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Increasing neuroimaging evidence suggests an association between impulsive decision-making behavior and task-related brain activity.
However, the relationship between impulsivity in decision-making and resting-state brain activity remains unknown. To address this
issue, we used functional MRI to record brain activity from human adults during a resting state and during a delay discounting task (DDT)
that requires choosing between an immediate smaller reward and a larger delayed reward. In experiment I, we identified four DDT-
related brain networks. The money network (the striatum, posterior cingulate cortex, etc.) and the time network (the medial and
dorsolateral prefrontal cortices, etc.) were associated with the valuation process; the frontoparietal network and the dorsal anterior
cingulate cortex–anterior insular cortex network were related to the choice process. Moreover, we found that the resting-state functional
connectivity of the brain regions in these networks was significantly correlated with participants’ discounting rate, a behavioral index of
impulsivity during the DDT. In experiment II, we tested an independent group of subjects and demonstrated that this resting-state
functional connectivity was able to predict individuals’ discounting rates. Together, these findings suggest that resting-state functional
organization of the human brain may be a biomarker of impulsivity and can predict economic decision-making behavior.

Introduction
Delay discounting refers to a phenomenon in economic decision-
making in which an individual’s valuation of a future reward
declines as the delay until reward delivery increases (Ainslie,
1975). The mechanism underlying delay discounting has been
investigated extensively using a paradigm known as the delay
discounting task (DDT) that requires choosing between an im-
mediate smaller reward and a larger delayed reward. An individ-
ual’s preference for an immediate reward, which can be measured
using a behavioral index of discounting rate, characterizes one’s
impulsivity in decision-making (Green and Myerson, 2004). Dis-
counting rates vary among individuals and are relatively stable
over time (Kirby, 2009) and are thus an indicator of trait-level
impulsivity in economic decision-making.

To date, the neural mechanisms underlying impulsivity in
decision-making have not been fully understood. Functional
magnetic resonance imaging (fMRI) studies have shown evi-
dence for an association between impulsive decision-making be-
havior and DDT-related brain activation in the frontoparietal
regions and the striatum (McClure et al., 2004; Boettiger et al.,
2007; Kable and Glimcher, 2007). However, it is not clear
whether trait-level impulsivity in decision-making may be related
to the functional organization of the brain in a resting state.
Resting-state functional connectivity (rsFC), indexed by correla-
tions in low-frequency fluctuation of the resting-state fMRI sig-
nal, may characterize the intrinsic functional organization of the
brain (Fox and Raichle, 2007). Preliminary support for the reflec-
tion of trait-level economic impulsivity in rsFC comes from re-
cent studies that revealed that substance abusers (who tend to
have high discounting rates; Perry and Carroll, 2008) exhibited
altered rsFC (Ma et al., 2010; Ma et al., 2011). Thus, in the present
study, we investigated whether the rsFC between brain regions
recruited during the DDT is associated with one’s preference for
an immediate reward. Moreover, we tested whether the rsFC can
predict individuals’ discounting rates in the DDT with an inde-
pendent sample.

The DDT has been shown to activate several neural networks
engaged in the valuation process and the choice process (Kable
and Glimcher, 2009; Peters and Büchel, 2011), including the net-
works for reward valuation according to monetary magnitude
�e.g., the striatum and the posterior cingulate cortex (PCC)� and
time delay (e.g., the medial and lateral prefrontal regions)
(Ballard and Knutson, 2009; Pine et al., 2009) and the networks

Received March 19, 2012; revised Dec. 23, 2012; accepted Jan. 18, 2013.
Author contributions: N.L., N.M., and D.-R.Z. designed research; N.L., N.M., Y.L., X.-S.H., and X.-M.F. performed

research; N.L., N.M., Y.L., D.-L.S., X.-M.F., and S.H. contributed unpublished reagents/analytic tools; N.L., N.M.,
X.-S.H., D.-L.S., X.Z., and S.H. analyzed data; N.L., N.M., X.Z., S.H., and D.-R.Z. wrote the paper.

This study was supported by National Nature Science Foundation of China Grants 31000458, 30870764, and
91024025, Fundamental Research Funds for the Central Universities of China Grant WK2070000007, and National
Basic Research Program of China 973 Program 2010CB833903. We thank the two anonymous reviewers for their
important comments and constructive suggestions on our previous manuscript. We thank Dr. Tianzi Jiang for advice
on data analysis and Dr. Michael Varnum for proofreading the manuscript.

The authors declare no competing financial interests.
*N.L. and N.M. contributed equally to this work.
Correspondence should be addressed to Da-Ren Zhang, Chinese Academy of Sciences, Key Laboratory of Brain

Function and Disease, and School of Life Sciences, University of Science and Technology of China, Huangshan Road
443, Hefei, Anhui 230027, China. E-mail: drzhang@ustc.edu.cn.

DOI:10.1523/JNEUROSCI.1342-12.2013
Copyright © 2013 the authors 0270-6474/13/334886-10$15.00/0

4886 • The Journal of Neuroscience, March 13, 2013 • 33(11):4886 – 4895



for choice comparison based on reward value [e.g., the frontopa-
rietal network and the dorsal anterior cingulate cortex (dACC)–
anterior insular cortex (AIC) network; Monterosso et al., 2007;
Hoffman et al., 2008]. In addition, task-related activity in the
frontoparietal network and the dACC–AIC network is engaged in
deliberation and emotional processes, respectively, during
decision-making (Sanfey et al., 2006), and the rsFC in the fron-
toparietal network and dACC–AIC network is correlated with
executive task performance and anxiety, respectively (Seeley et
al., 2007). The present study investigated whether the rsFC be-
tween brain regions recruited during the DDT is associated with
preference for immediate reward. Moreover, given the different
function roles of the DDT-related neural networks, we examined
whether the rsFC within these neural networks is associated with
the impulsivity of economic decision-making in a similar vein.

Materials and Methods
Experiment I
Participants
Twenty-three Chinese adults (16 males; mean � SD age, 22.8 � 1.6 years,
ranging from 20 to 25 years; mean � SD years of education, 16.5 � 1.6,
ranging from 13 to 19 years) participated in experiment I. All participants
reported no history of neurological or psychiatric disorders. Written
informed consent was obtained before the study. This study was ap-
proved by the Human Research Ethics Committee of the University of
Science and Technology of China.

Experimental procedure
DDT
The DDT used a jittered single-trial design, similar to Ballard and
Knutson (2009) (Fig. 1a). To ensure that each future reward option
would be presented only once during the entire task and that each block
would cover a similar size of a two-dimensional space for monetary
magnitude and time delay of future reward options, future reward op-
tions were combined with two sets of monetary magnitudes (M1: 50, 55,
70, 90, 110, 140, 175 Chinese yuan; M2: 50, 60, 68, 75, 100, 125, 150
Chinese yuan) and two sets of time delays (T1: 0, 7, 30, 60, 90, 180 d; T2:
0, 10, 28, 50, 100, 160 d) as M1T1, M1T2, T1M2, and T2M2, yielding four

blocks with 42 trials each. The first and second
combinations (“money-to-time” blocks) and
the third and fourth combinations (“time-to-
money” blocks) were counterbalanced in
terms of the order in which future reward op-
tions were presented. The order of the four
blocks was counterbalanced across
participants.

Each participant performed a short ver-
sion of the DDT to get familiar with the task
(�5 min and without any payment) before
scanning. During scanning, to ensure
incentive compatibility and to verify that
discounting measures were reliable, partici-
pants were informed that they would receive
actual payment (between 50 and 175 Chinese
yuan) based on their choice on one randomly
drawn trial of the task. Participants came to
our laboratory and got the payment within
24 h after the scanning if the outcome of the
selected trial was a monetary gain in 0 d or in
the specified delay for the delayed reward
outcome of the selected trial. Participants
were paid in cash on the same day if the out-
come of the selected trial was immediate
monetary gain or after a specified period of
delay if the selected trial was a delayed re-
ward. Participants were paid with cash.
There was no extra payment to the
participants.

MRI data acquisition
Imaging data were obtained with a 3 T Siemens Magnetom Trio scanner
in the Anhui Provincial Hospital (Hefei, Anhui, China). A circularly
polarized head coil was used, with foam padding to restrict head motion.
Functional images were acquired with a T2*-weighted echo-planar im-
aging sequence (echo time, 30 ms; repetition time, 2 s; field of view, 24
cm; matrix, 64 � 64) with 33 axial slices (slice gap, 0 mm; one voxel:
3.75 � 3.75 � 3.7 mm), covering the whole brain. Before entering the
MR scanner, all the participants were told to keep their heads steady
during all scans. Resting-state fMRI data were first acquired with one
functional 8 min scan (240 epochs) when participants were asked to keep
their eyes closed. This was followed by four functional scans corre-
sponding to the four blocks of the DDT. Each lasted for 8 min, 40 s,
during which participants performed the DDT. Between every two
scans, there was an interval of �1 min. Corresponding high-
resolution T1-weighted spin-echo (for anatomical overlay) images
and three-dimensional gradient-echo (for stereotaxic transforma-
tion) images were also collected.

Association analyses
Behavioral data analyses
Each participant’s discounting rate was assessed based on the choices
made in the DDT (Ballard and Knutson, 2009). For each delay, the
choices were defined as 0 for choosing the immediate option and 1 for
choosing the future option and then were fit with a logistic function to
determine the monetary amount at which there was a 0.5 probability of
choosing the immediate versus the future option for the delay, which was
the “indifference point” to derive the discounted value (DV) for the
delay, where

DV �
magnitude of immediate reward

indifference point
,

and the magnitude of immediate reward was always 50 Chinese yuan in
the present study. DVs were fit against the delays with a hyperbolic func-
tion (Rodriguez and Logue, 1988),

DV �
1

1 � k � D
,

Figure 1. Paradigm of DDT and analysis of behavioral data. a, The DDT paradigm. The immediate option (i.e., offering 50
Chinese yuan in 0 d) was presented first with a 2 s duration. After that, the information of monetary magnitude and time delay of
the future reward was presented in sequence. Participants made their choices when the second information of the future reward
was presented. Intertrial intervals were 2– 6 s. All the information during the task was presented in simplified Chinese. b, Illustra-
tion of the discounting curve from one participant. Steeper discounting curve indicates higher impulsivity for the individual. c,
Definition of easy and hard trials. Trials located in the area �w were defined as hard trials and the other ones as easy trials.
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called discounting curve (Fig. 1b), in which D refers to the delay in days,
and k is an individual’s discounting rate, with larger k indicating higher
impulsivity in decision-making. Trials with missed choices were ex-
cluded from this processing and from subsequent processing. Trials with
response times (RTs) �100 ms were also excluded, because these indi-
cated responses before the choice screen being presented. The other trials
were defined as hit trials and were included in the analyses.

Easy trials and hard trials were defined to parse the difficulty level of
decision-making, similar to Hoffman et al. (2008). For each trial, dis-
tance to discounting curve is defined as DV� � DV̂, where

DV� �
magnitude of immediate reward (50 yuan)

magnitude of future reward
,

and DV̂ is the value on an individual’s discounting curve in the corre-
sponding delay. RTs were fit against the distance to each individual’s
discounting curve (dist) by a normal distribution function:

RT � C � A ● exp� �
1

2�dist

w �2�.

Trials located within the area �w were defined as hard trials, and other
trials outside this area were defined as easy ones (Fig. 1c). For trials with
future reward options involving either 50 yuan or 0 d, which are the same
as the immediate reward option in either monetary magnitude or time
delay, participants could make their choices by simply comparing the
digits of the other information of the options (i.e., comparing time delay
for the 50 yuan future reward options, and comparing monetary magni-
tude for the 0 d future reward options), without integrating the informa-
tion of money magnitude and time delay that is considered as an essential
process in the DDT (Green and Myerson, 2004). Thus, these trials, la-
beled as control trials, were considered as the baseline of the decision-
making demand (Boettiger et al., 2007; Hoffman et al., 2008) and were
excluded from hard and easy trials.

fMRI data analysis
Preprocessing. The imaging data were processed with AFNI (Analysis of
Functional Neuroimages) (Cox, 1996) and MATLAB (version 7.6.0.324;
MathWorks). Each participant’s raw data were corrected for temporal
shifts between slices, corrected for motion, spatially smoothed with a
Gaussian kernel (full width at half maximum � 4 mm), and temporally
normalized (for each voxel, the signal of each epoch was divided by the
temporally averaged signal). We scanned a total of 27 participants in
experiment I, and four were excluded from imaging data analysis as a
result of head motion being larger than 2.0 mm. To reduce the effect of
head motion and obtain low-frequency fluctuation from resting-state
fMRI data, we regressed the motion data out of the time series and then
preformed bandpass temporal filtering (0.01– 0.08 Hz) on the residual
signals (Birn et al., 2006; Auer, 2008). Then, to further reduce nuisance
signals, we regressed out the average signals in the white matter and the
CSF (Ma et al., 2010, 2011). The mask of white matter for each partici-
pant was determined from the high-resolution structural image using
FAST segmentation program of Functional MRI of the Brain software
library (www.fmrib.ox.ac.uk). The resultant white matter segmentations
were merged by 80% tissue type probability. The CSF mask for each
participant was manually drawn according to the anatomical boundaries
of the cortical structures of a standardized Talairach atlas brain
(Talairach et al., 1992), transformed onto the image space of the individ-
ual, and then modified according to the cortical structures of the indi-
vidual brain by referencing to the anatomical boundaries in the high-
resolution three-dimensional structural image. These nuisance signals
were used to account for fluctuations unlikely to be relevant to neuronal
activity (Fox et al., 2005; Birn et al., 2006; Di Martino et al., 2008). The
resultant resting-state fMRI data were then subjected to functional con-
nectivity analysis.

Localizing regions of interest. We first defined the regions of interest
(ROIs) using the DDT-related fMRI data for additional rsFC analysis.
Because decision-making engages both valuation and choice processes
(Kable and Glimcher, 2009; Peters and Büchel, 2011), we used a multiple
regression analysis to localize the ROIs related to valuation and choice

processes in the DDT, respectively. This analysis included the following
psychological regressors: a “money” regressor (defined as 1 to 7 accord-
ing to the seven levels of monetary magnitudes of future rewards for each
scan when the money information was presented and 0 for the other
epochs), a “time” regressor (defined as 1 to 6 according to the six levels of
time delays of future rewards for each scan when the time information
was presented and 0 for the other epochs), two “choice” regressors for
hard and easy trials, respectively (defined as 1 for hard/easy trials when
participants were required to choose between the options and 0 for the
other epochs), and “period” regressors (defined as 1 for period effects for
the epochs when the immediate reward was presented or when the first
information of future reward was presented or when choice was re-
quired, respectively, and 0 for the other epochs). These regressors were
convolved by the gamma function to approximate the hemodynamic
response of the brain to a stimulus. The regression analysis also included
six regressors for head motion and two regressors for linear trends and
constant for each scan.

In localization of the ROIs for valuating monetary magnitude in the
DDT, each participant’s preprocessed time series of the money-to-time
scans were concatenated and the regressors were applied in the multiple
regression analysis. The resultant �-value map of the money regressor for
each participant was transformed to the Talairach space (resampled
voxel size: 2 � 2 � 2 mm) according to the spatial transformation be-
tween the anatomical data and the Talairach space and was then entered
into group-level one-sample t test. The group-level t test map was
masked by the gray matter of the brain (Ballard and Knutson, 2009) and
then merged at the threshold of cluster size 20 voxels (160 mm 3) and
uncorrected p � 0.005 for single voxels. Clusters in which the activation
showed a positive correlation with monetary magnitude were defined as
the money-related ROIs (Ballard and Knutson, 2009). The regression
analysis showed activations in brain regions of the mesolimbic cortices
�e.g., the striatum, the medial prefrontal cortex (mPFC), and PCC�,
which were found to be related to processing reward in previous studies
(McClure et al., 2004; Kable and Glimcher, 2007; Ballard and Knutson,
2009; Pine et al., 2009), as well as one cluster in the occipital cortex that
was, however, excluded in the analysis of resting-state data because the
occipital activation might simply arise from differential visual processing
of monetary digits. The procedure of localizing the ROIs for valuating
time delay was similar to that for the money-related ROIs but used the
imaging data in the time-to-money scans as the method implemented by
Fitzgerald et al. (2010). Because shorter time delay represents placing a
greater value on future reward (Ballard and Knutson, 2009), the time-
related ROIs were defined as the clusters in which the activation for the
time regressor showed negative correlation with time delay.

The procedure of localizing the ROIs for the choice process was similar
to that for the money-related ROIs (both the money-to-time and time-
to-money scans were used). In the group-level one-sample t test, clusters
that showed a positive activation in the contrast between choice regres-
sors of hard and easy trials were merged at the significance level of p �
0.05 [familywise error corrected, i.e., uncorrected p � 0.005 for single
voxels and a minimum cluster of 53 voxels (424 mm 3)]. Most of the
activated clusters were well separated from each other in the functional
statistic map, and only a few activation areas in dorsal part of the PFC
were further segmented into subregions because they may be involved in
different functions (Aron et al., 2004; Goldstein et al., 2007; Heekeren et
al., 2008; Rangel et al., 2008; Rowe et al., 2010) by referencing them to the
anatomical boundaries in the Talairach atlas. The resultant ROIs were
further separated into two subsets, the frontoparietal network and the
dACC–AIC network, because brain regions in the two networks have
different functions in decision-making (Sanfey et al., 2006) and are dis-
sociated in their rsFC (Seeley et al., 2007).

In total, we localized the brain regions that were involved in valuating
monetary magnitude and time delay, and we labeled them as “the money
network” and “the time network,” because according to our localization
procedure, which was similar to that by Ballard and Knutson (2009), the
two networks were dissociated in their functions during the DDT. In
addition, the brain regions associated with the choice process were di-
vided into two subsets mainly according to previous evidence of func-
tional differences in decision-making (Sanfey et al., 2006). Thus, the two
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subsets were labeled more conventionally, as “the frontoparietal net-
work” and “the dACC–AIC network.” The four networks were well sep-
arated from each other in their containing brain regions (Fig. 2, Table 1).
Although the brain regions in the time network were close to those in the
frontoparietal network, the majority of the regions in the two networks
were dissociated. The subsequent analysis was based on the rsFC within
and between these four DDT-related networks.

Defining functional connectivity intensities for the ROIs. The rsFC of the
ROIs was analyzed using the algorithm from graph theory (He et al.,
2008; Liu et al., 2008; Bullmore and Sporns, 2009) that allows the defini-
tion and calculation of the properties of a network involving multiple
brain regions along a series of predefined thresholds (Achard and
Bullmore, 2007; Stam et al., 2007). This has the advantage of providing a
global perspective on the functional organization of the brain and en-
ables the discovery of sensitive thresholds for measuring brain networks.
The present study used the parameter known as Kcost in graph theory as
a measurement for the functional connectivity intensity (FCI) of the
DDT-related brain regions. This parameter measures the sparseness of
the connections in a network (Latora and Marchiori, 2003).

For each participant, the ROIs defined in Talairach space were trans-
formed to one’s original image space and then modified according to the
cortical structures of the individual brain by referencing to the anatom-
ical boundaries in the high-resolution three-dimensional structural im-
age. The preprocessed resting-state fMRI data were averaged within each
ROI. Correlation coefficients (r values) were calculated between each
pair of the averaged time series and then transformed to Fisher z values,
yielding an N � N functional connectivity matrix for each participant.
We merged each z value matrix with a T value as threshold and obtained
an undirected binary graph G, consisting of nodes (ROIs) and edges/
functional connections (functional connectivity between pairs of ROIs),
with the edge between the ith and the jth node in G defined by the
formula

eij � � 1 if�z	i, j
� � T,i � j
0 otherwise ,

which means that, if the absolute z value of functional connectivity between
the ith and the jth ROI is larger than T, the edge between the ith and the jth
node in graph G exists and vice versa. Because both positive and negative
connections contribute to the functional organization of a network (Fox et
al., 2005), most previous studies defined the connections between two brain
regions using the absolute value of the correlation coefficient. Thus, a larger
number of connections surviving in a network could represent more infor-
mation exchange within that brain network under a certain threshold (He et

Figure 2. DDT-related brain regions defined by task-related activations. a, Brain regions related to the valuation process. The money network consisted of brain regions in which the activity was
positively correlated with monetary magnitudes of future reward; the time network consisted of brain regions in which the activity was negatively correlated with time delays of future reward. b,
Brain regions related with the choice process. These were defied by contrasting hard versus easy trials in the DDT and were further divided into the frontoparietal network and the dACC–AIC network
for their different functional roles in decision-making. Str, Striatum; Hip, hippocampus; paraHip, parahippocampus; MFG, middle frontal gyrus.

Table 1. Regions of interest defined by the brain activations during the delay
discounting task

Regions Brodmann area Volume (mm 3) xa y z

Valuation processb

Money
R vmPFC 24 184 4.9 32.5 13.7
R Striatum 400 10.5 10.8 8.8
R PCC 23/31 504 10.1 �54.3 10.3
R Hip 248 28.4 �36.0 �1.4

184 32.4 �18.3 �11.0
L paraHip 30/30 528 �17.2 �36.5 1.0
R paraHip 272 16.6 �40.7 �1.3

Time
L dmPFC 8 808 �3.3 30.5 40.3
L vmPFC 24 248 �2.8 33.3 9.4
R vmPFC 24 240 3.2 31.2 1.3
L SFG 6/8 1104 �20.3 15.4 48.4
L dlPFC 9/46 832 �35.7 8.0 42.1
L IFG 44 1032 �48.5 11.7 22.9
L aPFC 10 1576 �34.8 43.0 7.9
L IPL 7/39 2384 �45.2 �55.0 37.8

Choice processb

dACC 24/32 7816 1.3 20.6 34.6
L AIC 13 2192 �30.5 17.7 2.5
R AIC 13 2648 33.8 16.4 1.6
R SFG 8 2000 22.6 13.3 50.0
R MFGc 8 1208 36.9 4.8 49.4
L dlPFCc 9/46 1808 �41.6 21.3 32.1
R dlPFCc 9/46 3336 40.6 26.8 28.8
L IFGc 6/44 1240 �43.5 5.8 30.7
R IFG 6/44 920 46.2 4.4 23.7
L aPFC 10 3288 �32.3 47.8 8.1
R aPFC 10 4712 30.0 51.4 7.7
L IPL 7/39 5064 �35.3 �57.7 40.1
R IPL 7/39 7896 38.4 �61.1 38.3

L, Left; R, right; Hip, hippocampus; paraHip, parahippocampus; MFG, middle frontal gyrus.
aCoordinates in Talairach space (x, left to right; y, posterior to anterior; z, inferior to superior).
bRegions of the valuation process: positive correlation with money magnitude; negative correlation with time delay;
threshold at uncorrected p � 0.005, cluster size 160 mm 3. Regions of the choice process: larger activation in hard
trials than in easy trials; threshold at uncorrected p � 0.005, cluster size 424 mm 3, corrected p � 0.05.
cSegmented regions.
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al., 2008; Liu et al., 2008; Bullmore and Sporns,
2009). The present research also used the abso-
lute value of correlation coefficients to define the
global functional organization of a network.

For an individual’s functional connectivity
matrix, we varied the threshold value T from 0
to the maximum of the absolute z value with a
step of 0.05, which produced a series of graphs
from those with all possible edges between the
nodes to those with no edges between any
nodes. For a graph G under a certain threshold
T, the FCI within the network was defined as
the cost of the graph, Kcost, which is the pro-
portion of the total number of edges in the
maximum possible number of edges:

FCIwithin_G � Kcost �
1

N	N � 1
 �
i�G, j�G

eij,

and could represent the sparseness of func-
tional connections in a graph. Moreover, we
further defined the FCI between two networks
(e.g., G and H ) as the proportion of survived
edges:

FCIbetween_G&H � Kcost_inter

�
1

NG � NH
�

i�G, j�H

eij.

Because we defined four brain networks related to the DDT, 10 FCIs were
calculated, including the following: (1) three FCIs for networks of the valu-
ation process: the FCI within the money network, the FCI within the time
network, and the FCI between the money and time networks; (2) three FCIs
for networks of the choice process: the FCI within the frontoparietal net-
work, the FCI within the dACC–AIC network, and the FCI between the
frontoparietal and dACC–AIC networks; and (3) four FCIs for networks of
the interaction between valuation and choice processes: the FCI between the
money and frontoparietal networks, the FCI between the money and dACC–
AIC networks, the FCI between the time and frontoparietal networks, and
the FCI between the time and dACC–AIC networks.

Correlation between FCIs and discounting rates. To investigate the as-
sociation between the rsFC of the ROIs and individuals’ discounting
rates, multiple linear regression analyses were conducted along all the T
steps with FCIs as independent variables (regressors) and discounting
rates [log transformed (Hariri et al., 2006)] as dependent variable. (For
some T steps, some FCIs might be zeros or ones across all the partici-
pants, so these FCIs did not contribute to the variation of discounting
rates, which were excluded from the multiple linear regression model,
leaving the other FCIs in the model.)

We determined a proper set of FCIs that could be used as regressors in the
regression model in the following way. We subjected all possible combina-
tions within the 10 FCIs (1023 combinations in total) to the multiple linear
regression analysis across the thresholds. We used adjusted R2 (adj-R2) to
measure the contribution of an FCI combination to the regression model.
This is the ratio of the variance explained by the regressors to the total
amount of variance in the dependent variable adjusted for the number of
explanatory terms in the model, and this statistic has been shown to be an
unbiased estimator of the contribution of a set of explanatory variables x to
the explanation of y (Ohtani, 2000).

For each combination of FCIs, we calculated the median of the adj-R2

values of the regression models across all the thresholds. If all FCIs reached
zeros or ones at a specific threshold, the multiple linear regression model
cannot be constructed and the adj-R2 values would be zero. The adj-R2

values on these thresholds were excluded from the median calculation.
Moreover, for some thresholds, the adj-R2 values might be negative. This
suggests that the explanatory variables explain less variation than random
normal variables would. In this case, the adj-R2 values would be modified to
zero (Legendre, 2008) and passed into the median calculation.

The combination with the largest adj-R2 median value consisted of five
FCIs, including the FCI within the money network, the FCI between the
money and time networks, the FCI within the frontoparietal network, the
FCI within the dACC–AIC network, and the FCI between the money and
dACC–AIC networks. Meanwhile, these FCIs were contained in both the top
5% and top 1% combinations sorted by adj-R2 median value for �50% (Fig.
3). Thus, these five FCIs were used in the multiple linear regression analysis
for investigating the association between resting-state FCI of DDT-related
brain regions and discounting rate. We also conducted multiple linear re-
gression analyses using all the possible combinations of FCIs to assess
whether the FCI-discounting rate association would be a similar direction
for the five selected FCIs across different combinations.

Prediction analyses
The results of association analysis suggest that the rsFC could predict an
individual’s discounting rate. We used the leave-one-out procedure to
test whether the association model could be used to predict individuals’
discounting rates (see Fig. 5a). To do this, we first built a norm model
(FCI-discounting rate association involving DDT-related brain regions)
based on 22 (the total sample size was 23 in experiment I) participants’
resting- and task-state fMRI data and discounting rates. Data from the 22
participants were used to relocalize the DDT-related brain regions and
then to reconduct the multiple linear regression analysis between FCIs
and discounting rates for the 22 participants along the series of thresh-
olds with the same algorithm used in the association analysis. FCIs used
in prediction analysis were fixed as the same five FCIs selected in associ-
ation analysis. After multiple linear regression analysis along the thresh-
old steps, we constructed a “correlation model” to estimate a single value
of discounting rate. For each threshold, the p value for the full model F
test of multiple linear regression was transformed to a z value, and then
for each participant, each FCI was averaged across all the thresholds
(Achard and Bullmore, 2007), weighted by the z values:

FCIm �

�
j

	z	Tj
 � FCIm	Tj



�
j

z	Tj

,

where m is for the mth FCI of the five FCIs selected in association analysis,
FCI( T) is the FCI on the threshold T, and z( T) is the transformed z value
according to the p value for the full model F test of multiple linear regres-
sion on the threshold T. This algorithm was used to enhance the weight of
FCIs from the more significant thresholds. The weighted averaged FCIs
were entered into a new multiple linear regression analysis as regressors,

Figure 3. Selection of FCI combinations for the association analysis. a, Medians of the adj-R 2 values for all the multiple linear
regression models across the thresholds in graph theory were sorted in descending order and plotted against their corresponding
FCI combinations. b, The proportion of the FCI within the top combinations was defined as the number of combinations containing
a certain FCI divided by the total number of top combinations. Within-M, The FCI within the money network; Within-T, the FCI
within the time network; Btw-M&T, the FCI between the money and time networks; Within-FP, the FCI within the frontoparietal
network; Within-AA, the FCI within the dACC–AIC network; Btw-FP&AA, the FCI between the frontoparietal and dACC–AIC net-
works; Btw-M&FP, the FCI between the money and frontoparietal networks; Btw-M&AA, the FCI between the money and dACC–
AIC networks; Btw-T&FP, the FCI between the time and frontoparietal networks; Btw-T&AA, the FCI between the time and
dACC–AIC networks.
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with discounting rates as the dependent variable, forming the correlation
model as the norm model for prediction. Next, FCIs of the 23rd partici-
pant (the “to-be-predicted” participant) were calculated using the brain
regions defined by data from the other 22 participants and then averaged
across all the thresholds weighted by the same z values, which were de-
fined by data from the other 22 participants. Finally, the weighted aver-
aged FCIs of the 23rd participant were substituted into the correlation
model to calculate the predicted discounting rate for the participant.

In prediction analysis, both the norm model and FCIs of the to-be-
predicted participant were independent of the participant’s task-state
data, making the predicted discounting rate independent of his/her task-
state data. The predicted discounting rates for all 23 participants were
entered into a correlation analysis with their actual discounting rates
(both were log transformed).

Correlation between discounting rate and head motion during
resting-state fMRI scan
Because head motion during scanning might be a trait and thus could be
confounded with individual differences (Van Dijk et al., 2012), we con-
ducted a correlation analysis of the participants’ head motion during the
resting-state scanning and their discounting rates to examine whether head
motion confounded the results of the association and prediction analyses.
With the motion parameters generated in the motion correction phase of
preprocessing, four separate metrics of head motion were calculated, includ-
ing mean motion, maximum motion, number of movements, and rotation
(Van Dijk et al., 2012). All four metrics were entered into correlation analysis
with participants’ discounting rates (log transformed).

Experiment II
The prediction analysis in experiment I suggested that the FCI-discounting
rate association model could be used to predict an individual’s discounting
rate. However, there is evidence that the generalizability of an internally
validated prediction may be poor for a new sample (Bleeker et al., 2003), and
external validation with independent samples is considered to be more rele-
vant than internal validation when the prediction model is applied in an-
other practical setting (Steyerberg et al., 2001; Toll et al., 2008). Thus, we
conducted a second experiment to provide external validation with an inde-
pendent sample of rsFC as a predictor of discounting rate.

Participants
An independent group of 38 Chinese adults (32 males; mean � SD age,
23.5 � 1.8 years, ranging from 20 to 28 years; mean � SD years of
education, 16.7 � 1.6 years, ranging from 13 to 19 years) participated in
experiment II. All participants reported no history of neurological or
psychiatric disorders. Written informed consent was obtained before the
study. This study was approved by the Human Research Ethics Commit-
tee of the University of Science and Technology of China.

Experiment procedure
Resting-state fMRI data were from another study of our group and were
obtained in the same manner as in experiment I. Corresponding high-
resolution T1-weighted spin-echo (for anatomical overlay) images and
three-dimensional gradient-echo (for stereotaxic transformation) im-
ages were also acquired. After fMRI data acquisition and outside the
scanner, each participant completed the same version of the DDT used in
experiment I. Some participants completed other cognitive tasks in the
scanner (data will appear elsewhere).

Data analyses
The DDT-related brain regions and the norm model obtained in exper-
iment I were used to define ROIs in experiment II. The five FCIs selected
in association analysis in experiment I were used to predict discounting
rates following the same procedure as in experiment I. These partici-
pants’ predicted discounting rates were entered into a correlation analy-
sis with their actual discounting rates (both were log transformed).
Correlations between head motion and participants’ discounting rates
(log transformed) were also calculated.

Results
Experiment I
In experiment I, participants’ discounting rates in the DDT
ranged from 0.00281 to 0.05529 (mean � SD, 0.01872 �
0.01228), similar to previous results (Ballard and Knutson,
2009). The proportion of hit trials was high (98.8 � 2.2%).
Within the hit trials, except control trials (for details, see
above, Behavioral data analyses), there were 65.7 � 4.6% easy
trials and 34.3 � 4.6% hard trials. Participants’ choices for
immediate and future reward did not significantly differ be-
tween easy and hard trials (F(1,22) � 0.001, p � 0.985, ANOVA;
Fig. 1c), indicating that the difficulty of the trials was orthog-
onal to choice of reward.

The analysis of the DDT-related fMRI data yielded the
ROIs of four networks. The money network, in which activa-
tions were positively correlated with monetary magnitude and
thus were engaged in the valuation process, consisted of the
right ventral medial PFC (vmPFC), right striatum, right PCC,
right hippocampus (two clusters), and bilateral parahip-
pocampus. The time network, in which activations were neg-
atively correlated with time delay, consisted of the left anterior
PFC (aPFC), left superior frontal gyrus (SFG), left dorsolateral
PFC (dlPFC), left inferior frontal gyrus (IFG), bilateral
vmPFC, left dorsal mPFC (dmPFC), and the left inferior pari-
etal lobe (IPL) (Fig. 2a, Table 1). These two networks are
similar to those previously observed to be engaged in a similar
paradigm (Ballard and Knutson, 2009).

Two networks related to the choice process were obtained in
which activations were identified by the contrast of hard versus easy
trials during the DDT. The frontoparietal network consisted of the
bilateral aPFC, dlPFC, IFG, IPL, the right SFG, and the right middle
frontal gyrus. The dACC–AIC network consisted of dACC and the
bilateral AIC (Fig. 2b, Table 1). The activation of these two networks
is consistent with previous observations using similar paradigms
(Monterosso et al., 2007; Hoffman et al., 2008).

Multiple linear regression analysis using the five selected FCIs
and individuals’ discounting rates in experiment I showed that
individuals’ discounting rates were positively correlated with the
FCI within the money network, the FCI within the dACC–AIC
network, and the FCI between the money and dACC–AIC net-
works. However, discounting rates were negatively correlated
with the FCI between the money and time networks and the FCI
within the frontoparietal network (Fig. 4a). Multiple linear re-
gression analysis using all the possible combinations of the 10
FCIs showed a pattern similar to that obtained from the above
five FCIs (Fig. 4b), suggesting robust correlations between impul-
sivity and the five FCIs. These results revealed the association
between intrinsic functional organization and individuals’ im-
pulsivity in decision-making.

Prediction analysis using the leave-one-out procedure in experi-
ment I revealed that the predicted discounting rates based on the five
FCIs selected in association analysis were significantly correlated
with actual discounting rates (r � 0.426, n � 23, p � 0.043; Fig. 5b),
indicating that the norm model based on resting-state activity can
predict the discounting rate for a given participant.

Experiment II
In experiment II, the delay discounting rates of the independent
sample ranged from 0.00067 to 0.04302 (mean � SD, 0.01439 �
0.01100), similar to that in experiment I. The proportion of hit
trials was high (99.8 � 0.3%). In external validation, the esti-
mated multiple linear regression model used to predict discount-
ing rates was
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predicted discounting rate �

2.67 � FCI(within_the_money_network)

� 12.15 � FCI(between_the_money & time_networks)

� 2.05 � FCI(within_the_frontoparietal_network)

� 1.64 � FCI(within_the_dACC–AIC_network)

� 2.61 � FCI(between_the_money &

dACC–AIC_networks) � 3.21,

where FCI represented the weighted average for the correspond-
ing FCI, and the � values in the model were consistent with the
association results in experiment I. Based on this model, pre-
dicted discounting rates were derived for the participants. A cor-
relation analysis showed that the predicted discounting rates
were significantly correlated with participants’ actual discount-
ing rates (r � 0.453, n � 38, p � 0.004; Fig. 5c). These results
constitute external validation and suggest that the norm model of
the FCI-discounting rate association can predict the discounting
rate for a given participant based on his resting-state fMRI data in
an independent sample.

Correlation between head motion and discounting rate
The correlations between the four metrics of head motion and
discounting rates were not significant in either experiment I (all p
values � 0.270) or experiment II (all p values � 0.643), indicating
that the relationship between resting-state brain function and
impulsivity cannot be attributed to individuals’ head motion
during the resting state.

Discussion
The previous fMRI studies found associations between impul-
sive decision-making behavior and DDT-related brain activa-
tion (McClure et al., 2004; Boettiger et al., 2007; Kable and
Glimcher, 2007) but leave open the question of whether
resting-state activity can predict impulsive decision-making.
The current work provides the first evidence linking individ-
uals’ impulsivity and rsFC in brain regions involved in the
DDT. Moreover, we found distinct patterns of association be-
tween resting-state FCIs in different neural networks and in-
dividuals’ impulsivity in decision-making.

The resting-state FCI within the money network was posi-
tively correlated with discounting rates. As noted previously, the
money network consists of the vmPFC, striatum, PCC, hip-
pocampus, and parahippocampus and is engaged in valuation of
both immediate and future rewards (McClure et al., 2004; Kable
and Glimcher, 2007; Ballard and Knutson, 2009). Furthermore,
hyperactivity of the money network is associated with increased
impulsivity during the DDT (Hariri et al., 2006; Mason et al.,
2012). Our fMRI findings complement previous research by
showing that enhanced rsFC in the money network may signifi-
cantly influence one’s sensitivity to reward information and thus
yield high impulsivity.

Interestingly, we found that the FCI between the money and
time networks was negatively correlated with discounting rates.
Both money and time networks play a key role in the valuation of
reward options based on monetary magnitude and time delay
(Ballard and Knutson, 2009; Pine et al., 2009). Our FCI results
suggest a “default” mode of integration of monetary magnitude
and time delay during the resting state that may be associated
with impulsivity during decision-making. It is possible that indi-

Figure 4. Association between impulsivity and the rsFC of the DDT-related networks. a, Multiple linear regressions between individuals’ discounting rates and the five FCIs selected as the most proper
combination. The t values for each regressor are transformed to z scores and plotted against the threshold T. Circles represent the z values with p � 0.05. b, Multiple linear regressions between individuals’
discounting rates and all the possible FCI combinations within the 10 FCIs. Scattered dots represent the z scores for the t values in each multiple linear regression analysis. Lines are the mean z scores of the
corresponding FCIs.
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viduals with stronger FCI between the money and time networks
during the resting state may use more frequent information ex-
change between the two networks during the DDT, and this may
result in less impulsive behavior during decision-making.

In addition to the valuation process, the choice process (e.g.,
self-control) also plays a pivotal role in the DDT (Luo et al., 2009;
Figner et al., 2010). Our fMRI results showed that the FCIs within
the frontoparietal network and within the dACC–AIC network
were correlated with discounting rates in opposite directions.
The anterior and dorsolateral regions of PFC, as well as posterior

parietal cortex, are consistently engaged
in deliberation processes, such as problem
solving, planning, and cognitive control
(Davidson and Irwin, 1999; Miller and
Cohen, 2001; Kim and Lee, 2011). Fur-
thermore, temporarily disrupting the
function of lateral PFC increases choice of
immediate rewards over larger delayed re-
wards but does not impact valuation of
these rewards, which indicates that im-
paired self-control could increase impul-
sivity in the DDT (Figner et al., 2010).
Therefore, the negative correlation be-
tween the FCI within the frontoparietal
network and discounting rates suggests
that weakened intrinsic functional orga-
nization in the frontoparietal regions may
induce insufficient cognitive control dur-
ing deliberation (a tendency linked to im-
pulsive choices) and thus result in greater
preference for immediate reward (a sign
of high impulsivity; Patton et al., 1995;
Bechara, 2005).

Conversely, the dACC and AIC are the
key nodes of the emotional salience net-
work (Seeley et al., 2007; Menon and Ud-
din, 2010). The insula is a critical neural
substrate for conscious urges that reflect
an emotional state elicited by external

value and corresponding bodily responses, and the insula activa-
tion can intensify one’s impulsivity (Naqvi and Bechara, 2010).
The dACC and AIC are coactivated during emotion-inducing
tasks (Sanfey et al., 2003; Bartels and Zeki, 2004; Johnstone et al.,
2006), and it has been suggested that the ACC and insular cortex
engender the feeling and motivation that constitute emotion
(Craig, 2002, 2009). During decision-making, the ACC and in-
sula may be engaged during emotional processes (Sanfey et al.,
2006), which are rapid and highly automatic and bias the
decision-making behavior toward cognitive less demanding
strategies (Botvinick, 2007; Kuo et al., 2009; Rushworth et al.,
2011). Thus, the positive correlation between the FCI within the
dACC–AIC network and discounting rates observed in our work
suggests that enhanced intrinsic functional organization in the
dACC and AIC may lead to conscious urges, bias decisions to-
ward less cognitive demand for future planning, and thus lead to
the preference for immediate reward.

It is widely accepted that the choice process uses information
from the valuation process (Kable and Glimcher, 2009). In line
with this perspective, we found a positive correlation between
discounting rates and the FCI between the money and dACC–
AIC networks. The dACC is a prominent target for dopamine
projections from neural substrates, such as the striatum
(Williams and Goldman-Rakic, 1998). Furthermore, activations
in the AIC are modulated by activations in the striatum (Menon
and Levitin, 2005). Thus, the dACC–AIC network can be engaged
in rapid integration of input regarding the emotional salience of
reward stimuli, forming conscious urges based on reward value
(Pessoa, 2009; Naqvi and Bechara, 2010; Harl é et al., 2012).
Therefore, enhanced FCI between the money and dACC–AIC
networks may induce hypersensitivity during the integration of
reward information from the valuation process, facilitating con-
scious urges and leading to high impulsivity. This finding, to-
gether with the positive correlation between discounting rates

Figure 5. Prediction for individuals’ discounting rates by the rsFC. a, The sketch map of the prediction analysis for one participant. The
resting scan data of the left-out individual were calculated in the brain regions derived from the networks defined from other participants
to predict the discounting rate of the left-out individual. b, The correlation between actual and predicted discounting rates in experiment I.
c, The correlation between actual and predicted discounting rates in experiment II. * indicates log transformed.

Figure 6. Number of participants showing positive functional connections between the
DDT-related brain region pairs. For each pair of the DDT-related brain regions (378 pairs in
total), the number of participants showing positive connection out of the participants in exper-
iment I (n � 23) was calculated and sorted in descending order. The sign of connections were
consistent across individuals for some brain region pairs (the number of participants with pos-
itive connections was either �18 or �5 of the 23 participants, 	 2 test, p � 0.05) but incon-
sistent for the others.
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and the FCI within the dACC–AIC network, suggests that the
dACC–AIC network may serve as a hub linking valuation and
choice processes and thus may play an essential role in generating
impulsivity. The results from neural networks involved in both
valuation and choice processes provide a comprehensive picture
of the association between resting-state FCI of DDT-related net-
works and impulsivity.

The observed association between rsFC and individuals’ dis-
counting rates raised the question of whether the resting-state
activity can predict an individual’s impulsivity in the DDT. This
was first verified in experiment I using the leave-one-out proce-
dure. Moreover, experiment II used external validation in an
independent sample and showed evidence for a significant corre-
lation between predicted and actual discounting rates. These re-
sults indicate that the FCI-discounting rate association model
was able to predict an individual’s discounting rate. People’s im-
pulsivity is routinely evaluated with behavioral assessments
(Kirby and Finch, 2010). The results from the two samples in our
present study demonstrate that an individual’s discounting rate
in the DDT can be predicted by his resting-state brain activity,
which provides a biomarker and a task-free assessment for im-
pulsivity in economic decision-making.

The current work has several limitations. First, the current
work used only the monetary DDT task. It is unknown whether
resting-state activity can predict impulsivity in the DDT using
other rewards, such as food (McClure et al., 2007), nor is it clear
whether these findings generalize to impulsivity related to envi-
ronmental outcomes and health (Hardisty and Weber, 2009) and
impulsivity in other decision-making tasks, such as risk discount-
ing (Christopoulos et al., 2009). Second, like most previous fMRI
studies that have used graph theory, the present study only ana-
lyzed the absolute value of the functional connections (Achard
and Bullmore, 2007; Liu et al., 2008; Bullmore and Sporns, 2009).
It is unclear how to relate the sign of connections in graph theory
(positive/negative; Fig. 6) to individual difference of impulsivity.
Third, because some of the identified neural networks play addi-
tional functional roles (e.g., general cognitive abilities for the
frontoparietal network; Shamosh and Gray, 2008), the functional
significance of these networks in the DDT is unclear. Finally,
although we found an association between rsFC and impulsivity
in decision-making, the mechanisms by which these patterns of
rsFC lead to task-related neural activation and impulsive behav-
ior remain unknown. These questions should be addressed in
future research.

In conclusion, we found evidence for the association between
impulsivity in decision-making and the rsFC between DDT-related
brain regions, which showed distinct patterns for different func-
tional networks. Moreover, the rsFC between DDT-related brain
regions was able to predict behavioral impulsivity during the DDT.
Our results suggest that the intrinsic functional organization of the
brain may underlie individual differences in impulsivity. These find-
ings extend our perspective on the neural basis of impulsivity and
provide evidence for a biomarker of impulsivity in economic
decision-making.
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