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Computational and empirical neuroimaging studies have suggested that the anatomical connections between brain regions primarily
constrain their functional interactions. Given that the large-scale organization of functional networks is determined by the temporal
relationships between brain regions, the structural limitations may extend to the global characteristics of functional networks. Here, we
explored the extent to which the functional network community structure is determined by the underlying anatomical architecture. We
directly compared macaque (Macaca fascicularis) functional connectivity (FC) assessed using spontaneous blood oxygen level-
dependent functional magnetic resonance imaging (BOLD-fMRI) to directed anatomical connectivity derived from macaque axonal tract
tracing studies. Consistent with previous reports, FC increased with increasing strength of anatomical connection, and FC was also
present between regions that had no direct anatomical connection. We observed moderate similarity between the FC of each region and
its anatomical connectivity. Notably, anatomical connectivity patterns, as described by structural motifs, were different within and across
functional modules: partitioning of the functional network was supported by dense bidirectional anatomical connections within clusters
and unidirectional connections between clusters. Together, our data directly demonstrate that the FC patterns observed in resting-state
BOLD-fMRI are dictated by the underlying neuroanatomical architecture. Importantly, we show how this architecture contributes to the

global organizational principles of both functional specialization and integration.

Introduction

Spontaneous brain activity in the absence of an explicit task and
the temporal relationships of such activity between regions [or
resting-state functional connectivity (FC)] has become a valuable
tool for investigating the intrinsic network dynamics of the brain
(Snyder and Raichle, 2012). These coherent fluctuations are
thought to confer different functional network configurations in
support of flexible behavior (Deco et al., 2011). Importantly,
resting-state FC may provide a valuable measure of information
processing capacity and network topology in both healthy and
diseased states (Rowe, 2010).

When assessing resting-state blood oxygen level-dependent
functional magnetic resonance imaging (BOLD-fMRI) data,
graph theoretical tools have provided a mathematical framework
for describing the organizational principles of the brain of func-
tional segregation (Zeki, 1978; Passingham et al., 2002; Preuss,
2007) and functional integration (Bressler, 1995; Tononi et al.,
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1998; Varela et al., 2001). Resting-state fMRI networks have a
modular community structure, whereby a network can be segre-
gated into smaller subnetworks (or modules) (Meunier et al.,
2010). Brain areas (or nodes) within each module are highly
functionally interconnected but have sparse FC with nodes in
other modules. Partitioning therefore allows for highly special-
ized functions within modules and more comprehensive func-
tions across modules. Functional networks have consistently
been decomposed into visual, sensorimotor, attention, default-
mode, and subcortical subnetworks (He et al., 2009; Meunier et
al., 2009; Rubinov and Sporns, 2011). Functional integration
across modules is facilitated by “hub” regions having high inter-
modular FC (Meunier et al., 2010). A growing literature suggests
that the functional integrative capacity of a node may be sup-
ported by its anatomical connectedness (Sporns et al., 2007).
Structural connectivity, as determined using diffusion-weighted
techniques, is correlated with FC (Damoiseaux and Greicius,
2009; Bressler and Menon, 2010; Honey et al., 2010), and FC
tends to increase with an increasing number of detected axonal
fibers between regions (Hagmann et al., 2008; Honey et al., 2009;
see also Honey et al., 2007).

FC, when measured using correlation, lacks information
about the directionality of information flow. Because local FC is
nota perfect reflection of local structural connectivity (Vincent et
al., 2007), it is unclear whether the modular organization of func-
tional networks is a product of the underlying anatomical archi-
tecture or whether the influence of structure is limited only to
determining local functional connections. Indeed, it has been
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argued that functional flexibility arises from specific patterns of
small sets of anatomical connections (motifs; Sporns and Kétter,
2004), and a recent theoretical study has suggested that FC
strengths vary with motif patterns (Adachi et al., 2012). Here, we
empirically test the hypothesis that the separate-but-connected
organization of functional networks is attributable to distinct
and directed patterns of anatomical connections. We derived
clusters from resting-state FC patterns in macaque monkeys and
then examined the anatomical basis of these functionally defined
clusters using data from axonal tract tracing studies in macaques.
Using histologically derived anatomical data, as opposed to
diffusion-weighted techniques, allowed us to explore motif pat-
terns and assess whether the directionality of specific anatomical
connections contributed to the observed resting-state network
properties. As expected, we found local functional relationships
in the macaque cortex to be related to the strength of their un-
derlying anatomical connectivity. Importantly, we report how
the global organization of the functional network is determined
by specific structural constraints: dense and bidirectional ana-
tomical connections support information processing within
highly clustered functional divisions, whereas sparse unidirec-
tional anatomical connections support the integration of infor-
mation across divisions.

Materials and Methods

Macaque fMRI. The fMRI data presented here were the focus of a previ-
ous report, and the animal preparation, data acquisition, and image pre-
processing have been described previously in detail (Hutchison et al.,
2011). They are briefly described below. Data were obtained from six
(four female) macaque monkeys (Macaca fascicularis, 3.6-5.3 kg). All
surgical and experimental protocols were approved by the Animal Use
Subcommittee of the University of Western Ontario Council on Animal
Care and were in accordance with the Canadian Council on Animal Care
guidelines.

Animal preparation. Before each scanning session, anesthesia was
induced using atropine (0.4 mg/kg, i.m.), ipratropium (0.025 mg/kg,
im.), and ketamine hydrochloride (7.5 mg/kg, i.m.), followed by an
intravenous bolus of propofol (3 ml; 10 mg/ml). After intubation with an
endotracheal tube, anesthesia was maintained using 1.5% isoflurane in
oxygen. Animals were then placed in a custom-built primate chair, and
their heads were immobilized before being inserted into the magnet bore.
The isoflurane level was lowered to 1% for image acquisition. Animals
were spontaneously breathing throughout the duration of the experi-
ment. Physiological parameters were continuously monitored during
image acquisition and were within the normal range (rectal temperature,
36.5°C; respiration, 25-30 breaths/min; end-tidal CO,, 24-28 mmHg).
Body temperature was maintained using a heating disk and thermal
insulation.

Data acquisition. Data were obtained using an actively shielded 7 T, 68
cm horizontal bore scanner with a DirectDrive console (Varian) and a
Siemens AC84 gradient subsystem operating at a slew rate of 350
mT-m '+s ' Afive-channel transceive primate head radio frequency
coil, designed and manufactured in-house, was used for all experiments.
Optimization of the magnetic field (B, shimming) was done using an
automated three-dimensional mapping procedure over the specific vol-
ume of interest. Each monkey’s scanning session consisted of two runs of
300 continuous echo-planar imaging (EPI) functional volumes [10 min
per run; repetition time (TR), 2000 ms; echo time (TE), 16 ms; flip angle,
70°; 30 slices; 72 X 72 matrix; field of view (FOV), 96 X 96 mm; acqui-
sition voxel size, 1.3 X 1.3 X 1.5 mm]. EPI images were acquired with
Generalized Autocalibrating Partially Parallel Acquisition at an acceler-
ation factor of 2. Each image was corrected for physiological fluctuations
with navigator echo correction. High-resolution T,-weighted anatomi-
cal images were also acquired during each session using a fast spin echo
acquisition scheme (TR, 5000 ms; TE, 38.6 ms; echo train length, 5;
effective echo, 3; 30 slices; 256 X 250 matrix; FOV, 96 X 96; acquisition
voxel size, 375 wm X 384 um X 1.5 mm).
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Table 1. Cortical regions of interest abbreviations

Abbreviation Region

PFCpol Prefrontal polar cortex

PFCm Medial prefrontal cortex

PFCol Orbitolateral prefrontal cortex
PFCom Orbitomedial prefrontal cortex
PFCoi Orbitoinferior prefrontal cortex
PFCd Dorsolateral prefrontal cortex
PFCdm Dorsomedial prefrontal cortex
PFCdl Centrolateral prefrontal cortex
PFCv Ventrolateral prefrontal cortex
(Ga Anterior cingulate cortex

s Subgenual cingulate cortex
p Posterior cingulate cortex

CCr Retrosplenial cingulate cortex
FEF Frontal eye field

PMCvl Ventrolateral premotor cortex
PMCdI Dorsolateral premotor cortex
PMCm Medial premotor cortex

M1 Primary motor cortex

S1 Primary somatosensory cortex
S2 Secondary somatosensory cortex
G Gustatory cortex

la Anterior insula

Ip Posterior insula

Al Primary auditory cortex

A2 Secondary auditory cortex

HC Hippocampus

PHC Parahippocampal cortex
Amyg Amygdala

TCc Central temporal cortex

TG Inferior temporal cortex

TCs Superior temporal cortex
TCpol Temporal polar cortex

TCv Ventral temporal cortex

PCi Inferior parietal cortex

PCip Intraparietal cortex

PCm Medial parietal cortex

PCs Superior parietal cortex

VACv Anterior visual area (ventral)
VACd Anterior visual area (dorsal)
V2 Visual area 2

V1 Visual area 1

Image preprocessing. Functional image preprocessing was per-
formed using the FMRIB (Functional MRI of the Brain) Software
Library toolbox (http://www.fmrib.ox.ac.uk). Preprocessing in-
cluded motion correction, brain extraction, spatial smoothing (full-
width at half-maximum, 3 mm), high- and low-pass temporal
filtering, and normalization to the F99 atlas template (Van Essen,
2004) (http://sumsdb.wustl.edu/sums/macaquemore.do). Nuisance
variables were removed by regression using the AFNI (Analysis of
Functional Neurolmages) software package (afni.nimh.nih.gov/
afni). These included six motion parameters as well as the global white
matter and CSF signals. Regression of the global mean signal was not
performed.

Anatomical dataset. Anatomical data were initially derived from the
CoCoMac database (Stephan et al., 2001) (http://cocomac.org, redevel-
oped at http://cocomac.g-node.org) of axonal tract tracing studies using
the Regional Map parcellation of Kotter and Wanke (2005) and specified
as connectivity between 82 cortical regions of interest (ROIs; 41 per
hemisphere; Table 1). This anatomical connectivity matrix included in-
terhemispheric connections (563 of a possible 1640, or 34.3%), of which
270 were mirrored from one hemisphere to the other. If information
about the connectivity between two regions was not available in CoCo-
Mac, the connection was deemed to be absent. The anatomical connec-
tivity matrix also classified the strength of the anatomical connections as



Shen et al. ® Structural Constraints on Functional Organization

weak, moderate or strong. Generally, the classification of label density/
strength was made relative to other brain sites labeled by the same injec-
tion and based on the descriptions provided in the original literature
reports (Bezgin et al., 2012). If a description was not provided, the con-
nection strength was set to “moderate.”

The Regional Map parcellation was drawn on the F99 macaque stan-
dard cortical surface template (Van Essen et al., 2001; Bezgin et al., 2008)
and transformed to voxel space with a 2 mm extrusion using the Caret
software package (http://www.nitrc.org/projects/caret/).

Statistical analysis. The Regional Map parcellation in F99 voxel space
was used to define ROIs in the fMRI data. The anatomical and functional
parcellations were therefore the same. A weighted average time series was
calculated for each ROI using a probabilistic weighting scheme. Each
voxel was weighted according to the probability that it was within the
specified ROI, favoring voxels that were deeper within the structure. In
other words, voxels nearest the center of each ROI were weighted more
heavily than those nearest the ROI boundary. The sum of weights of all
voxels within each ROI was therefore equal to 1. To obtain an average FC
matrix, regionwise correlations were first performed on these weighted
average time series for each monkey’s scans. The results were averaged
across scans after a Fisher z-transform and then across monkeys before
conversion back to correlation coefficients. We used a bootstrapping
procedure to eliminate outliers from the average Pearson’s correlation
coefficient matrix (Efron and Tibshirani, 1993). For each correlation
coefficient, we sampled with replacement from the six individual coeffi-
cients (one from each animal) and calculated a resampled mean. This was
repeated 1000 times to approximate a sampling distribution of mean
values for each connection. We then determined the mean and SE of this
sampling distribution and used them to exclude unreliable coefficients: if
the observed grand average correlation coefficient (averaged across six
subjects) for that connection fell outside of the mean * 2 SE of the
bootstrapped distribution, its value was set to 0. We repeated this tech-
nique for all connections in the FC matrix. All analyses of the average FC
matrix were performed after this bootstrapping procedure.

We computed the cosine similarity of each region to describe the
correspondence between the anatomical and FC of a region as follows:

0 C X G
<os® = e ey

where C, and Cyare the region’s anatomical and FC patterns as vectors,
respectively. 6 is the angle between the anatomical and FC vectors. Because
the anatomical connectivity matrix is asymmetric, we treated the pattern of
connectivity of each region as a source vector and target vector separately. In
other words, the FC vector of each region is compared with a vector of axonal
projections that originate from that region as well as a vector of axonal
projections that terminate in that region. Similarity can range from —1to 1,
where values approaching —1 indicate that the vectors are nearly opposite
and values approaching 1 as highly alike or correlated. A cosine similarity of
0 would indicate that the two vectors are perpendicular to each other, i.e.,
completely independent. We also obtained a global measure of similarity by
reshaping the entire anatomical connectivity and FC matrices into vectors
and then computing their cosine similarity.

We used graph theoretical measures derived using the Brain Connec-
tivity Toolbox (BCT; http://www.brain-connectivity-toolbox.net) to
evaluate the relationship between structure and function. We describe
the community structure of the functional network by applying a
method for handling densely connected and weighted graphs to our
average FC matrix (BCT function “modularity_louvain_und_sign”).
This avoided the need to convert the functional network into a sparse
binary graph and allowed us to keep all reliable connections and their
weights. This decomposition method essentially maximizes positive con-
nections within modules and negative connections across modules. We
chose to make the influence of negative weights less than that of positive
weights in determining modularity (Q* option in BCT) because it pro-
vides a more neurobiologically plausible decomposition (Rubinov and
Sporns, 2011). In this weighting scheme, positive weights have twice the
influence as negative ones in a graph with an equal number of positive
and negative weights. The resultant Q* modularity measure from this
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BCT function describes the extent to which the smaller network commu-
nities are connected within themselves compared with their connections
to each other. A Q* value of 1 means that the modules are fully segregated
with no connections between them, and a value of 0 would mean the
intermodular and intramodular connections are equivalent. The decom-
position was performed using the Louvain optimization algorithm to
approximate the highest Q* value possible (Blondel et al., 2008). Using
the detected community structure, we derived the functional participa-
tion coefficient for positive and negative weights separately (BCT func-
tion “participation_coef_sign”). The participation coefficient describes
the distribution of each node’s connections to nodes in other modules,
with values close to 1 indicating that the connections are uniformly dis-
tributed among other modules, whereas values close to 0 indicate that
the connections are mostly within its own module (Guimer a and
Nunes Amaral, 2005). Finally, we generated 1000 fully connected and
weighted functional null models for comparison (BCT function
“randmio_und_signed”).

Using the community structure of the functional network, we parti-
tioned the anatomical network into matching modules. The network
participation indices (NPIs; Kétter and Stephan, 2003) of each node were
calculated. These included density (proportion of existing connections
relative to all possible connections), symmetry (proportion of bidirec-
tional connections relative to unidirectional ones), and transmission
[proportion of efferent connections relative to all (efferent + afferent)
connections]. Next, we determined the modularity indices (MIs) of each
node for the NPI measures. The MI for each of these measures was taken
as the difference between the NPI of a node within its respective module
and its corresponding NPI across the entire structural network.

For comparison, we generated 1000 anatomical null models using the
BCT by randomly rewiring the anatomical network while preserving the
degree distributions (BCT function “randmio_dir”). We additionally
generated 1000 anatomical null models with preserved connection
length distributions. We estimated connection lengths by calculating the
direct Euclidean distance between the centers of each ROI. We then
divided the observed connection length distribution into quartiles (de-
limited by 24.0, 34.6, and 43.2 mm) and rewired the network by ran-
domly swapping connections within each quartile. All of the fixed-degree
and fixed-connection length null models were partitioned into four
modules as defined by the functional community structure, and their
MIs for each of density, symmetry, and transmission were determined.

Finally, motif frequencies were calculated using the BCT (functions
“motif3struct_bin” and “motif4struct_bin”) for both the modules and
across the whole network in the observed anatomical network as well as
for the two sets of anatomical null models. To account for the differences
in size between modules as well as their size differences from the whole
network, motif frequencies for each node were normalized by dividing by
the sum of all motif occurrences for that node (i.e., motif probability).

Results

We derived resting-state cortical FC measures using regionwise
correlations of BOLD time series between 82 anatomically de-
fined ROIs (41 per hemisphere; Table 1) for each animal. Figure
1A shows the average FC across all animals, with correlation co-
efficients ranging between —0.436 and 0.773. FC was strong both
within (range, —0.437 to 0.704) and across (range, —0.377 to
0.773) hemispheres. Figure 1B depicts the anatomical connectiv-
ity of the same 82 regions as derived from the CoCoMac database.

Local FC varies with anatomical connectivity

We found the strength of FC to vary significantly with the
strength of anatomical connectivity when anatomical connec-
tions were present (Kruskal-Wallis test, p < 0.001; Fig. 2A).
These results suggest that the density of the underlying axonal
tracts dictate, to some degree, the strength of the functional con-
nections. Consistent with previous studies (Koch et al., 2002;
Honey et al., 2009; Adachi et al., 2012), we also found strong FC
in the absence of direct axonal connections (Fig. 2A). When two



17468 - ). Neurosci., November 28, 2012 - 32(48):17465-17476

>

left hemisphere

right hemisphere

left hemisphere  right hemisphere

Figure1.

. . - "..'a'_." :.I
'l’_"iel.-'h-#{‘é:} -0.5

Shen et al. o Structural Constraints on Functional Organization

source

Connectivity matrices of 82 macaque cortical regions. A, Resting-state BOLD—fMRI FC (Pearson’s correlation coefficients) averaged across sixmonkeys. B, Structural connectivity derived

from the CoCoMac database of macaque axonal tract tracing studies. Strengths of anatomical connections are denoted by shading (strong, white; moderate, light gray; weak, dark gray; absent
connection, black). Matrices are organized generally from anterior to posterior regions, for left then right hemispheres. Labels and ordering of regions within each hemisphere are

specified in Table 1.
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regions were not anatomically connected, 0.25¢
median FC was —0.126, which was signif-
icantly different from the median correla-
tion coefficients of pairs with direct
anatomical connections (see above;
Kruskal-Wallis test, p < 0.001), and this
was driven by a large proportion (0.69) of
negative correlations. Inferring FC from
anatomical connectivity therefore re- 0

Proportion of
connections

-
-

———

sulted in a number of false-positive and 0.5

false-negative detections. True-positive

detections made up for 52.6% (3492 of B
6642), false-negatives for 22.3% (1479 of
6642), and false-positives for 25.2% (1671
of 6642) of all connections. Notably, the
vast majority of false-positive detections
(72.3%) were found in intrahemispheric
connections. Together, these results sug-
gest that FC is additionally mediated by in-
direct anatomical connections.

To further examine the relationship
between local FC and the underlying ana-
tomical structure, we determined the co-
sine similarity between the FC and
anatomical connectivity matrices. Akin to
a correlation, the cosine similarity de-
scribes the correspondence between two
vectors. When considering the whole cor-
tical network, the cosine similarity was
0.32. When considering regions individu-
ally, however, cosine similarity ranged ex-
tensively from —0.19 to 0.63 when regions
were treated as sources and from —0.13 to
0.54 when they were treated as targets
(Fig. 2B). Cosine similarity was greater for
intrahemispheric comparisons (0.34 and
0.33 for left and right hemispheres, respectively) than for inter-
hemispheric comparisons (0.25 and 0.23 for left-to-right and
right-to-left, respectively), owing mostly to sparser anatomical
connections between hemispheres.

Figure 2.

sources

0 0.5 1
Functional connectivity

targets

cos
w07
0

FC varies with anatomical connectivity. 4, Distributions of FC strengths for region pairs with no direct anatomical
connections (blue) and weak (green), moderate (orange), and strong (red) anatomical connections. Colored arrows indicate the
medians of the corresponding distributions (no direct anatomical connection, —0.126; weak —0.090; moderate, 0.092; strong,
0.201). Only reliable coefficients as determined by a bootstrapping procedure are shown. B, Cosine similarity between functional
and structural connectivity for each cortical region of the left hemisphere projected onto the F99 surface. Values are displayed for
regions as sources and targets separately. Right hemisphere cosine similarities were similar (data not shown).

Anatomical connections support global functional
community structure

To determine the extent to which the neuroanatomical architec-
ture constrains functional organization, we examined the con-
nections within and across anatomical subnetworks that support
various functional subnetworks. We first partitioned the func-
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Community structure of macaque resting-state fMRI networks. 4, The functional network partitioned into four modules. Node ordering as specified in Table 2. B, Functional community
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0.8
Participation coefficient

structure projected onto the F99 surface. Modules 1 (yellow), 2 (gray), 3 (green), and 4 (blue) as outlined in Table 2. C, Rank-ordered functional participation coefficients for positive weights in left
hemisphere. Right hemisphere data were similar (data not shown). Nodes identified as hubs in the structural network using apex ratio are denoted by red bars (Fig. 7). * denote structural hubs
identified using degree measures. ** denote structural hubs identified using both degree and betweenness centrality measures. For abbreviations, see Table 1.

tional network into modules using previously described graph
theoretical tools (Rubinov and Sporns, 2011). The macaque
functional network was highly modular compared with null
models (Q* = 0.503 vs 0.1995 = 0.0008) and partitioned into
four subnetworks (Fig. 3A,B; Table 2): (1) an anterior module
predominantly comprising prefrontal and cingulate regions; (2)
a ventrolateral module that included the secondary somatosen-
sory and auditory cortices, the ventrolateral premotor cortex, and
the insulae; (3) a dorsomedial module including both primary
somatosensory and motor cortices as well as extrastriate and pa-
rietal areas; and (4) a posterior module that included visual areas
V1 and V2 as well as limbic and paralimbic regions (amygdala,
hippocampus, parahippocampus). When considering the func-
tional networks across individual animals, the partitions varied
slightly, but the networks were highly modular and most regions
were consistently clustered into similar subnetworks (Table 3).

We can further describe the community structure of the func-
tional network by computing a participation coefficient for each
region. This measure characterizes the extent to which each
region participates across the entire network, with larger co-
efficients indicative of a more diverse set of intermodular con-
nections. Figure 3C shows the functional participation coefficient for
positive weights. Some regions—such as those in parietal cortex,
parahippocampal cortex, and primary motor cortex— have low par-
ticipation coefficients, suggesting that they are more functionally
embedded within their own module. Other regions—such as supe-
rior and polar temporal cortices, the amygdala, retrosplenial and
anterior cingulate cortices, as well as orbito-prefrontal cortex—have
high participation coefficients, suggesting that they have a more di-
verse set of functional connections to regions outside of their own
modules.

To determine whether there is a relationship between struc-
ture and function at the network level, we correlated the func-
tional participation coefficient to the within-module degree in
the anatomical network. We found that the functional participa-
tion coefficient for positive weights varied with the anatomical
within-module degree (Pearson’s correlation, r = —0.415, p <
0.0001; Fig. 4A): the fewer intramodular anatomical connections
that a region had, the more likely it was to have more intermodu-
lar functional connections. We found no such relationship for the

functional participation coefficient calculated with negative
weights (r = 0.127, p = 0.25).

We next examined whether the anatomical connectivity
within the functionally defined partitions were different from
that across the entire network. We determined the MI of each
anatomical node for a set of NPIs (see Materials and Methods). A
positive MI value indicates a greater participation of that ana-
tomical node within its functionally defined module than across
the whole network, and a negative MI indicates a greater partic-
ipation of that node across the whole network than within its
functionally defined module. The MI was significantly >0 for
both density and symmetry (Fig. 4B; t test, p << 0.001). This
suggests that nodes were more likely to be connected to other
nodes within their own modules than to nodes outside of their
modules. Moreover, their connections within their own modules
were more likely to be bidirectional compared with their connec-
tions to nodes outside their modules. The MI for transmission,
however, was not significantly different from 0 (Fig. 4B; p =
0.87), indicating that the proportion of afferent and efferent con-
nections of a node was the same within and outside of its module.
Notably, the MI for density was significantly greater than that for
all null models with preserved degree distributions (Fig. 4B; t
tests, all p < 0.001). The MI for symmetry was significantly
greater than that for the majority of these null models (Fig. 4B;
791 of 1000 with p < 0.05). The observed MI for transmission,
however, was no different from the fixed degree null models (Fig.
4Bsall p > 0.11).

Previous studies have shown how FC increases with decreas-
ing distance between regions (Honey et al., 2009), and we found
a similar, but weak, relationship between distance and positive
FC weights (Pearson’s correlation, r = —0.27, p < 0.001) but not
negative FC weights (r = 0.043, p = 0.20). Anatomical connec-
tivity, when measured using diffusion imaging techniques, is also
known to increase with decreasing distance (Honey et al., 2009;
Lewis et al., 2009), and we observed a similar pattern of anatom-
ical connectivity in our histologically derived dataset, with the
distribution of connection lengths skewed toward shorter dis-
tances (data not shown) (Kaiser and Hilgetag, 2004). Because our
functional divisions were spatially contiguous (Fig. 3B), it is pos-
sible that the increased density and symmetry of anatomical con-
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Table 2. Cortical regions comprising each partition of the functional network (see
Fig. 34)

Module

Cortical regions

1 Dorsolateral prefrontal cortex
Prefrontal polar cortex
Centrolateral prefrontal cortex
Medial prefrontal cortex
Dorsomedial prefrontal cortex
Orbitomedial prefrontal cortex
Anterior cingulate cortex
Orbitolateral prefrontal cortex
Subgenual cingulate cortex
Amygdala, R
Temporal polar cortex, R

2 Orbitoinferior prefrontal cortex
Anterior insula
Superior temporal cortex, R
Ventrolateral prefrontal cortex
Posterior insula
Gustatory cortex
Primary auditory cortex
Ventrolateral premotor cortex
Secondary somatosensory cortex
Secondary auditory cortex

3 Primary motor cortex
Primary somatosensory cortex
Medial premotor cortex
Dorsolateral premotor cortex
Superior parietal cortex
Inferior parietal cortex
Intraparietal cortex
Medial parietal cortex
Posterior cingulate cortex
Frontal eye field
Anterior visual area (dorsal)
Retrosplenial cingulate cortex, L

4 Visual area 2
Retrosplenial cingulate cortex, R
Central temporal cortex
Anterior visual area (ventral)
Superior temporal cortex, L
Visual area 1
Ventral temporal cortex
Inferior temporal cortex
Hippocampus
Amygdala, L
Temporal polar cortex, L
Parahippocampal cortex

Regions of both left (L) and right (R) hemispheres appear together in the same module unless otherwise stated.

nections we observed within modules were simply because of the
greater proximity of regions within modules. We tested the hy-
pothesis that asymmetrical connections are more likely to exist
between distant regions by examining the connection lengths of
both unidirectional and bidirectional connections in our ana-
tomical data. Within hemispheres, we found no differences in the
distances between regions that were unidirectionally connected
(median, 26.5 mm), those that were bidirectionally connected
(median, 28.2 mm), and those that were not connected (median,
27.8 mm) (Kruskall-Wallis test, p = 0.318). The only difference
we observed was when we also considered connections between
hemispheres (p < 0.001). A post hoc comparison indicated that
interhemispheric regions that were not connected were signifi-
cantly more distant from each other (median, 37.9 mm) than
either unidirectional (median, 31.4 mm) or bidirectional (me-
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dian, 31.4 mm) connections across hemispheres (Tukey—Kramer
test, p < 0.05), and no differences existed between interhemi-
spheric unidirectional and bidirectional connection lengths.
Anatomical connection symmetry was therefore not a function
of distance. We also compared our observed anatomical network
measures with those from 1000 null models whose connection
length distributions were preserved. The MI for density was sig-
nificantly >0 for most null models (771 of 1000; ¢ tests, p < 0.05),
suggesting that proximity does play a role in determining the
density of connections within modules. However, we still found a
large and significant difference in the MI for density between the
observed network and the null models (Fig. 4B; average MI, 0.12
vs 0.026; t tests, all p < 0.01). The same was true for symmetry for
most null models (946 of 1000; ¢ tests, p < 0.05), additionally
substantiating our above analyses that showed how symmetry did
not increase with decreasing distance.

Distinct structural motifs support functional organization
The symmetry of anatomical connections within functionally de-
fined modules suggests that information processing is supported
by bidirectional anatomical connections within modules that al-
low for greater functional integration. To explore this further, we
compared structural motifs found within modules with those
found across the whole network. Specifically, for each unique
motif, we computed the probability of occurrence for each node,
considering only its respective module or considering the net-
work as a whole. We describe the prevalence of a motif within
modules as the difference between these two probabilities. Figure
5A shows the modular prevalence for motifs with three nodes.
The fully connected bidirectional motif had the highest modular
prevalence, on average being 14.6% more likely to appear within
functionally defined modules than when considering the whole
network. Interestingly, the motifs with the highest probability of
occurrence outside of the modules (having a negative modular
prevalence) were those with a single asymmetrically connected
node. Examining the prevalence of motifs having four nodes
yielded similar results (Fig. 5B). Together with the NPIs, these
data suggest that functional modules are made up of dense, bidi-
rectional structural connections and that functional communi-
cation between modules is supported by unidirectional
connections via specific nodes (Fig. 6).

To determine which anatomical nodes act as hubs to support
functional integration both within (provincial hubs) and across
(connector hubs) modules, we computed the apex ratio for each
region in the structural network (Sporns et al., 2007). This mea-
sure gives an estimate of the “hubness” of a region by determining
how often each region is the central node in a specific hub-like
motif in which two unconnected nodes are bidirectionally con-
nected to a third apical node (Fig. 7, inset). When considering the
whole anatomical network, the apex ratio was high for regions in
the parietal, prefrontal, cingulate, and temporal cortices, as well
as in the posterior insula and the parahippocampal cortex (Fig.
7). Using degree or betweenness centrality measures to identify
hub regions gave similar results. These structural hubs spanned
all functionally defined modules. Notably, regions identified as
structural hubs also tended to be those regions with the highest
and lowest functional participation coefficients (Fig. 3B). Struc-
tural hubs with a greater diversity of FC across modules included
regions in the temporal and prefrontal cortices, as well as the
anterior cingulate cortex. In contrast, structural hubs whose FC
was limited mostly to its own module included regions in the
parietal cortex and the parahippocampal cortex. These areas were
generally consistent with areas previously identified as functional
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Table 3. Functional network partitions for individual monkeys
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hubs in humans (Buckner et al., 2009;
Cole et al., 2010). Specific anatomical
connections therefore determine the de-
gree to which a region is functionally con-
nected to other regions within and across
modules.

Discussion

In the present study, we examined the re-
lationship between structure and function
in the primate brain by comparing di-
rected anatomical connectivity derived
from axonal tract tracing studies in ma-
caques to resting-state BOLD—fMRI FC
obtained from anesthetized macaques.
We found that the strength of FC varied
with the strength of the anatomical con-
nections between regions and that FC was
robustly present even between regions
that had no direct anatomical connection.
We also demonstrated moderate corre-
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spondence between the FC and anatomical
connectivity of each region. Importantly, we
showed how functional modularity was as-
sociated with denser and highly bidirec-
tional anatomical connections within
modules. An examination of the motif
structures revealed that symmetrically
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o

connected structural motifs occurred
more frequently within functionally de-
fined modules compared with the whole
network, whereas asymmetrically con-
nected motifs occurred more frequently
between modules. Finally, we identified
structural hubs that facilitate communica-
tion both within and between functional
modules. Together, these results suggest
that local neuroanatomical connectivity
helps to establish the global community
structure of the functional network.

The relationship between brain struc-
ture and BOLD—MRI has drawn much
interest in recent years. In humans, stud-
ies using diffusion imaging-based white
matter tractography in combination with
BOLD—fMRI have qualitatively described
how functionally connected regions have
corresponding white matter connectivity
(Greicius et al., 2009; van den Heuvel et
al., 2009a). In addition, quantitative com-
parisons have shown how the strength of
FC varies with the density of the detected
fiber tract (Koch et al., 2002; Hagmann et
al., 2008; Skudlarski et al., 2008; Honey et
al., 2009). As in the present study, how-
ever, FC is also consistently reported between regions that have
no direct anatomical connections (Koch et al., 2002; Vincent et
al., 2007; Skudlarski et al., 2008; Habas et al., 2009; Honey et al.,
2009; Buckner et al., 2011), suggesting that FC between pairs of
regions is also mediated by polysynaptic as well as shared affer-
ent/efferent connections with other regions. The similarity we
observed between FC and anatomical connectivity was ~0.3
overall and in line with previous reports in humans (Hagmann et
al., 2008; Skudlarski et al., 2008; Honey et al., 2009). The relation-
ship between structure and function is, therefore, non-trivial and
BOLD-fMRI FC analyses serve to complement rather than re-
place diffusion imaging or anatomical tracer studies in determin-
ing anatomical connectivity. Constructing functional networks
using coarser timescales yields better matches between structure
and function (Honey et al., 2007), whereas finer timescales result
in highly variable functional networks (Chang and Glover, 2010;
Hutchison etal., 2012a). This variability in functional networks is
believed to emerge from the intrinsic dynamics of individual
nodes, allowing the system to maintain a broad repertoire of
states (Bressler and Kelso, 2001; Deco et al., 2011). Thus, dif-
ferent configurations of coactive regions (i.e., subnetworks)
can occur in different functional contexts despite a fixed struc-
tural backbone (McIntosh, 2000, 2004; Sporns and Kotter,
2004), leading to a somewhat weak correspondence
between structural and functional networks.

In the present study, resting-state BOLD—fMRI was acquired
from macaques under anesthesia, and the resulting FC patterns
may not reflect the network dynamics of the awake brain. How-
ever, homologous resting-state networks have been reported in
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both awake (Moeller et al., 2009; Mantini et al., 2011) and anes-
thetized (Vincent et al., 2007; Hutchison et al., 2011; Adachi et al.,
2012) monkeys, suggesting a conserved functional architecture
between monkeys and humans (Margulies et al., 2009; Kelly et al.,
2010; Hutchison et al., 2012b). Our resting-state macaque corti-
cal network formed four functional clusters. The first (anterior)
module included regions in the lateral prefrontal cortex thought
to be involved in cognitive control (Miyashita and Hayashi, 2000;
Miller and Cohen, 2001). This module was also composed of
regions important in reward-related behavior, such as the
amygdala, medial and orbito-prefrontal cortices, as well as the
anterior cingulate cortex (Cardinal et al., 2002; Holland and Gal-
lagher, 2004). The second (ventrolateral) module included ven-
trolateral prefrontal cortex, ventrolateral premotor cortex, the
insulae, gustatory cortex, as well as both primary and secondary
auditory cortices. These regions make up parts of the ventral
motor system, a network thought to be involved in understand-
ing observed actions and visually guided grasping (Nelissen et al.,
2005; Davare et al., 2011). This network is additionally involved
in controlling the movements of the mouth and tongue and is
considered the precursor to the human language system (Binkof-
ski and Buccino, 2006; Gentilucci and Dalla Volta, 2008). The
third (dorsomedial) module was primarily composed of regions
involved in sensorimotor integration. For example, the dorsal
anterior visual area and regions in the posterior parietal cortex
form the visuomotor networks for eye movements (Moore et al.,
2003; Johnston and Everling, 2008) and limb movements (Picard
and Strick, 2001; Hoshi and Tanji, 2007) via the frontal eye fields
and premotor/motor cortices, respectively. A fourth (posterior)
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Figure 7.  Hubs in the structural network span all functional modules. Rank-ordered
apex ratio for nodes in the anatomical network for the left hemisphere. Right hemisphere
data were similar (data not shown). The functional module assignment of each node is
denoted in parentheses. * denote hubs identified using degree measures. ** denote hubs
identified using both degree and betweenness centrality measures. For abbreviations, see
Table 1.

Functional community structure is supported by differential anatomical wiring within and across modules.
Anatomical connections are depicted for functionally defined modules. Unidirectional connections (red) are predominantly
between modules, whereas bidirectional connections (blue) are more abundant within modules. Modules 1—4 are shown
clockwise starting from the top left (colors as in Fig. 3B). The size of each node is scaled according to its apex ratio (see
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module comprised visual and extrastriate
regions responsible for visual processing
(Felleman and Van Essen, 1991; Tsao et
al., 2003), as well as the amygdala and hip-
pocampus whose interactions are indi-
cated in both declarative and emotional
memory (Rolls et al., 1993; Chudasama et
al., 2009). We also identified structural
hubs that serve to aid functional commu-
nication either across modules or within
modules by showing how these regions
tended to have either high or low func-
tional participation coefficients (Fig. 3B).
These regions may therefore be consid-
ered putative functional connector and
provincial hubs, respectively.

Most empirical studies of the structural
contribution to functional networks have
used diffusion imaging-based tractography
to measure anatomical connectivity. These
methods, however, suffer from several limi-
tations (Mori and Zhang, 2006). First,
they cannot provide information on the
directionality of axons. Second, crossing
fibers are difficult to detect in diffusion
tensor imaging as fiber orientations
within a given voxel are averaged. Diffu-
sion spectrum imaging may be able to
resolve the fiber orientation complexi-
ties within voxels, but it is still con-
strained by the acquisition resolution
which limits the size of detectable fiber
tracts, as well as the ability to discern
bundles that cross each other at small
angles (Hagmann et al., 2007; Wedeen
et al., 2008). Using data from invasive
axonal tract tracing studies provided us
a more direct measure of the anatomical connectivity of the
macaque brain. Importantly, it allowed us to investigate
whether the directionality of axonal connections plays a role in
determining the organization of functional networks. Con-
nectivity data collated in CoCoMac, however, lacks informa-
tion about some interhemispheric connections because
tracing studies predominantly investigate ipsilateral connec-
tions. This incompleteness of the anatomical connectivity ma-
trix likely had little effect on our results, because computing
the cosine similarity for only region pairs whose anatomical
connectivity is explicitly specified in CoCoMac resulted in
only a slightly higher correspondence between structure and
function than when we consider all region pairs (0.37 vs 0.32).

Invasive axonal tract tracing studies, in conjunction with
recent advances in macaque resting-state BOLD—fMRI, can
therefore provide a more thorough understanding of the con-
tribution of anatomical connectivity to resting-state FC in the
primate brain. A qualitative comparison of resting-state FC in
monkeys to known axonal tracts has demonstrated some cor-
respondence between the two (Mantini etal., 2011). Addition-
ally, Adachi et al. (2012) reported how resting-state FC in
monkeys increased with increasing symmetry of the anatom-
ical connections between regions. Using computational mod-
eling, they showed how the pattern of structural connectivity
had a significant impact on the FC between two anatomically
unconnected regions. Randomly rewired anatomical networks
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that preserved motif frequency had the greatest correspon-
dence to the empirical data than when preserving the degree
distributions, modularity, or clustering coefficient of nodes
within the macaque anatomical network. Here, we add to this
existing literature by demonstrating empirically that network-
level functional segregation is supported by the underlying
anatomical connectivity. Notably, we observed no differences
between the unidirectional and bidirectional connection length
distributions despite a general decreasing probability of anatom-
ical connection with distance. This result suggests that the extra
metabolic cost of maintaining a long-range bidirectional connec-
tion as opposed to a unidirectional one is outweighed by the
functional advantage of increased information flow, further sup-
porting our findings that the directionality of connections drive
functional segregation and specialization.

Most previous human studies of functional modularity
have reported the decomposition of average whole-brain net-
works into five modules (Fair et al., 2009; He et al., 2009;
Meunier et al., 2009), whereas we detected only four. The
differences in decomposition could be attributable to inherent
differences between species or differences in parcellation
schemes, because we did not include subcortical structures
that are commonly included in human networks. Decompo-
sition differences could also be attributable to differences in
network construction, because previous studies used sparse and
binary adjacency matrices. Interestingly, Rubinov and Sporns
(2011) showed how increasing the influence of negative weights
led to a decreasing number of modules, whereas increasing the
threshold of a binarized matrix resulted in an increasing number
of modules, as is expected as the graph becomes more and more
disconnected. A recent study examining individual human func-
tional networks reported the detection of between 4 and 5 (mean,
4.6) using the same algorithm as in the present study (Lord et al.,
2012), suggesting that some variability exists across individuals
(Table 3). Of note, the decomposition of average human func-
tional networks using the techniques we used resulted in only
four consistent modules (Rubinov and Sporns, 2011), which
closely match the functional divisions we observed.

By characterizing the community structure of a macaque
resting-state functional network, we showed how this functional
clustering was a consequence of the underlying structural or-
ganization. This is in line with previous work examining the
modular structure of anatomical networks. Partitioning of
both monkey and human structural networks result in ana-
tomical subnetworks that may underlie different sensory, mo-
tor, and cognitive functions (Hilgetag et al., 2000; Chen et al.,
2008; Hagmann et al., 2008). Our data support the hypothesis
that both functional specialization (Passingham et al., 2002)
and functional integration (Sporns et al., 2007) are attribut-
able to patterns of local afferent and efferent connections. The
notable presence of fully connected symmetric motifs within
modules suggests that these connections support greater func-
tional integration within modules. The higher prevalence of
asymmetric motifs outside of the modules suggests that func-
tional information flow between modules is supported by uni-
directional anatomical connections.

Resting-state FC is increasingly considered as a measure of
functional capacity. For example, graph measures that character-
ize the efficiency of the functional network are correlated with
intellectual ability (van den Heuvel et al., 2009b). Moreover, al-
tered FC is consistently reported in a growing number of neuro-
degenerative and neuropsychiatric disorders (Buckner et al.,
2008; Greicius, 2008; Bassett and Bullmore, 2009). Little is
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known, however, about the underlying neuroanatomy in those
states. Given the highly conserved nature of neuroanatomical
connections across primate species (Katz and Harris-Warrick,
1999; Preuss, 2000), it is reasonable to infer that homologous
resting-state networks arise from the shared constraints of ho-
mologous anatomical architectures. As such, the macaque brain
provides a powerful model for studying the relationship between
structure and function in disease states.

References

AdachiY, Osada T, Sporns O, Watanabe T, Matsui T, Miyamoto K, Miyashita
Y (2012) Functional connectivity between anatomically unconnected
areas is shaped by collective network-level effects in the macaque cortex.
Cereb Cortex 22:1586—1592. CrossRef Medline

Bassett DS, Bullmore ET (2009) Human brain networks in health and dis-
ease. Curr Opin Neurol 22:340-347. CrossRef Medline

Bezgin G, Wanke E, Krumnack A, Kétter R (2008) Deducing logical rela-
tionships between spatially registered cortical parcellations under condi-
tions of uncertainty. Neural Netw 21:1132—-1145. CrossRef Medline

Bezgin G, Vakorin VA, van Opstal AJ, McIntosh AR, Bakker R (2012)
Hundreds of brain maps in one atlas: Registering coordinate-
independent primate neuro-anatomical data to a standard brain. Neu-
roimage 62:67-76. CrossRef Medline

Binkofski F, Buccino G (2006) The role of ventral premotor cortex in action
execution and action understanding. ] Physiol Paris 99:396—405.
CrossRef Medline

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding
of communities in large networks. J Stat Mech P10008.

Bressler SL (1995) Large-scale cortical networks and cognition. Brain Res
Brain Res Rev 20:288-304. CrossRef Medline

Bressler SL, Kelso JA (2001) Cortical coordination dynamics and cognition.
Trends Cogn Sci 5:26-36. CrossRef Medline

Bressler SL, Menon V (2010) Large-scale brain networks in cognition:
emerging methods and principles. Trends Cogn Sci 14:277-290. CrossRef
Medline

Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default
network: anatomy, function, and relevance to disease. Ann N'Y Acad Sci
1124:1-38. CrossRef Medline

Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-
Hanna JR, Sperling RA, Johnson KA (2009) Cortical hubs revealed by
intrinsic functional connectivity: mapping, assessment of stability, and
relation to Alzheimer’s disease. ] Neurosci 29:1860—1873. CrossRef
Medline

Buckner RL, Krienen EM, Castellanos A, Diaz JC, Yeo BT (2011) The orga-
nization of the human cerebellum estimated by intrinsic functional con-
nectivity. ] Neurophysiol 106:2322-2345. CrossRef Medline

Cardinal RN, Parkinson JA, Hall J, Everitt B] (2002) Emotion and motiva-
tion: the role of the amygdala, ventral striatum, and prefrontal cortex.
Neurosci Biobehav Rev 26:321-352. CrossRef Medline

Chang C, Glover GH (2010) Time-frequency dynamics of resting-state
brain connectivity measured with fMRI. Neuroimage 50:81-98. CrossRef
Medline

Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans AC (2008) Revealing mod-
ular architecture of human brain structural networks by using cortical
thickness from MRI. Cereb Cortex 18:2374-2381. CrossRef Medline

ChudasamaY, Izquierdo A, Murray EA (2009) Distinct contributions of the
amygdala and hippocampus to fear expression. Eur J Neurosci 30:2327—
2337. CrossRef Medline

Cole MW, Pathak S, Schneider W (2010) Identifying the brain’s most glob-
ally connected regions. Neuroimage 49:3132-3148. CrossRef Medline

Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a
review of studies combining structural connectivity and resting-state
functional connectivity. Brain Struct Funct 213:525-533. CrossRef
Medline

Davare M, Kraskov A, Rothwell JC, Lemon RN (2011) Interactions be-
tween areas of the cortical grasping network. Curr Opin Neurobiol
21:565-570. CrossRef Medline

Deco G, Jirsa VK, McIntosh AR (2011) Emerging concepts for the dynami-
cal organization of resting-state activity in the brain. Nat Rev Neurosci
12:43-56. CrossRef Medline


http://dx.doi.org/10.1093/cercor/bhr234
http://www.ncbi.nlm.nih.gov/pubmed/21893683
http://dx.doi.org/10.1097/WCO.0b013e32832d93dd
http://www.ncbi.nlm.nih.gov/pubmed/19494774
http://dx.doi.org/10.1016/j.neunet.2008.05.010
http://www.ncbi.nlm.nih.gov/pubmed/18617367
http://dx.doi.org/10.1016/j.neuroimage.2012.04.013
http://www.ncbi.nlm.nih.gov/pubmed/22521477
http://dx.doi.org/10.1016/j.jphysparis.2006.03.005
http://www.ncbi.nlm.nih.gov/pubmed/16723210
http://dx.doi.org/10.1016/0165-0173(94)00016-I
http://www.ncbi.nlm.nih.gov/pubmed/7550362
http://dx.doi.org/10.1016/S1364-6613(00)01564-3
http://www.ncbi.nlm.nih.gov/pubmed/11164733
http://dx.doi.org/10.1016/j.tics.2010.04.004
http://www.ncbi.nlm.nih.gov/pubmed/20493761
http://dx.doi.org/10.1196/annals.1440.011
http://www.ncbi.nlm.nih.gov/pubmed/18400922
http://dx.doi.org/10.1523/JNEUROSCI.5062-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19211893
http://dx.doi.org/10.1152/jn.00339.2011
http://www.ncbi.nlm.nih.gov/pubmed/21795627
http://dx.doi.org/10.1016/S0149-7634(02)00007-6
http://www.ncbi.nlm.nih.gov/pubmed/12034134
http://dx.doi.org/10.1016/j.neuroimage.2009.12.011
http://www.ncbi.nlm.nih.gov/pubmed/20006716
http://dx.doi.org/10.1093/cercor/bhn003
http://www.ncbi.nlm.nih.gov/pubmed/18267952
http://dx.doi.org/10.1111/j.1460-9568.2009.07012.x
http://www.ncbi.nlm.nih.gov/pubmed/20092575
http://dx.doi.org/10.1016/j.neuroimage.2009.11.001
http://www.ncbi.nlm.nih.gov/pubmed/19909818
http://dx.doi.org/10.1007/s00429-009-0208-6
http://www.ncbi.nlm.nih.gov/pubmed/19565262
http://dx.doi.org/10.1016/j.conb.2011.05.021
http://www.ncbi.nlm.nih.gov/pubmed/21696944
http://dx.doi.org/10.1038/nrn2961
http://www.ncbi.nlm.nih.gov/pubmed/21170073

Shen et al.  Structural Constraints on Functional Organization

Efron B, Tibshirani R] (1993) An introduction to the bootstrap. New York:
Chapman and Hall.

Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM,
Schlaggar BL, Petersen SE (2009) Functional brain networks develop
from a “local to distributed” organization. PLoS Comput Biol
5:€1000381. CrossRef Medline

Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in
the primate cerebral cortex. Cereb Cortex 1:1-47. CrossRef Medline

Gentilucci M, Dalla Volta R (2008) Spoken language and arm gestures are
controlled by the same motor control system. Q J Exp Psychol (Hove)
61:944-957. CrossRef Medline

Greicius M (2008) Resting-state functional connectivity in neuropsychiat-
ric disorders. Curr Opin Neurol 21:424—430. CrossRef Medline

Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state
functional connectivity reflects structural connectivity in the default
mode network. Cereb Cortex 19:72-78. CrossRef Medline

Guimer a R, Nunes Amaral LA (2005) Functional cartography of complex
metabolic networks. Nature 433:895-900. CrossRef Medline

Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius
MD (2009) Distinct cerebellar contributions to intrinsic connectivity
networks. ] Neurosci 29:8586—8594. CrossRef Medline

Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen V], Meuli R, Thiran JP
(2007) Mapping human whole-brain structural networks with diffusion
MRI. PLoS One 2:e597. CrossRef Medline

Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen V],
Sporns O (2008) Mapping the structural core of human cerebral cortex.
PLoS Biol 6:e159. CrossRef Medline

He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, Tang H, Zhu C, Gong Q,
ZangY, Evans AC (2009) Uncovering intrinsic modular organization of
spontaneous brain activity in humans. PLoS One 4:e5226. CrossRef
Medline

Hilgetag CC, Burns GA, O’Neill MA, Scannell JW, Young MP (2000) Ana-
tomical connectivity defines the organization of clusters of cortical areas
in the macaque monkey and the cat. Philos Trans R Soc Lond B Biol Sci
355:91-110. CrossRef Medline

Holland PC, Gallagher M (2004) Amygdala-frontal interactions and reward
expectancy. Curr Opin Neurobiol 14:148-155. CrossRef Medline

Honey CJ, Kétter R, Breakspear M, Sporns O (2007) Network structure of
cerebral cortex shapes functional connectivity on multiple time scales.
Proc Natl Acad Sci U S A 104:10240-10245. CrossRef Medline

Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann
P (2009) Predicting human resting-state functional connectivity from
structural connectivity. Proc Natl Acad Sci USA 106:2035-2040.
CrossRef Medline

Honey CJ, Thivierge JP, Sporns O (2010) Can structure predict function in
the human brain? Neuroimage 52:766—776. CrossRef Medline

Hoshi E, Tanji ] (2007) Distinctions between dorsal and ventral premotor
areas: anatomical connectivity and functional properties. Curr Opin Neu-
robiol 17:234-242. CrossRef Medline

Hutchison RM, Leung LS, Mirsattari SM, Gati JS, Menon RS, Everling S
(2011) Resting-state networks in the macaque at 7 T. Neuroimage 56:
1546-1555. CrossRef Medline

Hutchison RM, Womelsdorf T, Gati JS, Everling S, Menon RS (2012a)
Resting-state networks show dynamic functional connectivity in awake
humans and anesthetized macaques. Hum Brain Mapp. Advance online
publication. Retrieved November 4, 2012. doi:10.1002/hbm.22058.
CrossRef Medline

Hutchison RM, Gallivan JP, Culham JC, Gati JS, Menon RS, Everling S
(2012b) Functional connectivity of the frontal eye fields in humans and
macaque monkeys investigated with resting-state fMRI. J Neurophysiol
107:2463-2474. CrossRef Medline

Johnston K, Everling S (2008) Neurophysiology and neuroanatomy of re-
flexive and voluntary saccades in non-human primates. Brain Cogn 68:
271-283. CrossRef Medline

Kaiser M, Hilgetag CC (2004) Modelling the development of cortical sys-
tems networks. Neurocomputing 58 —60:297-302. CrossRef

Katz PS, Harris-Warrick RM (1999) The evolution of neuronal circuits un-
derlying species-specific behavior. Curr Opin Neurobiol 9:628—633.
CrossRef Medline

Kelly C, Uddin LQ, Shehzad Z, Margulies DS, Castellanos FX, Milham MP,
Petrides M (2010) Broca’s region: linking human brain functional con-

J. Neurosci., November 28, 2012 - 32(48):17465-17476 « 17475

nectivity data and non-human primate tracing anatomy studies. Eur
J Neurosci 32:383-398. CrossRef Medline

Koch MA, Norris DG, Hund-GeorgiadisM (2002) An investigation of func-
tional and anatomical connectivity using magnetic resonance imaging.
Neuroimage 16:241-250. CrossRef Medline

Kotter R, Stephan KE (2003) Network participation indices: characterizing
component roles for information processing in neural networks. Neural
Netw 16:1261-1275. CrossRef Medline

Kotter R, Wanke E (2005) Mapping brains without coordinates. Philos
Trans R Soc Lond B Biol Sci 360:751-766. CrossRef Medline

Lewis JD, Theilmann RJ, Sereno MI, Townsend J (2009) The relation be-
tween connection length and degree of connectivity in young adults: a
DTTI analysis. Cereb Cortex 19:554-562. CrossRef Medline

Lord A, Horn D, Breakspear M, Walter M (2012) Changes in community
structure of resting state functional connectivity in unipolar depression.
PLoS One 7:¢41282. CrossRef Medline

Mantini D, Gerits A, Nelissen K, Durand JB, Joly O, Simone L, Sawamura H,
Wardak C, Orban GA, Buckner RL, Vanduffel W (2011) Default mode
of brain function in monkeys. ] Neurosci 31:12954-12962. CrossRef
Medline

Margulies DS, Vincent JL, Kelly C, Lohmann G, Uddin LQ, Biswal BB,
Villringer A, Castellanos FX, Milham MP, Petrides M (2009) Precuneus
shares intrinsic functional architecture in humans and monkeys. Proc
Natl Acad Sci U S A 106:20069-20074. CrossRef Medline

McIntosh AR (2000) Towards a network theory of cognition. Neural Netw
13:861-870. CrossRef Medline

McIntosh AR (2004) Contexts and catalysts: a resolution of the localization
and integration of function in the brain. Neuroinformatics 2:175-182.
CrossRef Medline

Meunier D, Achard S, Morcom A, Bullmore E (2009) Age-related changes
in modular organization of human brain functional networks. Neuroim-
age 44:715-723. CrossRef Medline

Meunier D, Lambiotte R, Bullmore ET (2010) Modular and hierarchically
modular organization of brain networks. Front Neurosci 4:200. CrossRef
Medline

Miller EK, CohenJD (2001) An integrative theory of prefrontal cortex func-
tion. Annu Rev Neurosci 24:167-202. CrossRef Medline

Miyashita Y, Hayashi T (2000) Neural representation of visual objects: en-
coding and top-down activation. Curr Opin Neurobiol 10:187-194.
CrossRef Medline

Moeller S, Nallasamy N, Tsao DY, Freiwald WA (2009) Functional connec-
tivity of the macaque brain across stimulus and arousal states. ] Neurosci
29:5897-5909. CrossRef Medline

Moore T, Armstrong KM, Fallah M (2003) Visuomotor origins of covert
spatial attention. Neuron 40:671-683. CrossRef Medline

Mori S, Zhang] (2006) Principles of diffusion tensor imaging and its appli-
cations to basic neuroscience research. Neuron 51:527-539. CrossRef
Medline

Nelissen K, Luppino G, Vanduffel W, Rizzolatti G, Orban GA (2005) Ob-
serving others: multiple action representation in the frontal lobe. Science
310:332-336. CrossRef Medline

Passingham RE, Stephan KE, Kétter R (2002) The anatomical basis of func-
tional localization in the cortex. Nat Rev Neurosci 3:606—616. CrossRef
Medline

Picard N, Strick PL (2001) Imaging the premotor areas. Curr Opin Neuro-
biol 11:663—672. CrossRef Medline

Preuss TM (2000) Taking the measure of diversity: comparative alternatives
to the model-animal paradigm in cortical neuroscience. Brain Behav Evol
55:287-299. CrossRef Medline

Preuss TM (2007) Evolutionary specializations of primate brain systems. In:
Primate origins: adaptations and evolution (Ravosa MJ, Dagosto M, eds),
pp 625-675. Chicago: Springer.

Rolls ET, Cahusac PM, Feigenbaum JD, Miyashita Y (1993) Responses of
single neurons in the hippocampus of the macaque related to recognition
memory. Exp Brain Res 93:299-306. CrossRef Medline

Rowe JB (2010) Connectivity analysis is essential to understand neurologi-
cal disorders. Front Syst Neurosci 4.pii:144.

Rubinov M, Sporns O (2011) Weight-conserving characterization of com-
plex functional brain networks. Neuroimage 56:2068-2079. CrossRef
Medline

Skudlarski P, Jagannathan K, Calhoun VD, Hampson M, Skudlarska BA,
Pearlson G (2008) Measuring brain connectivity: diffusion tensor imag-


http://dx.doi.org/10.1371/journal.pcbi.1000381
http://www.ncbi.nlm.nih.gov/pubmed/19412534
http://dx.doi.org/10.1093/cercor/1.1.1
http://www.ncbi.nlm.nih.gov/pubmed/1822724
http://dx.doi.org/10.1080/17470210701625683
http://www.ncbi.nlm.nih.gov/pubmed/18470824
http://dx.doi.org/10.1097/WCO.0b013e328306f2c5
http://www.ncbi.nlm.nih.gov/pubmed/18607202
http://dx.doi.org/10.1093/cercor/bhn059
http://www.ncbi.nlm.nih.gov/pubmed/18403396
http://dx.doi.org/10.1038/nature03288
http://www.ncbi.nlm.nih.gov/pubmed/15729348
http://dx.doi.org/10.1523/JNEUROSCI.1868-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19571149
http://dx.doi.org/10.1371/journal.pone.0000597
http://www.ncbi.nlm.nih.gov/pubmed/17611629
http://dx.doi.org/10.1371/journal.pbio.0060159
http://www.ncbi.nlm.nih.gov/pubmed/18597554
http://dx.doi.org/10.1371/journal.pone.0005226
http://www.ncbi.nlm.nih.gov/pubmed/19381298
http://dx.doi.org/10.1098/rstb.2000.0551
http://www.ncbi.nlm.nih.gov/pubmed/10703046
http://dx.doi.org/10.1016/j.conb.2004.03.007
http://www.ncbi.nlm.nih.gov/pubmed/15082318
http://dx.doi.org/10.1073/pnas.0701519104
http://www.ncbi.nlm.nih.gov/pubmed/17548818
http://dx.doi.org/10.1073/pnas.0811168106
http://www.ncbi.nlm.nih.gov/pubmed/19188601
http://dx.doi.org/10.1016/j.neuroimage.2010.01.071
http://www.ncbi.nlm.nih.gov/pubmed/20116438
http://dx.doi.org/10.1016/j.conb.2007.02.003
http://www.ncbi.nlm.nih.gov/pubmed/17317152
http://dx.doi.org/10.1016/j.neuroimage.2011.02.063
http://www.ncbi.nlm.nih.gov/pubmed/21356313
http://dx.doi.org/10.1002/hbm.22058
http://www.ncbi.nlm.nih.gov/pubmed/22438275
http://dx.doi.org/10.1152/jn.00891.2011
http://www.ncbi.nlm.nih.gov/pubmed/22298826
http://dx.doi.org/10.1016/j.bandc.2008.08.017
http://www.ncbi.nlm.nih.gov/pubmed/18940273
http://dx.doi.org/10.1016/j.neucom.2004.01.059
http://dx.doi.org/10.1016/S0959-4388(99)00012-4
http://www.ncbi.nlm.nih.gov/pubmed/10508740
http://dx.doi.org/10.1111/j.1460-9568.2010.07279.x
http://www.ncbi.nlm.nih.gov/pubmed/20662902
http://dx.doi.org/10.1006/nimg.2001.1052
http://www.ncbi.nlm.nih.gov/pubmed/11969331
http://dx.doi.org/10.1016/j.neunet.2003.06.002
http://www.ncbi.nlm.nih.gov/pubmed/14622883
http://dx.doi.org/10.1098/rstb.2005.1625
http://www.ncbi.nlm.nih.gov/pubmed/15971361
http://dx.doi.org/10.1093/cercor/bhn105
http://www.ncbi.nlm.nih.gov/pubmed/18552356
http://dx.doi.org/10.1371/journal.pone.0041282
http://www.ncbi.nlm.nih.gov/pubmed/22916105
http://dx.doi.org/10.1523/JNEUROSCI.2318-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21900574
http://dx.doi.org/10.1073/pnas.0905314106
http://www.ncbi.nlm.nih.gov/pubmed/19903877
http://dx.doi.org/10.1016/S0893-6080(00)00059-9
http://www.ncbi.nlm.nih.gov/pubmed/11156197
http://dx.doi.org/10.1385/NI:2:2:175
http://www.ncbi.nlm.nih.gov/pubmed/15319515
http://dx.doi.org/10.1016/j.neuroimage.2008.09.062
http://www.ncbi.nlm.nih.gov/pubmed/19027073
http://dx.doi.org/10.3389/fnins.2010.00200
http://www.ncbi.nlm.nih.gov/pubmed/21151783
http://dx.doi.org/10.1146/annurev.neuro.24.1.167
http://www.ncbi.nlm.nih.gov/pubmed/11283309
http://dx.doi.org/10.1016/S0959-4388(00)00071-4
http://www.ncbi.nlm.nih.gov/pubmed/10753793
http://dx.doi.org/10.1523/JNEUROSCI.0220-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19420256
http://dx.doi.org/10.1016/S0896-6273(03)00716-5
http://www.ncbi.nlm.nih.gov/pubmed/14622573
http://dx.doi.org/10.1016/j.neuron.2006.08.012
http://www.ncbi.nlm.nih.gov/pubmed/16950152
http://dx.doi.org/10.1126/science.1115593
http://www.ncbi.nlm.nih.gov/pubmed/16224029
http://dx.doi.org/10.1038/nrn893
http://www.ncbi.nlm.nih.gov/pubmed/12154362
http://dx.doi.org/10.1016/S0959-4388(01)00266-5
http://www.ncbi.nlm.nih.gov/pubmed/11741015
http://dx.doi.org/10.1159/000006664
http://www.ncbi.nlm.nih.gov/pubmed/10971014
http://dx.doi.org/10.1007/BF00228398
http://www.ncbi.nlm.nih.gov/pubmed/8491268
http://dx.doi.org/10.1016/j.neuroimage.2011.03.069
http://www.ncbi.nlm.nih.gov/pubmed/21459148

17476 - ). Neurosci., November 28, 2012 - 32(48):17465-17476

ing validates resting state temporal correlations. Neuroimage 43:554—
561. CrossRef Medline

Snyder AZ, Raichle ME (2012) A brief history of the resting state: the Wash-
ington University perspective. Neuroimage 62:902-910. CrossRef
Medline

Sporns O, Kotter R (2004) Motifs in brain networks. PLoS Biol 2:e369.
CrossRef Medline

Sporns O, Honey CJ, Kotter R (2007) Identification and classification of
hubs in brain networks. PLoS One 2:e1049. CrossRef Medline

Stephan KE, Kamper L, Bozkurt A, Burns GA, Young MP, Kétter R (2001)
Advanced database methodology for the Collation of Connectivity data
on the Macaque brain (CoCoMac). Philos Trans R Soc Lond B Biol Sci
356:1159—-1186. CrossRef Medline

Tononi G, McIntosh AR, Russell DP, Edelman GM (1998) Functional clus-
tering: identifying strongly interactive brain regions in neuroimaging
data. Neuroimage 7:133-149. CrossRef Medline

Tsao DY, Freiwald WA, Knutsen TA, Mandeville JB, Tootell RB (2003)
Faces and objects in macaque cerebral cortex. Nat Neurosci 6:989-995.
CrossRef Medline

van den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE (2009a) Func-
tionally linked resting-state networks reflect the underlying structural
connectivity architecture of the human brain. Hum Brain Mapp 30:3127—
3141. CrossRef Medline

Shen et al. o Structural Constraints on Functional Organization

van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE (2009b) Efficiency
of functional brain networks and intellectual performance. ] Neurosci
29:7619-7624. CrossRef Medline

Van Essen DC (2004) Surface-based approaches to spatial localization and
registration in primate cerebral cortex. Neuroimage 23 [Suppl 1]:
§97-S107. CrossRef Medline

Van Essen DC, Drury HA, Dickson ], Harwell J, Hanlon D, Anderson CH
(2001) Anintegrated software suite for surface-based analyses of cerebral
cortex. ] Am Med Inform Assoc 8:443—459. CrossRef Medline

Varela F, Lachaux JP, Rodriguez E, Martinerie ] (2001) The brainweb:
phase synchronization and large-scale integration. Nat Rev Neurosci
2:229-239. CrossRef Medline

Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC,
Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic
functional architecture in the anaesthetized monkey brain. Nature
447:83—86. CrossRef Medline

Wedeen V], Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai G, Pandya
DN, Hagmann P, D’Arceuil H, de Crespigny AJ (2008) Diffusion spec-
trum magnetic resonance imaging (DSI) tractography of crossing fibers.
Neuroimage 41:1267-1277. CrossRef Medline

Zeki SM (1978) Functional specialisation in the visual cortex of the rhesus
monkey. Nature 274:423—428. CrossRef Medline


http://dx.doi.org/10.1016/j.neuroimage.2008.07.063
http://www.ncbi.nlm.nih.gov/pubmed/18771736
http://dx.doi.org/10.1016/j.neuroimage.2012.01.044
http://www.ncbi.nlm.nih.gov/pubmed/22266172
http://dx.doi.org/10.1371/journal.pbio.0020369
http://www.ncbi.nlm.nih.gov/pubmed/15510229
http://dx.doi.org/10.1371/journal.pone.0001049
http://www.ncbi.nlm.nih.gov/pubmed/17940613
http://dx.doi.org/10.1098/rstb.2001.0908
http://www.ncbi.nlm.nih.gov/pubmed/11545697
http://dx.doi.org/10.1006/nimg.1997.0313
http://www.ncbi.nlm.nih.gov/pubmed/9558645
http://dx.doi.org/10.1038/nn1111
http://www.ncbi.nlm.nih.gov/pubmed/12925854
http://dx.doi.org/10.1002/hbm.20737
http://www.ncbi.nlm.nih.gov/pubmed/19235882
http://dx.doi.org/10.1523/JNEUROSCI.1443-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19515930
http://dx.doi.org/10.1016/j.neuroimage.2004.07.024
http://www.ncbi.nlm.nih.gov/pubmed/15501104
http://dx.doi.org/10.1136/jamia.2001.0080443
http://www.ncbi.nlm.nih.gov/pubmed/11522765
http://dx.doi.org/10.1038/35067550
http://www.ncbi.nlm.nih.gov/pubmed/11283746
http://dx.doi.org/10.1038/nature05758
http://www.ncbi.nlm.nih.gov/pubmed/17476267
http://dx.doi.org/10.1016/j.neuroimage.2008.03.036
http://www.ncbi.nlm.nih.gov/pubmed/18495497
http://dx.doi.org/10.1038/274423a0
http://www.ncbi.nlm.nih.gov/pubmed/97565

	Information Processing Architecture of Functionally Defined Clusters in the Macaque Cortex
	Introduction
	Materials and Methods
	Results
	Local FC varies with anatomical connectivity
	Anatomical connections support global functional community structure
	Distinct structural motifs support functional organization
	Discussion
	References


