptic
membranes, thus raising the interesting possibility that stress di-
rectly affects the presynaptic machinery of glutamate release. The
study of glutamate release in response to chronic stress is still at its
infancy (Moghaddam, 2002; Yamamoto and Reagan, 2006), and
there are no data on how early life stress affects glutamate release
in the adult life. The latter issue is particularly relevant because
early life stress causes long-lasting changes in neuroplasticity that
result in an increased vulnerability to stress-related disorders in
adult life (Meaney et al., 2007; Darnaudéry and Maccari, 2008;
Lupien et al., 2009). Prenatal restraint stressed (PRS) rats repre-
sent a model that recapitulates some of the features of depression
and anxiety (Maccari et al., 1995; Dugovic et al., 1999; Darnau-
déryetal., 2006; Maccari and Morley-Fletcher, 2007; Zuena et al.,
2008; Van Waes et al., 2009; Laloux et al., 2012; Mairesse et al.,
2012a). Interestingly, male PRS rats show a prominent anxious-
like phenotype, whereas female PRS rats are more prone to
develop a depressive-like phenotype (Zuena et al., 2008; Morley-
Fletcher et al., 2011; Van Waes et al., 2011). PRS rats show also a
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reduced number of proteins involved in signal transduction and
neuroplasticity regulation as revealed by a recent mass spectrom-
etry analysis (Mairesse et al., 2012b). Most of these changes are
reversed by chronic antidepressant treatment (Morley-Fletcher
et al., 2003, 2004, 2011; Mairesse et al., 2012a). Hence, PRS rats
represent an animal model of stress-related disorders that meets
the criterion of construct validity because it replicates environ-
mental factors implicated in the etiology of depression and anx-
iety (Krishnan and Nestler, 2008, 2010). In addition, most of the
abnormalities in synaptic transmission and plasticity in the
hippocampus of PRS rats are seen in the ventral hippocampus
(Zuena et al., 2008; Morley-Fletcher et al., 2011), the specific
portion of the hippocampus that encodes memories related to
stress and emotions (Fanselow and Dong, 2010). We report here
that male PRS rats show a selective impairment of glutamate
release in the ventral hippocampus associated with anxiety and a
reduced expression of the SNARE proteins and vesicle-associated
proteins, as well as the mammalian uncoordinated-18 Munc-18,
and the glutamate terminal-specific monomeric GTP-binding
protein, Rab3a. Pharmacological enhancement of glutamate re-
lease in the ventral hippocampus corrected the anxious-like phe-
notype of PRS rats.

Materials and Methods

Animals

Forty nulliparous female Sprague Dawley rats (20 for control and 20 for
PRS groups), weighing ~250 g, were purchased from a commercial
breeder (Charles River). Animals were housed at constant temperature
(22 = 2°C) and under a regular 12 h light/dark cycle (lights on at 8.00
A.M.). Pregnant females were randomly assigned to stressed or control
groups. (n = 12 per group).

Stress protocol

Animals were subjected to PRS according to our standard protocol (Mac-
cari et al., 1995; Morley-Fletcher et al., 2003). From day 11 of pregnancy
until delivery, pregnant female rats were subjected to three stress sessions
daily (45 min each), during which they were placed in transparent plastic
cylinders and exposed to bright light. Only male offspring from litters
containing 10-14 pups with a comparable number of males and females
were used for the experiments. A maximum of one or two male pups were
taken from each litter for each measure to remove any litter effects
(Becker and Kowall, 1977; Chapman and Stern, 1979). All experiments
followed the rules of the European Communities Council Directive 86/
609/EEC. The local ethical committee approved the prenatal stress pro-
cedure. We used the same sets of animals (3 month olds) for anxiety and
glutamate release (see correlation); in microinfusion experiments we
used the same sets of animals (3 month olds) for the two tests of anxiety.
For the other experiments we used separate sets of animals (2 month

olds).

Assessment of glutamate and GABA release in superfused
synaptosomal preparations

Purified synaptosomes isolated from the ventral and the dorsal hip-
pocampus (dissected as described by Robertson et al., 2005), the perirhi-
nal cortex, the prefrontal cortex, the amygdala, and the striatum were
prepared as described by Dunkley et al. (1986), with minor modifica-
tions. Briefly, the tissue was homogenized in 10 volumes of 0.32 M su-
crose, buffered to pH 7.4 with TRIS (final concentration 0.01 M) using a
glass Teflon tissue grinder (clearance 0.25 mm). The homogenate was
centrifuged at 1000 X g for 5 min, to remove nuclei and debris; the
supernatant was gently stratified on a discontinuous Percoll gradient (6,
10, and 20% v/v in Tris-buffered sucrose) and centrifuged at 33,500 X g
for 5 min. The layer between 10 and 20% Percoll (synaptosomal fraction)
was collected and washed by centrifugation. The synaptosomal pellet was
then resuspended in physiological medium (standard medium) with the
following composition (in mm): 140 NaCl, 3 KCI, 1.2 MgSO,, 1.2 CaCl,,
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1.2 NaH,PO,, 5 NaHCO;, 10 mm HEPES, and 10 glucose, pH 7.2-7.4.
Synaptosomal protein levels were determined according to Bradford
(1976). Synaptosomes were incubated for 15 min a 37°C in a rotary water
bath in the absence (experiments of endogenous glutamate and GABA
release) or presence of [2,3-*H]p-aspartate (20—-50 nm; sp. act. 11.3 Ci/
mmol, PerkinElmer).

Identical portions of the synaptosomal suspensions were layered on
microporous filters at the bottom of parallel chambers in a Superfusion
System (Raiteri and Raiteri 2000; Ugo Basile) maintained at 37°C and
superfused at 0.5 ml/min with standard physiological solution.

When studying the release of neurotransmitter evoked by kainic acid
(Tocris Bioscience) or depolarizing concentrations of K *, synaptosomes
were transiently (90 s) exposed, at t = 39 min, to 10 uMm kainic acid or to
20 (amygdala) or 12 (all other regions) mm K * (substituted for NaCl in
the superfusate). Superfusion was always performed with media contain-
ing 50 uM amino-oxyacetic acid (Sigma) to inhibit GABA metabolism.
Three superfusate fractions were collected according to the following
scheme: two 3 min fractions (basal release), one before (t = 36—39 min,
bl) and one after (¢t = 45—48 min, b3) a 6 min fraction (t = 39—45 min;
evoked release, b2). Fractions collected and superfused synaptosomes
were counted for radioactivity or for endogenous amino acid content.
Endogenous glutamate and GABA were measured by HPLC analysis after
precolumn derivatization with o-phthalaldehyde and separationona C, g
reverse-phase chromatographic column (10 X 4.6 mm, 3 um; at 30°C;
Chrompack) coupled to a fluorimetric detector (excitation wavelength,
350 nm; emission wavelength, 450 nm). Buffers and the gradient pro-
gram were as follows: solvent A, 0.1 M sodium acetate, pH 5.8/methanol,
80:20; solvent B, 0.1 M sodium acetate, pH 5.8/methanol, 20:80; solvent
C, 0.1 M sodium acetate, pH 6.0/methanol, 80:20; gradient program,
100% C for 4 min from the initiation of the program; 90% A and 10% B
in 1 min; isocratic flow, 2 min; 78% A and 22% B in 2 min; isocratic flow,
6 min; 66% A and 34% B in 3 min; 42% A and 58% B in 1 min; 100% B
in 1 min; isocratic flow, 2 min; 100% C in 3 min; flow rate, 0.9 ml min ~ '
Homoserine was used as the internal standard. Synaptosomal protein
contents were determined according to Bradford (1976). The amount of
endogenous glutamate and GABA from synaptosomes in superfusate
fractions was expressed as picomoles per milligram of protein (pmol
mg ! protein). Radioactivity in each superfusate fraction was quantified
by liquid scintillation. The amount of radioactivity released into each
superfusate fraction was expressed as a percentage of the total synapto-
somal tritium content at the start of the fraction collected (fractional
efflux). The depolarization-induced overflow was estimated by subtract-
ing the neurotransmitter content into the first and the third fractions
collected (basal release, b1l and b3) from that in the 6 min fraction col-
lected during and after the depolarization pulse (evoked release, b2).

Assessment of [ *H]D-aspartate release in hippocampal

slice preparations

Slices (0.4 mm thick) from the dorsal or ventral hippocampus were pre-
pared using a Mcllwain tissue chopper (Mickle Laboratory Engineering)
and then placed in a superfusion medium with the following composi-
tion (in mm): 125 NaCl, 3 KCl, 1.2 MgSO,, 1.2 CaCl,, 1 NaH,PO,, 22
NaHCO;, and 10 glucose (aeration with 95% O, and 5% CO,), pH
7.2-7 4, at 2—4°C. Slices were rinsed by changing the physiological solu-
tion every 20 min. Slices were labeled with 90 nm [ *H]p-aspartate (20
min at 37°C) in standard medium in an atmosphere of 95% O, and 5%
CO,. After washing with tracer-free medium, slices were transferred to
parallel superfusion chambers (one slice/chamber) and superfused (1
ml/min at 37°C). After 60 min of superfusion to equilibrate the system,
six 5 min samples were collected. Slices were exposed to 30 mm K * in the
absence or presence of 3-[[(3,4-dichlorophenyl)methylJamino]propyl]
diethoxymethyl) phosphinic acid (CGP52432; Tocris Bioscience) and
(25)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) pro-
panoic acid (LY341495; Tocris Bioscience) for 5 min, starting from ¢t = 70
min of superfusion. Drugs were added from # = 30 min of superfusion until
the end of the experiments. Samples collected and solubilized slices (Soluene;
Canberra Packard) were counted for radioactivity. The amount of radioac-
tivity released into each superfusate fraction was expressed as fractional ef-
flux (see above). Drug effects were expressed as “induced overflow” and were
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estimated by subtracting the neurotransmitter content into the second and
the fifth fractions collected from that in the third and in the fourth fractions
collected.

In vivo studies

Kainate-induced motor seizures and
electroencephalography/electromyography recording

We assessed kainate-induced limbic motor seizures in separate groups of
control and PRS rats (n = 6 per group). Kainate-induced seizures repre-
sent an established experimental animal model of temporal lobe epilepsy
in humans (Sharma et al., 2007; Joéls, 2009). Animals underwent 2 weeks
of habituation to electroencephalogram (EEG)/electromyogram (EMG)
recording before behavioral assessment for motor seizures. Rats were
anesthetized with ketamine/xylazine (75/10 mg/kg, i.m.). Electrodes for
EEG recordings were chronically implanted using a stereotaxic appara-
tus. Three stainless steel screw electrodes were threaded through the skull
bilaterally over the frontal and parietal cortex to record the EEG. One
electrode threaded through the midline of the frontal bone was used as
ground. Teflon-coated multistranded stainless steel wires with 2 mm
exposed at the tips (Goodfellow Sarl) were placed in the dorsal neck
muscles to record the EMG. EEG and EMG leads were attached to a
connector (MS363; Plastics One) and fixed to the skull with dental
acrylic.

Recording. For registration, the electrodes were connected to a pream-
plifier (8213; Pinnacle Technology) through the plastic connector. This
preamplifier avoids the registration of electrical interferences. The pre-
amplifier was connected to a rotating swivel allowing free animal
movements, and the swivel was connected to the EEG/EMG Data
Conditioning and Acquisition System (8206; Pinnacle Technology),
which was USB linked to a computer. Signal acquisition was performed
using the Sirena acquisition suite (Pinnacle Technology). The EEG and
EMG were recorded at a frequency of 400 Hz. Both EEGs were lowpass
filtered at 40 Hz. EMG signals were highpass filtered at 10 Hz and sub-
jected to a 100 Hz lowpass cutoff. After surgery, rats were individually
housed in Plexiglas cages (30 cm diameter, 40 cm high), and left undis-
turbed for a postsurgery recovery period of 2 weeks. During the second
week of recovery, rats were habituated to the EEGs/EMG recording pro-
cedure for the following 2 weeks. Habituation consisted of two recording
sessions of 8 h and one session of 24 h. At the end of the habituation
period, the day of the experiment, EEGs/EMG recordings started 1 h after
the light switch-on and continued for the next 8 h. Two hours after the
beginning of the registration, kainate (Tocris Bioscience) was injected
intraperitoneally at doses (7 mg/kg) in the same range as those reported
by previous studies (Sperk et al., 1983; Berg et al., 1993), and were proven
to cause full limbic motor seizures in control rats. The presence of char-
acteristic spikes and/or spike clusters activity was correlated to each stage
of behavioral seizure, after kainate injection.

Kainate-induced seizures. Motor seizures were observed for 4 h follow-
ing systemic kainate injection, and manually scored according to Racine
(1972), as follows: 0, absence of seizures; 1, staring spells, immobiliza-
tion, and hypoactivity; 2, paroxysmal wet dog shake and head nodding; 3,
motor seizures associated with masticatory movements and tail arching;
4, rearing with forelimb jerks and salivation; 5, generalized convulsions
with loss of postural control and intense myoclonic jerks lasting at least
1 h; and 6, “full status epilepticus” and death.

Assessment of anxiety-like behavior

We assessed anxiety-like behavior in control and PRS rats by using the
elevated plus maze (EPM) and the light—dark tests. All animals used for
ex vivo measurements of neurotransmitter release and immunoblot anal-
ysis of protein expression had been tested for anxiety-like behavior at
least 1 week earlier. The EPM test was performed essentially as described
by Pellow et al., 1985. The test was performed between 13:00 and 16:00 h,
lasted for 5 min, and began with the placement of the rat in the center of
the maze with the head facing a closed arm. The time spent in open and
closed arms was recorded on-line by a video camera and the percentage
of time spent in open arms was calculated. We also measured the number
of entries into the open and closed arms, the number of crossings
through the center, the number of episodes of head dips over the size of
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the maze, the number of episodes of rearing, and the latency to enter the
open and the closed arms.

Thelight and dark box setup consisted of two compartments: one light
compartment (45 X 32 X 32 c¢m, 50 lux; light box) and one dark com-
partment (30 X 32 X 32 c¢m, 5 lux). The compartments were connected
via a small opening (10 X 15 cm) enabling transition between the two
boxes. Rats were placed in the light compartment and the time spent in
each compartment and the latency to the first entry into the light com-
partment during the 5 min test, were assessed on-line via a video camera
located above the box. Behavior was automatically analyzed using video
tracking software (View Point).

Microinfusions of CGP52432 and LY341495 in the
ventral hippocampus
All control and PRS rats used for these experiments had been tested for
anxiety at the light—dark box 1 week before surgery. Rats were injected
intraperitoneally with an anesthetic solution containing ketamine (100
mg/kg), xylazine (8 mg/kg), and acepromazine (1 mg/kg), placed into a
David Kopf stereotaxic apparatus with the incisor bar 5.0 mm above the
interaural line, and bilaterally implanted with permanent cranial guide
cannulae (22 gauge; Plastic One) into the ventral hippocampus (antero-
posterior + 5.5; mediolateral * 4.5; dorsoventral —5.5 mm from bregma
and skull; Paxinos and Watson, 2007). Cannulae were fixed with dental
acrylic cement directly anchored to the skull. After surgery, obturators
were inserted into the guide cannulae, rats were returned to their home
cage and were left undisturbed for a 7-10 d recovery period. Twelve
control and 12 PRS rats were selected for microinfusion experiments and
behavioral analysis. LY341495 and CGP52432 were dissolved in PBS
(1.05 mm KH,PO,, 2 Na,HPO,, 3 mm H,O, 154 mm NaCl, pH 7.4) to
obtain final concentrations of 100 pg/ul LY341495 and 1 ng/ul
CGP52432. After 2 d of habituation to microinjection procedures, two
groups of control and two groups of PRS rats received bilateral injections
of either PBS alone (vehicle) or PBS containing CGP52432 and
LY341495. The internal injection cannulae were connected to lengths of
polyethylene tubing that in turn were connected to 10.0 ul Hamilton
syringes. Injections were made bilaterally in a volume of 1 ul/side over a
period of 2 min. After 1 min, the injection cannulae were withdrawn, the
obturators replaced, and rats were returned to their home cage for 15 min
before the start of behavioral assessments. All rats underwent two con-
secutive tests of 5 min in the light—dark box and the EPM, as described
above. The two tests were performed one immediately after the other.
This behavioral protocol may confound data of the second test (the
EPM) because the stress associated with the execution of the first test (the
light—dark box) might differentially affect the performance in the EPM in
the four group of rats (control rats injected with vehicle, PRS rats injected
with vehicle, control rats injected with CGP52432 plus LY341495, and
PRS rats injected with CGP52432 plus LY341495. Despite these potential
limitations, the execution of two consecutive tests was necessary to avoid
the bias of reinjecting the mixture of drugs in the same animals without
having knowledge of the neuroadaptive changes that intrahippocampal
injection of CGP52432 and LY341495 may cause.

The correct position of the guide cannula in the ventral hippocampus
was confirmed in all rats by injection of 1 ul of methylene blue (5%,
dissolved in saline).

Western blot analysis

Two groups of control and PRS rats (1 = 6 per group) were killed by
decapitation and the ventral and dorsal portions of the hippocampus
were rapidly dissected (Robertson et al., 2005). To isolate synaptosomes,
tissue was manually homogenized with a potter in 10 vol of HEPES-
buffered sucrose (0.32 M sucrose, 4 mm HEPES, pH 7.4). All procedures
were performed at 4°C. Homogenates were centrifuged at 1000 X g for 10
min and resulting supernatants were centrifuged at 10,000 X g for 15
min. The pellet obtained from the second centrifugation was resus-
pended in 10 vol of HEPES-buffered sucrose and then spun again at
10,000 X g for 15 min. This pellet contained the crude synaptosomal
fraction. To validate the purity of this synaptosomal fraction we used anti-
histon H3, anti-B-tubulin, anti-synapsin Ia/b in immunoblot analysis. BCA
assay was used to determine protein concentration. Synaptosomes lysates
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were resuspended in Laemmli reducing buffer
and 20 pg of each sample were first separated by
electrophoresis on Criterion TGX 4—15% precast
SDS-polyacrylamide gels (Bio-Rad) and later
transferred to nitrocellulose membranes (Bio-
Rad). Transfer was performed at 4°C in a buffer
containing 35 mm TRIS, 192 mm glycine, and
20% methanol. We used the following primary
antibodies: rabbit polyclonal anti-synapsin Ia/b
(sc-20780, 1:4000), rabbit polyclonal anti-
synapsin Ila (sc-25538, 1:4000), rabbit polyclonal
anti-synaptophysin (sc-9116, 1:80,000), rabbit
polyclonal anti-VAMP (synaptobrevin, sc-
13992, 1:2000), rabbit polyclonal anti-syntaxin-1
(sc-13994, 1:5000), and mouse monoclonal anti-
SNAP-25 (sc-136267, 1:10000) (all purchased
from Santa Cruz Biotechnology); mouse mono-
clonal anti-rab3a (107111, 1:2000), mouse
monoclonal anti-Munc-18 (116011, 1:2000),
mouse monoclonal anti-VGLUT-1 (135511, 1:
2000), rabbit polyclonal anti-GluK3 (180203,
1:1000), and rabbit polyclonal GluK5 (180103,
1:1000) (all purchased from Synaptic System);
rabbit polyclonal anti-Glukl (AGC-008, 1:1000)
and rabbit polyclonal anti-GluK2 (AGC-009,
1:1000) (both purchased from Alomone Labs);
rabbit polyclonal anti-GluK4 (ab67404, 1:1000)
(purchased from Abcam); rabbit polyclonal anti-
GLAST (GLAST11-A, 1:1000), rabbit polyclonal
anti-GLT-1 (GLT11-A, 1:1000), and rabbit poly-
clonal anti-EAAC-1 (EAACI11-A, 1:1000) (all
purchased from Alpha Diagnostic International);
and mouse monoclonal anti-B-actin (A5316,
1:80,000) (purchased from Sigma). Secondary
anti-mouse or anti-rabbit antibodies (purchased
from GE Healthcare) were used a dilution at
1:10,000.

Densitometric analysis was performed
with Quantity One software (Bio-Rad) asso-
ciated to a GS-800 scanner. The ratio of
individual proteins to B-actin was then de-
termined and these values were compared
for statistical significance.

Statistical analysis

Data of release experiments, immunoblot analy-
sis, and behavioral data with light—dark box and
EPM (excluding data obtained in microinfused
animals) were analyzed by Student’s t test (PRS vs
control rats). Data of kainate-induced seizures
were analyzed by two-way ANOVA for repeated
measures followed by the Neumann—Keuls post
hoc. Behavioral data obtained after microinfu-
sions with vehicle or CGP52432 + LY341495
were analyzed by two-way ANOVA (group X
treatment) followed by the Neumann—Keuls post
hoc. A p value <0.05 was considered as statisti-
cally significant.

Results

PRS selectively reduced depolarization-
evoked release of glutamate in
superfused synaptosomes isolated from
the ventral hippocampus

To study the effects of PRS on neurotransmitter release we used
superfused synaptosomes prepared from adult male PRS rats and
their age-matched controls. Our superfusion method eliminates
the components in neurotransmitter release mediated by the in-
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Figure 1. PRS causes a selective impairment of depolarization-evoked glutamate release in synaptosomes from the ventral
hippocampus. Superfused synaptosomal preparations from the dorsal and ventral hippocampus, perirhinal cortex, prefrontal
cortex, striatum, or amygdala of control (CONT) or PRS rats (one control and one PRS animal in each experiment) were stratified at
the bottom of superfusion chambers (three superfusion chambers for each synaptosomal preparation) and superfused as described
(see Materials and Methods). The total [ *H]o-ASP content in the synaptosomal fraction at the start of the superfusion period
amounted, respectively, to control dorsal hippocampus: 221.34 == 14.75 nCi; PRS dorsal hippocampus: 226.44 = 13.58 nCi, not
significant (n.s.); control ventral hippocampus: 273.21 == 37.02 nCi; PRS ventral hippocampus: 232.45 = 21.32 nCi, n.s.; control
perirhinal cortex: 341.14 = 44.81 nCi; PRS perirhinal cortex: 298.31 = 46.23 nCi, n.s.; control prefrontal cortex: 209.30 == 18.33
nCi; PRS prefrontal cortex: 218.82 = 23.44nCi, n.s.; control striatum: 238.55 == 15.56 nCi; PRS striatum: 246.07 == 30.47 nCi, n.s.,;
control amygdala: 191.13 = 10.09 nCi; PRS amygdala: 176.89 = 16.89 nCi, n.s. Data are expressed as nCi/chamber and corre-
spond to the amount of radioactive tracer taken up by each synaptosomal preparation. At = 39 min of superfusion, synaptosomes
were challenged with 20 (amygdala) or 12 (all other regions) mm K *. Synaptosomes were used for measurements of p-[ *H]-
aspartate (A), glutamate (B), or GABA (C) release. Data are expressed as K " -induced overflow. Glutamate and GABA overflow is
expressed as pmol/mg prot. The evoked release of o-[ *H]-aspartate is expressed as the percentage of the total tritium content in
synaptosomes. High K™ depolarization-induced overflow is expressed as stimulated release over basal release. Values are
means = SEM of six experiments run in triplicate (3 superfusion chambers for each experimental condition). *p << 0.01 versus the
respective controls.

verse operation of membrane transporters and the influence of
endogenous ligands acting at presynaptic receptors, thus allow-
ing a reliable estimation of how the intrinsic release machinery
responds to depolarization or other stimuli (Raiteri et al., 1974;
Raiteri and Raiteri, 2000). Depolarization-evoked release in this
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system is exocytotic and entirely depended on extracellular Ca*"
(Bonanno et al., 2005). Synaptosomes prepared from the ventral
and dorsal hippocampus, perirhinal cortex, prefrontal cortex,
striatum, and amygdala from control or PRS rats were preloaded
with D-[ *H]-aspartate (a nonmetabolizable analog of glutamate),
and then challenged with depolarizing concentrations of K.
Both uptake and basal (nonevoked) release of p-[ *H]-aspartate
in all brain regions did not differ between control and PRS rats. In
contrast, depolarization-evoked D-[ *H]-aspartate release was se-
lectively and substantially reduced in synaptosomes prepared
from the ventral hippocampus of PRS rats (t = 10.70; df = 10;
p < 0.01). No difference in depolarization-evoked Dp-[*H]-

sured the levels of kainate receptor sub-
units (GluK1-5) by immunoblotting.
GluK1-5 protein levels did not differ be-
tween PRS rats and control rats (Fig. 2D).
As abehavioral counterpart of the study of
kainate on glutamate release, we exam-
ined kainate-induced motor seizures in
control and PRS rats. Systemic injection
of kainate (7 mg/kg, i.p.) in control rats
induced secondarily generalized partial
limbic motor seizures characterized by motor arrest, wet dog
shake, head nodding, masticatory movements, and rearing with
forepaw clonus. Some control rats developed generalized tonic—
clinic seizures and status epilepticus. Interestingly, kainate-
induced seizures were largely reduced in PRS rats (group X time
Fg = 11.31, p < 0.01) (Fig. 2E). The average seizure severity
score of PRS rats at 120-240 min following kainate injection was
around “1” of the Racine scale. In contrast, the average score of
control rats was between 3 and 4 at 120 min following kainate
injection. None of PRS rats showed generalized seizures and sta-
tus epilepticus in response to kainate (Fig. 2E). PRS and control
rats did not differ in the temporal latency to the induction of
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The reduction of evoked glutamate
release was associated with lower
expression of synaptic vesicle-related
proteins in the ventral hippocampus of
PRS rats

We measured the levels of synaptic
vesicle-associated proteins and mem-
brane glutamate transporters in purified
synaptosomal membranes prepared from
the ventral and dorsal hippocampus of
control and PRS rats. Substantial reduc-
tions in the levels of Rab3A (t = 4.76, df =
10; p < 0.01), Munc-18 (¢t = 2.78; df = 10;
p < 0.05), VAMP (synaptobrevin) (¢t =
2.91; df = 10; p < 0.05), syntaxin-1 (t =
3.30; df = 10; p < 0.01), synaptophysin
(r=3.41;df=10;p <0.01), synapsin Ia/b
(t=2.65;df = 10; p < 0.05), and synapsin
Ha (t = 5.41; df = 10; p < 0.01) were
found in the ventral hippocampus of PRS
rats (Fig. 3A), whereas levels of SNAP25,
and the glutamate transporters, v-Glutl,
GLAST EACC-1, and GLT-1 did not
change (Fig. 3B). Levels of synapsin Ia/Ib
were lowered by as much as 60% and lev-
els of syntaxin by ~50% in the ventral
hippocampus of PRS rats. We only found
reductions in the levels of synapsin Ia/Ib
(t=2.70; df = 10; p < 0.05) and syntaxin
(r=3.30; df = 10; p < 0.01), and an in-
crease in the levels of v-Glutl (t = 2.90;
df =10; p <0.05) in the dorsal hippocam-
pus of PRS rats (Fig. 3C,D). Levels of all
other proteins did not change in the dor-
sal hippocampus.
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The reduction in depolarization-evoked
glutamate release in the ventral
hippocampus correlated positively with
anxiety-like behavior in PRS rats

PRS rats show anxiety-like behavior
(Vallée et al., 1997; Zuena et al., 2008; Morley-Fletcher et al.,
2011), and the ventral portion of the hippocampus is involved in
emotion and anxiety (Fanselow and Dong, 2010). Hence, we
examined the correlation between depolarization-evoked gluta-
mate release in the ventral hippocampus and anxiety-like behav-
ior in control and PRS rats. Both control and PRS rats used for
measurements of glutamate release in synaptosomes (see above)
had been tested for anxiety-like behavior in the EPM. PRS rats
spent less time in the open arm of the EPM, as expected (¢ = 3.40;
df = 10; p < 0.01) (Fig. 4A). We found a positive correlation
between the time spent by animals in the open arm of the EPM
and the extent of depolarization-stimulated glutamate release in
the ventral hippocampus (r = 0.90; p < 0.01), indicating that
anxiety-like behavior was inversely related to the evoked release
of glutamate (Fig. 4B). We extended the study to additional

Figure 3.
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PRS reduced expression of synaptic vesicle-associated proteins in the ventral hippocampus. Immunoblot analysis of
SNAREs, vesicle-associated proteins, and glutamate transporters in synaptosomal fractions collected from the ventral (A, B) and
dorsal (C, D) hippocampus of adult PRS and control (CONT) male rats. Values are means == SEM of six determinations. *p << 0.05
orp < 0.01 versus the respective controls.

groups of control and PRS rats tested for anxiety-like behavior in
the light—dark box. PRS rats spent less time in the light compart-
ment of the light—dark box (r = 2.90; df = 10; p < 0.05) (Fig. 4C).
There was a positive correlation between the time spent by con-
trol and PRS rats in the light compartment and the extent of
depolarization-stimulated glutamate release in the ventral hip-
pocampus (r = 0.89; p < 0.01; Fig. 4D), confirming the inverse
correlation between anxiety-like behavior and glutamate release.

Pharmacological enhancement of glutamate release in the
ventral hippocampus corrects anxiety-like behavior in PRS
rats

To examine whether the reduction of glutamate release in the
ventral hippocampus was causally related to anxiety-like behav-
ior in PRS rats we used a mixture of drugs that block presynaptic
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pocampus of both control and PRS rats
(39 = 14 and 29 £ 8% above values ob-
tained with 30 mm K * alone, respectively;
n = 5), without affecting basal p-[*H]-
aspartate release. Interestingly, the mix-
ture of CGP52432 and LY341495 had no
effect on depolarization-evoked p-[*H]-
aspartate release in slices from the dorsal
hippocampus of control and PRS rats
(data not shown). We therefore decided
to study anxiety-like behavior in control
and PRS rats after bilateral microinfusion
of CGP53432 plus LY341495 in the ven-
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tral hippocampus. Based on previous
studies (Jackson and Kuehl, 2002; Barker
et al,, 2006; Li and Pan, 2007;Dong et al.,
2012) we first tested three doses of
CGP53432 (1 ng, 10 ng, or 50 ng) always
combined with 100 pg of LY341495. The
mixture containing 10 ng or 50 ng of
CGP53432 increased rearing and wet dog
shake, whereas the mixture containing 1
0 ng of CGP53432 did not cause changes in
motor activity or spontaneous motor be-
havior in control rats. Thus, we decided to
use 1 ng of CGP53432 combined with 100
pg of LY341495 for the study of anxiety-
like behavior in control and PRS rats. All
animals used for this study had been
tested for anxiety-like behavior in the
light—dark box 1417 d before microinfu-
sion experiments (Fig. 5A). Following mi-
croinfusion with vehicle or CGP52432
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Figure4. Negative correlation between depolarization-evoked release in the ventral hippocampus and anxiety-like behavior.

Anxiety-like behavior in the EPM and light— dark box is shown in A and C, where the time spent in the open arm of the EPM and in
the light compartment of the light— dark box is shown. Different groups of rats were used for behavioral analysis in the EPM and
light— dark box. Data are means == SEM of six determinations. *p << 0.01 or p << 0.05 versus the respective controls. Correlation
analysis between the time spentin the open arm of the EPM or in the light compartment of the light— dark box and depolarization-
evoked glutamate release in synaptosomes prepared from the ventral hippocampus of control (CONT) and PRS rats is shown in B

and D, respectively.

type-2/3 metabotropic glutamate (mGlu2/3) receptors and
GABAg receptors. These receptors are known to negatively regu-
late glutamate release in the hippocampus and other brain re-
gions (reviewed by Chalifoux and Carter, 2011; Nicoletti et al.,
2011). We combined the selective GABAj receptor antagonist,
CGP52432 (Lanza et al., 1993) with the preferential mGlu2/3
receptor antagonist, LY341495 (Schoepp et al., 1999). To exam-
ine whether this mixture was able to enhance glutamate release
we could not use isolated synaptosomal preparations because the
method of superfused synaptosomes eliminates the influence of
endogenously activated presynaptic receptors on neurotransmit-
ter release (see above). Thus, we measured D-[ >H]-aspartate re-
lease in preloaded hippocampal slice preparations. We used
saturating concentrations of CGP52432 and LY341495 (10 and 1
uM, respectively). At these concentrations, LY341495 is still a
preferential blocker of mGlu2/3 receptors with respect to other
mGlu receptor subtypes (Schoepp et al., 1999). The addition of
CGP52432 and LY341495 enhanced high-K™ (30 mm) evoked
D-[*H]-aspartate release in slices prepared from the ventral hip-

600  plus LY341495 all animals were consecu-
tively tested in the light—dark box and in
the EPM. This behavioral protocol is un-
usual because data of the second test (the
EPM) might have been confounded by the
effects of the first test (the light—dark
box). However, we adopted this strategy
to examine the effect of CGP52432 and
LY341495 in two different tests of anxiety
without the need to reinject the drugs
in the ventral hippocampus. PRS rats in-
fused with vehicle in the ventral hippocampus spent less time in
the light compartment of the light—dark box, as expected. This
paradigm of anxiety-like behavior was corrected by the mixture
of CGP53432 and LY341495. Intrahippocampal infusion of
CGP52432 and LY341495 had no effect on control unstressed rats
(group X treatment, F(, 5o, = 5.40; p < 0.05; n = 6 per group; Fig.
5B). PRS rats treated with vehicle showed also an increased la-
tency to enter the light compartment of the box, which, again,
was corrected by treatment with CGP53432 and LY341495
(group X treatment, F; o) = 33.54; p < 0.01; Table 1). In con-
trast, the number of entries into the light and dark compartment
did not differ among the four groups of rats (Table 1). The “cu-
rative” effect of CGP53432 and LY341495 on anxiety-like behav-
ior of PRS rats was supported by EPM data. PRS rats treated with
vehicle, but not PRS rats treated with CGP53432 plus LY341495,
spent less time in the open arm of the EPM (group X treatment,
F(120) = 18.16; p < 0.01; n = 6 per group; Fig. 5C). PRS rats
treated with vehicle also showed a reduced number of entries into
the open arm, a reduced number of episodes of head dips (which
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Figure 5.  Pharmacological enhancement of glutamate release corrects anxiety-like behav-

ior in PRS rats. All rats were tested in the light—dark box 1 week before surgery (i.e., 14-17d
before drug microinfusions in the ventral hippocampus). The time spent in the light compart-
ment of the light— dark box in this pretest performed 1417 d before is shown in A. Values are
means = SEM of 12 control (CONT) and 12 PRS rats. *p < 0.01 versus control rats. Behavioral
data obtained in unstressed and PRS rats following microinfusion of vehicle or CGP52432 plus
LY341495 in the ventral hippocampus are shown in B and C. Animals were first tested in the
light— dark box and immediately after in the EPM. The effects of the first test experience might
confound the interpretation of data of the second test (the EPM). However, the mixture of
(GP52432 and LY341495 reduced anxiety-like behavior in PRS rats in both tests. The time spent
in the open arm of the EPM and in the light compartment of the light— dark box in control and
PRS rats bilaterally infused with 1 I PBS containing 1ng of CGP52432 and 100 pg of LY341495
or PBS alone (vehicle) in the ventral hippocampus are shown in Band C, respectively. Values are
means == SEM of six rats per group. p << 0.01 or p << 0.05 versus the respective control values
(*) or versus the respective values treated with vehicle (#).
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Table 1. Number of entries and latency to enter the two compartments of the
light— dark box in control and PRS rats bilaterally infused with vehicle or C(GP53432
plus LY341495 into the ventral hippocampus

Number of Latency to
entries enter ()
CONT/vehicle
Light compartment 55+ 06 46 = 9.0
Dark compartment 59+06 2895
PRS/vehicle
Light compartment 52*+10 228 * 31*
Dark compartment 4709 99+ 18
CONT/CGP + LY
Light compartment 52*+09 49+73
Dark compartment 55+08 22 +32
PRS/CGP + LY
Light compartment 6304 35+38
Dark compartment 6804 18 =32

Data were obtained from the same control (CONT) and PRS rats of Figure 5B; see legend for details on treatments
with (GP53432 and LY341495. Values are means == SEM of six rats per group. *p << 0.01 versus latency to enter the
light compartment in all other groups.

is a surrogate indicator for anxiety like-behavior), an increased
latency to enter the open arm, and a reduced latency to enter the
closed arm. Most of these alterations were corrected by treatment
with CGP53432 plus LY341495 (number of entries into the open
arm: group X treatment, F; 5, = 7.79; p < 0.05; episodes of head
dips: F(; 59y = 25.64; p < 0.01; latency to enter the open arm:
F1 0y = 5.05; p < 0.05; latency to enter the closed arm: F; ,4) =
24.20; p < 0.05) (Table 2). The four groups of rats did not differ
with respect to the number of entries into the closed arm, the
number of crossings through the central area of the EPM, and
the episodes of rearing (Table 2), excluding nonspecific effects
of the treatments on motor behavior.

Discussion

We have shown for the first time that prenatal restraint stress,
which is a model that recapitulates some of the features of depres-
sion and anxiety, causes a selective impairment of glutamate re-
lease in the ventral hippocampus, a brain region that specifically
encodes memories related to stress and emotions (Fanselow and
Dong, 2010). The reduced glutamate release in PRS rats was not
due to an impaired glutamate synthesis in presynaptic terminals
because it was also seen in synaptosomes preloaded with p-[ *H]-
aspartate. Martisova et al. (2012) found a reduced expression of
vesicular glutamate transporters in the hippocampus of rats sub-
jected to maternal separation, which is another model of early life
stress. In contrast, VGLUT1 expression was unchanged in the
ventral hippocampus of PRS rats, thus excluding a reduced glu-
tamate transport into synaptic vesicles. Our data strongly suggest
that PRS causes a long-lasting dysfunction in the intrinsic ma-
chinery controlling exocytotic glutamate release in the ventral
hippocampus. Regulated neurotransmitter release depends on
Ca** sensors, C2 domain proteins that associate with phospho-
lipids, the three proteins of the SNARE complex (VAMP,
SNAP25, syntaxin), and other proteins regulating the trafficking
of synaptic vesicles, such as synaptophysin, synapsins, munc-18,
and Rab3A (for review, see Han et al., 2010; Epp et al.,, 2011;
Hussain and Davanger, 2011; Walter et al., 2011). Synaptophysin
acts as a regulator of the SNARE complex (Hinz et al., 2001), and
is also considered as a marker protein of presynaptic nerve end-
ings (Thome et al., 2001; Grillo et al., 2005). Synapsins are in-
volved in the clustering of synaptic vesicles to the reserve pool
near the release sites in presynaptic terminals (Valtorta et al.,
1992; Greengard et al., 1993). Munc-18 is a molecular chaperone
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Table 2. EPM data of control and PRS rats bilaterally infused with vehicle or CGP53432 plus LY341495 into the ventral hippocampus

CONT/vehicle PRS/vehicle CONT/CGP + LY PRS/CGP + LY
Number of entries into the open arm 55*0.6 23+ 057 50*04 43+0.2
Number of entries into the closed arm 82+05 70+ 06 n+17 9.2+07
Number of crossings through the center 1308 n=17 13%12 1210
Episodes of head dips 1M=15 48+ 14 14+ 14 97 +13¢
Rearing episodes 1015 88 £ 05 85+ 16 10 =09
Latency to enter the open arm 62+ 14 71+ 25¢ 59*14 14*29
Latency to enter the closed arm 37 =42 19 +05° 57+15 1249

Data were obtained from the same control (CONT) and PRS rats of Figure 5B; see legend for details on treatments with CGP53432 and LY341495. Vialues are means = SEM of six rats per group. °p << 0.01 versus all other groups; °p < 0.01
versus CONT/vehicle and CONT/CGP -+ LY, and p << 0.05 versus PRS/CGP + LY; p < 0.05 versus CONT/CGP -+ LY and PRS/vehicle; %p < 0.01 versus all other groups; and p < 0.05 versus CONT/vehicle and p << 0.01 versus Cont/CGP +

LY. CONT, controls.

of syntaxin-1, which is involved in mechanisms of SNARE-
mediated membrane fusion and docking of large dense-core ves-
icles to the plasma membrane (Han et al., 2010). Rab3A, a
member of a large family of monomeric GTP-binding proteins,
regulates the trafficking of synaptic vesicles and cooperates with
synapsin II in promoting the latest steps of neurotransmitter re-
lease (Sakane et al., 2006; Coleman and Bykhovskaia, 2010). PRS
caused large reductions in the levels of all these proteins (except
SNAP25) in the ventral hippocampus, and only reductions in the
levels of syntaxin and synapsin Ia/b in the dorsal hippocampus.
This profile of expression of vesicle-associated proteins fits nicely
with the finding that glutamate release was reduced in the ventral
hippocampus, but not in the dorsal hippocampus of PRS rats.

A potential consequence of the reduced glutamate release in
the ventral hippocampus is that PRS rats become refractory to
paroxysmal activity sustained by an enhanced release of gluta-
mate. In release experiments, we used kainate as an alternative to
high concentrations of K . Kainate acting at presynaptic recep-
tors is known to either stimulate or depress glutamate and GABA
release depending on the concentrations and the hippocampal
subregions (Ferkany etal., 1982; Poli et al., 1985; Chittajallu et al.,
1996; Schmitz et al., 2001; Rodriguez-Moreno and Sihra, 2004).
In our synaptosomal preparations, kainate caused a large release
of glutamate, which was blunted in the ventral hippocampus of
PRS rats. PRS rats were highly resistant to kainate-induced limbic
motor seizures, which model temporal lobe epilepsy in humans
(Ben-Ari and Cossart, 2000; Coulter et al., 2002). All PRS rats
treated with kainate showed only mild motor signs, and none of
them developed the typical secondarily generalized limbic motor
seizures, which were instead seen in control rats. However, the
relationship between early life stress and kainate-induced sei-
zures is uncertain because a single episode of restraint stress on
gestational day 18 enhanced kainate-induced seizures in adult
gonadectomized offspring (Frye and Bayon, 1999), whereas
treatment with B-methasone on gestational day 15 reduced the
susceptibility to fluorothyl-induced clonic seizures, but not to
kainate-induced seizures, at postnatal day 15 (Velisek, 2011).

PRS had profound effects on glutamate release, but it failed to
affect GABA release in the ventral hippocampus. The lack of
changes in VGLUT1 expression and D-| H]-aspartate uptake ex-
cluded that the number of glutamatergic nerve terminals was
reduced in the ventral hippocampus of PRS rats. Reductions in
munc-18 and Rab3A might provide some specificity for gluta-
mate versus GABA release. Accordingly, munc-18 regulates the
size of the readily releasable vesicle pool in glutamatergic but not
GABAergic terminals (Augustin et al., 1999), and Rab3A is pref-
erentially, albeit not exclusively, expressed in glutamatergic ter-
minals (Geppert etal., 1994). Our data suggest that PRS causes an
imbalance between excitatory and inhibitory neurotransmission
in the ventral hippocampus, an effect that might perturb cogni-

tive functions related to stress and emotions (for review, see Ban-
nerman et al., 2004; Engin and Treit, 2007; Fanselow and Dong,
2010). Presynaptic alterations in the glutamate/ GABA balance
have been associated with anxiety, depressive-like behavior, and
memory impairment (Tordera et al., 2007; Garcia-Garcia et al.,
2009; Chen et al., 2010). Thus, the imbalance between excitatory
and inhibitory neurotransmission in the ventral hippocampus
might contribute to explain the anxious/depressive-like pheno-
type of PRS rats (Vallée et al., 1997; Zuena et al., 2008; Morley-
Fletcher et al., 2011; see also present data).

Another important aspect of our study is the regional speci-
ficity in the reduction of glutamate release seen in PRS rats. Pre-
vious studies have shown that stressors of various types can have
profound effects on glutamatergic transmission not only in the
hippocampus but also in the prefrontal cortex, striatum, and
amygdala (Fumagalli et al., 2009; Mozhui et al., 2010; Uchida et
al., 2011; Farley et al., 2012; for review, see Popolietal., 2012). For
example, Fumagalli et al. (2009) have found that PRS rats chal-
lenged with a swim test in adulthood showed an attenuated phos-
phorylation of the NR1 subunit of NMDA receptors in the
prefrontal cortex, but not in the hippocampus. In our PRS rats,
glutamate release was reduced in the ventral hippocampus, but
not in the dorsal hippocampus, prefrontal cortex, perirhinal cor-
tex, striatum, or amygdala. The specificity for ventral versus dor-
sal hippocampus is in agreement with previous data showing that
group-I mGlu receptor signaling is selectively blunted in the ven-
tral hippocampus of PRS rats (Zuena et al., 2008). Also, the lack
of changes in glutamate release in the dorsal hippocampus is in
agreement with the evidence that PRS rats do not show abnor-
malities in spatial memory unless they are >10 months of age
(Vallée et al., 1999), when changes in the expression of postsyn-
aptic mGlu receptors are prominent (Van Waes et al., 2009).

To examine whether a causal relationship exists between re-
duction of glutamate release in the ventral hippocampus and
anxiety-like behavior in PRS rats, we performed microinfusion
studies with a mixture of mGlu2/3 and GABAj receptor antago-
nists, which was proven to selectively enhance glutamate release
in the ventral hippocampus. All animals selected for this experi-
ment had been tested for anxiety-like behavior ~2 weeks before
intrahippocampal microinfusions. Following infusions with ve-
hicle or CGP52432 and LY341495, we designed a behavioral pro-
tocol based on two consecutive tests in the light—dark box (first)
and the EPM (immediately after). This is unusual because repet-
itive tests for the assessment of anxiety-like behavior are generally
performed with at least 1 week of interval to avoid the influence of
the previous test experience (Voikar et al., 2004; Cryan and Hol-
mes, 2005; Paylor et al., 2006; Ballaz et al., 2007) and treatment-
dependent fluctuations in behavior that may occur between two
consecutive tests (Izidio et al., 2005; Ramos, 2008). We adopted
the strategy of two consecutive behavioral tests to avoid the need
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to reinject CGP52432 and LY341495 in the ventral hippocampus
without having knowledge of the neuroplastic changes induced
by these drugs in the hippocampus. This may confound the in-
terpretation of the EPM data (but not the interpretation of the
light—dark box data) following injection of CGP52432 and
LY341495 in unstressed and PRS rats. Taking into account these
possible limitations, our data suggest a causal relationship be-
tween reduction of glutamate release in the ventral hippocampus
and anxiety-like behavior in PRS rats. The doses of CGP52432
and LY341495 we have used (1 and 100 pg, respectively), did not
cause nonspecific changes in motor activity in the light—dark box
and EPM, and did not affect anxiety-like behavior in unstressed
control rats. Thus, pharmacological enhancement of glutamate
release in the ventral hippocampus could specifically reverse
anxiety-like behavior in PRS rats.

The mechanisms by which PRS causes a dysfunction in
glutamate release in the ventral hippocampus is unknown.
PRS rats are characterized by a hyper-reactivity of the
hypothalamic—pituitary—adrenal axis, which results into a pro-
longed corticosterone response to stress (Maccari et al., 1995),
and this might have a causal role in the dysfunction of glutamate
release in the ventral hippocampus (Popoli et al., 2012). The
hypothesis that high levels of corticosterone cause a long-lasting
reduction in glutamate release in PRS rats warrants further inves-
tigation. We cannot exclude that changes in glutamatergic neu-
rotransmission occurring in other brain regions contribute to the
anxiety-like phenotype of PRS rats. Our data suggest that an impair-
ment of glutamate release in the ventral hippocampus may lie at the
core of the neuroplastic program induced by PRS, and strongly cor-
relates with the development of anxiety-like behavior in these rats.

In conclusion, these findings support the “glutamatergic hy-
pothesis” of depression and anxiety (Maeng and Zarate, 2007;
Matrisciano et al., 2007; Hashimoto, 2009; Popoli et al., 2012),
and suggest to extend the study of the balance between excitatory
and inhibitory neurotransmission in the ventral hippocampus in
other putative animal models of anxiety to develop new thera-
peutical strategies for stress-related disorders.
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