Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Current Issue
    • Issue Archive
    • Video Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Subscriptions
    • Advertise
    • For the Media
    • Permissions
    • Privacy Policy
    • Feedback
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Current Issue
    • Issue Archive
    • Video Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Subscriptions
    • Advertise
    • For the Media
    • Permissions
    • Privacy Policy
    • Feedback
PreviousNext
Articles, Neurobiology of Disease

PPARγ/RXRα-Induced and CD36-Mediated Microglial Amyloid-β Phagocytosis Results in Cognitive Improvement in Amyloid Precursor Protein/Presenilin 1 Mice

Mitsugu Yamanaka, Taizo Ishikawa, Angelika Griep, Daisy Axt, Markus P. Kummer and Michael T. Heneka
Journal of Neuroscience 28 November 2012, 32 (48) 17321-17331; DOI: https://doi.org/10.1523/JNEUROSCI.1569-12.2012
Mitsugu Yamanaka
1Clinical Neuroscience Unit, Department of Neurology, University of Bonn Medical Center, 53127 Bonn, Germany, 2Dainippon Sumitomo Pharma, 564-0053 Osaka, Japan, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Taizo Ishikawa
1Clinical Neuroscience Unit, Department of Neurology, University of Bonn Medical Center, 53127 Bonn, Germany, 2Dainippon Sumitomo Pharma, 564-0053 Osaka, Japan, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Angelika Griep
1Clinical Neuroscience Unit, Department of Neurology, University of Bonn Medical Center, 53127 Bonn, Germany,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daisy Axt
1Clinical Neuroscience Unit, Department of Neurology, University of Bonn Medical Center, 53127 Bonn, Germany,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Markus P. Kummer
1Clinical Neuroscience Unit, Department of Neurology, University of Bonn Medical Center, 53127 Bonn, Germany,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael T. Heneka
1Clinical Neuroscience Unit, Department of Neurology, University of Bonn Medical Center, 53127 Bonn, Germany, 3German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Alzheimer's disease (AD) is characterized by the extracellular deposition of amyloid-β (Aβ), neurofibrillary tangle formation, and a microglial-driven inflammatory response. Chronic inflammatory activation compromises microglial clearance functions. Because peroxisome proliferator-activated receptor γ (PPARγ) agonists suppress inflammatory gene expression, we tested whether activation of PPARγ would also result in improved microglial Aβ phagocytosis. The PPARγ agonist pioglitazone and a novel selective PPARα/γ modulator, DSP-8658, currently in clinical development for the treatment of type 2 diabetes, enhanced the microglial uptake of Aβ in a PPARγ-dependent manner. This PPARγ-stimulated increase of Aβ phagocytosis was mediated by the upregulation of scavenger receptor CD36 expression. In addition, combined treatment with agonists for the heterodimeric binding partners of PPARγ, the retinoid X receptors (RXRs), showed additive enhancement of the Aβ uptake that was mediated by RXRα activation. Evaluation of DSP-8658 in the amyloid precursor protein/presenilin 1 mouse model confirmed an increased microglial Aβ phagocytosis in vivo, which subsequently resulted in a reduction of cortical and hippocampal Aβ levels. Furthermore, DSP-8658-treated mice showed improved spatial memory performance. Therefore, stimulation of microglial clearance by simultaneous activation of the PPARγ/RXRα heterodimer may prove beneficial in prevention of AD.

This article is freely available online through the J Neurosci Open Choice option.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 32 (48)
Journal of Neuroscience
Vol. 32, Issue 48
28 Nov 2012
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
PPARγ/RXRα-Induced and CD36-Mediated Microglial Amyloid-β Phagocytosis Results in Cognitive Improvement in Amyloid Precursor Protein/Presenilin 1 Mice
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
Print
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
PPARγ/RXRα-Induced and CD36-Mediated Microglial Amyloid-β Phagocytosis Results in Cognitive Improvement in Amyloid Precursor Protein/Presenilin 1 Mice
Mitsugu Yamanaka, Taizo Ishikawa, Angelika Griep, Daisy Axt, Markus P. Kummer, Michael T. Heneka
Journal of Neuroscience 28 November 2012, 32 (48) 17321-17331; DOI: 10.1523/JNEUROSCI.1569-12.2012

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Share
PPARγ/RXRα-Induced and CD36-Mediated Microglial Amyloid-β Phagocytosis Results in Cognitive Improvement in Amyloid Precursor Protein/Presenilin 1 Mice
Mitsugu Yamanaka, Taizo Ishikawa, Angelika Griep, Daisy Axt, Markus P. Kummer, Michael T. Heneka
Journal of Neuroscience 28 November 2012, 32 (48) 17321-17331; DOI: 10.1523/JNEUROSCI.1569-12.2012
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Neurobiology of Disease

  • Activation of 5-HT1A Receptors Promotes Retinal Ganglion Cell Function by Inhibiting the cAMP-PKA Pathway to Modulate Presynaptic GABA Release in Chronic Glaucoma
  • Aberrant Somatosensory Processing and Connectivity in Mice Lacking Engrailed-2
  • Degeneration of ipRGCs in Mouse Models of Huntington's Disease Disrupts Non-Image-Forming Behaviors Before Motor Impairment
Show more Neurobiology of Disease
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2019 by the Society for Neuroscience.

JNeurosci   Print ISSN: 0270-6474   Online ISSN: 1529-2401