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Gustatory Stimuli Representing Different Perceptual
Qualities Elicit Distinct Patterns of Neuropeptide Secretion
from Taste Buds
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Taste stimuli that evoke different perceptual qualities (e.g., sweet, umami, bitter, sour, salty) are detected by dedicated subpopulations of
taste bud cells that use distinct combinations of sensory receptors and transduction molecules. Here, we report that taste stimuli also
elicit unique patterns of neuropeptide secretion from taste buds that are correlated with those perceptual qualities. We measured
tastant-dependent secretion of glucagon-like peptide-1 (GLP-1), glucagon, and neuropeptide Y (NPY) from circumvallate papillae of
Tas1r3�/�, Tas1r3�/� and Tas1r3 �/� mice. Isolated tongue epithelia were mounted in modified Ussing chambers, permitting apical
stimulation of taste buds; secreted peptides were collected from the basal side and measured by specific ELISAs. Appetitive stimuli (sweet:
glucose, sucralose; umami: monosodium glutamate; polysaccharide: Polycose) elicited GLP-1 and NPY secretion and inhibited basal
glucagon secretion. Sweet and umami stimuli were ineffective in Tas1r3�/� mice, indicating an obligatory role for the T1R3 subunit
common to the sweet and umami taste receptors. Polycose responses were unaffected by T1R3 deletion, consistent with the presence of
a distinct polysaccharide taste receptor. The effects of sweet stimuli on peptide secretion also required the closing of ATP-sensitive K �

(KATP ) channels, as the KATP channel activator diazoxide inhibited the effects of glucose and sucralose on both GLP-1 and glucagon
release. Both sour citric acid and salty NaCl increased NPY secretion but had no effects on GLP-1 or glucagon. Bitter denatonium showed
no effects on these peptides. Together, these results suggest that taste stimuli of different perceptual qualities elicit unique patterns of
neuropeptide secretion from taste buds.

Introduction
Taste stimuli can elicit at least five distinct perceptual qualities in
humans: sweet, bitter, umami, salty, or sour. Many of the molec-
ular mechanisms critical for stimulus detection and transduction
in taste cells have been identified (Bachmanov and Beauchamp,
2007; Yarmolinsky et al., 2009). These receptors and their associ-
ated transduction mechanisms are differentially expressed across
the taste receptor cell (TRC) population such that each stimulus
quality is represented by a separate subpopulation of sensory
cells. However, it is unclear how the integrity of taste quality
information is maintained after the initial detection of the tas-
tant. For example, no taste quality-specific neurotransmitters
have been identified. Indeed, a single neurotransmitter, adeno-
sine triphosphate (ATP), is required to transmit sweet, bitter and
umami taste information from TRCs to associated taste afferent

nerves (Finger et al., 2005). The nonvesicular release of ATP
(Huang et al., 2007; Romanov et al., 2007) along with an absence
of conventional synapses between sweet-, umami-, or bitter-
sensitive TRCs and afferent nerve fibers (Clapp et al., 2004)
suggests that the peripheral taste system may lack taste quality-
specific synapses. Thus, other strategies for communicating in-
formation about taste quality may be required.

Paracrine signaling between TRCs is thought to play a critical
role in gustatory processing (Chaudhari and Roper, 2010). Such
signaling could also convey information about the perceptual
quality, appetitiveness, or hedonic valence of the stimulus. Sev-
eral bioactive peptides are found in taste buds (Dotson et al.,
2013), including glucagon-like peptide-1 (GLP-1), glucagon,
neuropeptide Y (NPY), cholecystokinin (CCK), and vasoactive
intestinal peptide (Herness et al., 2002; Lu et al., 2003; Shen et al.,
2005; Zhao et al., 2005; Feng et al., 2008; Shin et al., 2008; Elson et
al., 2010; Martin et al., 2010). Each is restricted to subpopulations
of TRCs, and their cognate receptors are expressed on TRCs or
associated nerve fibers. Several peptides are implicated in the
modulation of taste functions. For example, disruption of ei-
ther GLP-1 or glucagon signaling results in decreased sweet
taste responsiveness in behavioral assays (Shin et al., 2008;
Elson et al., 2010; Martin et al., 2012), whereas NPY and CCK
can modulate K � conductances in some TRCs (Lu et al., 2003;
Zhao et al., 2005). However, the conditions under which pep-
tide secretion occurs are unknown. To better understand the
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functions of taste bud peptides, we used an ex vivo preparation
of mouse lingual epithelium along with genetic and pharma-
cological manipulations to characterize the specificity and
mechanistic basis of tastant-dependent peptide secretion in
taste buds.

Materials and Methods
Animals. Tissues were obtained from Tas1r3�/� mice and Tas1r3�/� or
Tas1r3�/� littermate controls (male and female) (Zhao et al., 2003). Mice
were maintained by interbreeding. Experiments were approved by the Uni-

versity of Maryland, Baltimore Institutional Animal Care and Use
Committee.

Tissue preparation. Procedures were modified from previous studies
(Gilbertson and Zhang, 1998). Mice were fasted for 16 h and killed by
CO2 asphyxiation. The tongue was then removed and washed with nor-
mal Tyrode’s solution, pH 7.2 (Invitrogen). Dispase II (3 mg/ml), colla-
genase A (1 mg/ml), and one Complete Mini protease inhibitor tablet
(Roche) were dissolved in 10 ml Tyrode’s solution and injected (0.4
ml/tongue) from the cut end. After 15 min, the lingual epithelium was
peeled free.
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Figure 1. Neuropeptide secretion after exposure to appetitive taste stimuli. ELISA-based measurements of GLP-1 (A,D,G,J ), NPY (B,E,K ), and glucagon (C,F,H,I,L) from circumvallate papillae of
Tas1r3�/� (black), Tas1r3�/� (gray), or Tas1r3�/� (white) mice upon stimulation with increasing concentrations of glucose (A–C), sucralose (D,E,F ), MSG (� 1 mM IMP, � 50 �M amiloride)
(G,H ), MSG (� 50 �M amiloride) (I ), or Polycose (J–L). Data are mean � SEM. Each bar represents n � 5 mice. ANOVAs (stimulus concentration � genotype): A, F(1,5) � 19.7, p � 0.001. B, F(1,5) �
1241.5, p � 0.001. C, F(1,5) � 542.4, p � 0.001. D, F(1,5) � 12.1, p � 0.001. E, F(1,5) � 137.6, p � 0.001. F, F(1,5) � 285.5, p � 0.001. G, F(1,5) � 55.9, p � 0.001. H, F(1,5) � 869.6, p � 0.001.
I, F(1,5) � 364.2, p � 0.001. J, F(1,5) � 0.3, p � 0.9. K, F(1,5) � 4.0, p � 0.01. L, F(1,5) � 1.5, p � 0.2. *p � 0.05 versus buffer control for that genotype (Scheffé post hoc). #p � 0.05 versus
Tas1r3�/� (Scheffé post hoc).
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Ussing chamber experiments. Procedures were modified from previous
studies (Finger et al., 2005; Geraedts et al., 2012a,b). Lingual epithelia
containing circumvallate taste buds were mounted in modified Ussing
chambers (Harvard Apparatus) with a 1.76 mm intrachamber opening
(Wallon et al., 2005, 2008) such that the basal compartment is exposed
predominantly, although not exclusively, to gustatory epithelium. Apical
compartments were filled with Krebs buffer (KRB, pH 7.2) containing
1.5 ml 10 mM mannitol; basal compartments were filled with KRB, pH
7.2, containing 10 mM glucose. Chambers were maintained at 37°C and
continuously oxygenated (95% O2–5% CO2). Transepithelial potential
difference and currents were recorded to verify tissue integrity (Soder-
holm et al., 1998). Tissues were equilibrated for 40 min, with buffers
replaced after 20 min. Epithelia were then exposed on the apical side to
the following: glucose, 25–250 mM; sucralose, 1–100 mM; Polycose, 2.5–
20%; monosodium glutamate (MSG), 25–200 mM; denatonium benzo-
ate, 0.3–5 mM; citric acid, pH 2–7; and sodium chloride, 10 –500 mM. In
some experiments, both chambers also contained the KATP channel in-
hibitor glibenclamide (50 �M) or the KATP channel activator diazoxide
(100 �M). MSG was copresented with the epithelial sodium channel
(ENaC) inhibitor amiloride (50 �M) with or without 1 mM 5�-inosine
monophosphate (IMP). All stimuli and drugs were obtained from
Sigma-Aldrich, except sucralose (Tate & Lyle). Samples (1.5 ml) were
collected from the basal chamber after 2 h and stored at �80°C until
assayed. Peptide levels were determined by ELISAs for active GLP-1 (Al-
pco), glucagon (Novatein Biosciences), and NPY (Eurodiagnostica).
Data were normally distributed and were analyzed by two-way ANOVA
(stimulus concentration � genotype or stimulus type � drug treatment)
followed by Scheffé post hoc tests, with p � 0.05 accepted as significant.

Results
We first assessed the ability of sweet stimuli to elicit the secretion
of GLP-1, glucagon, and NPY. Lingual epithelia from Tas1r3�/�,
Tas1r3�/�, or Tas1r3�/� mice were mounted in Ussing chambers
with the circumvallate papilla centered between the two cham-
bers. The apical sides of the epithelia were then exposed to one of
several concentrations of glucose (Fig. 1A–C) or the noncaloric
sweetener sucralose (Fig. 1D–F). In most experiments, only
Tas1r3�/� mice were used as controls as they are phenotypically
indistinguishable from wild-type (Zhao et al., 2003; Geraedts et
al., 2012a) (Fig. 1A–C). Both stimuli induced GLP-1 and NPY
secretion from taste tissue of wild-type and/or heterozygous mice
in a concentration-dependent manner (see figure legends for sta-
tistics and sample size). Taste epithelia exhibited a high basal
glucagon secretion that was inhibited by increasing concentra-
tions of sweet stimuli (Fig. 1C,F). These effects depended on the
expression of a functional sweet taste receptor, as Tas1r3�/�

mice, which lack the obligatory T1R3 subunit common to the
sweet and umami receptors (Zhao et al., 2003), showed no
responses.

Next, we tested two other appetitive taste stimuli: the umami
stimulus MSG and the polysaccharide Polycose. MSG in the pres-
ence of the umami synergist IMP (1 mM) and sodium taste inhib-
itor amiloride (50 �M) increased GLP-1 secretion (Fig. 1G).
Surprisingly, MSG with IMP and amiloride abolished glucagon
secretion at even the lowest concentrations tested (Fig. 1H).
However, MSG with amiloride showed a normal concentration-
response function in the absence of IMP, suggesting that umami
stimuli are particularly effective regulators of glucagon secretion
(Fig. 1I). The effects of MSG on both glucagon and GLP-1 secre-
tion were T1R3-dependent. MSG with IMP and amiloride did
not enhance NPY secretion above baseline (data not shown).
Therefore, sweet and umami stimuli are distinguished by the
peptides they regulate. Peptide responses to Polycose, which elic-
its a distinct appetitive taste quality (Sclafani, 2004), resembled
those for sweet stimuli, except that they were T1R3-independent

(Fig. 1J–L). These results confirm that glucose polymers are de-
tected and transduced by different molecular mechanisms than
are monosaccharides and disaccharides (Sclafani, 2004; Treesu-
kosol et al., 2009; Zukerman et al., 2009; Treesukosol and Spec-
tor, 2012).

ATP-sensitive K� (KATP) channels are expressed in a subset of
TRCs, where they might contribute to sugar transduction (Yee et
al., 2011). We found that the KATP channel blocker glibencl-
amide, which acts to depolarize cells, stimulated robust GLP-1
secretion from taste tissue of Tas1r3�/� mice, whereas the KATP

channel activator diazoxide, which prevents depolarization, sig-
nificantly reduced sweetener-dependent GLP-1 secretion (Fig.
2A). Diazoxide only partially inhibited Polycose-dependent
GLP-1 secretion and did not affect MSG-dependent GLP-1 re-
lease (Fig. 2A). Glucagon secretion was inhibited by glibencl-
amide, whereas diazoxide blocked the glucose and sucralose
effects on glucagon release. Again, diazoxide had no effect on the
ability of MSG, and only a partial effect on the ability of Polycose,
to inhibit glucagon release (Fig. 2B). Together, these results indi-
cate that KATP channels play a critical role in regulating neuro-
peptide secretion in response to both natural and artificial sweet
stimuli, but not to umami stimuli. Furthermore, they suggest
that Polycose impacts peptide secretion through both KATP-
dependent and -independent pathways.

Finally, we examined three aversive stimuli: the bitter-tasting
denatonium benzoate, the sour citric acid, and the salty NaCl
(which is aversive at higher concentrations). Denatonium had no
effect on any of the assayed peptides (data not shown), although
we cannot rule out the possibility that the lack of tastant-
dependent peptide secretion reflects a paucity of cognate recep-
tors in circumvallate taste buds. Neither citric acid nor NaCl
affected GLP-1 secretion (Fig. 3A,D). Citric acid did cause a
small but significant decrease in glucagon secretion at pH �6.0
(Fig. 3C). However, there was no stimulus dependence across the
pH range, suggesting that this change was not a taste phenome-
non. NaCl had no effect on glucagon secretion (Fig. 3F). Both
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Figure 2. ATP-dependent K � (KATP) channel closure is required for peptide regulation by
sweet, but not umami, taste stimuli. A, ELISA-based measurements of GLP-1 from circumvallate
papillae of Tas1r3�/� mice upon stimulation with glucose (250 mM), sucralose (100 mM), MSG (150
mM) � IMP (1 mM) � amiloride (50 �M), Polycose (15%), or glibenclamide (50 �M) in the
absence (left) or presence (right, no glibenclamide) of diazoxide (100 �M). ANOVA (stimulus):
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B, ELISA-based measurements of glucagon from circumvallate papillae of Tas1r3�/� mice
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(Scheffé post hoc).
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stimuli increased NPY secretion independently of T1R3 (Fig.
3B,E). The insensitivity of NaCl-dependent NPY secretion to
amiloride (Fig. 3E) suggests that it reflects activation of ENaC-
independent salt taste mechanisms.

Discussion
We provide the first evidence, to our knowledge, that taste stimuli
elicit neuropeptide secretion from the taste bud. Furthermore,
our data indicate that the pattern of peptide secretion is corre-
lated with taste qualities (Table 1). Appetitive stimuli regulate
GLP-1 and glucagon secretion, with sweet and polysaccharide
stimuli also promoting the release of NPY (Fig. 1). By contrast,
aversive sour and salty stimuli regulate only NPY (Fig. 2).
Whether bitter stimuli regulate any neuropeptides remains
unknown.

Taste buds are heterogeneous collections of cells that can be
identified based on morphological or electrophysiological char-
acteristics, their responses to stimuli of defined perceptual qual-
ities, or their expression of different molecular markers,
including any of several neuropeptides (Chaudhari and Roper,
2010; Dotson et al., 2013). How neuropeptide expression maps
onto subpopulations defined by other criteria is only beginning

to be understood. For example, GLP-1 is expressed in two groups
of taste cells: a subset of �-gustducin-positive, T1R3-positive cells
that presumably respond to sweet and/or umami tastants, and a
subset of serotonergic cells that are likely sour sensors (Shin et al.,
2008). However, GLP-1 receptor-null mice show robust taste
responses to sour stimuli (Shin et al., 2008). Furthermore, sour
stimuli are ineffective at eliciting GLP-1 secretion from taste buds
(Fig. 3). Therefore, peptide secretion from a particular TRC sub-
population cannot be assumed to be tastant-dependent.

Taste quality information is segregated in both the gustatory
periphery and in the CNS. In the taste bud, distinct TRC sub-
populations appear dedicated to one of the five perceptual taste
qualities (Yarmolinsky et al., 2009). Indeed, the perceived quality
of a stimulus can be changed by the ectopic expression of its
cognate receptor in another TRC type (Zhao et al., 2003; Mueller
et al., 2005). There is also substantial evidence for the existence of
quality-specific neurons within the facial and glossopharyngeal
nerves as well as in gustatory nuclei of the brainstem and thala-
mus, whereas taste qualities can also be distinguished by the ac-
tivation patterns their stimuli elicit in gustatory cortex (Spector
and Travers, 2005; Carleton et al., 2010). Thus, it is reasonable to
predict that taste quality information is preserved throughout the
gustatory neuraxis. In most sensory systems, precise synaptic
relationships between sensory cells and downstream neurons
are key components of the neural code for stimulus features.
However, evidence for clear anatomical relationships between
taste cells and afferent nerves responsive to the same taste
quality is lacking (Clapp et al., 2004). Furthermore, purinergic
neurotransmission is required to communicate taste informa-
tion from TRCs responding to sweet, bitter, and umami (and
likely salty and sour) stimuli to afferent nerves (Finger et al.,
2005; Ohkuri et al., 2012). Neuropeptides may represent an
alternative strategy to convey taste quality specificity. For ex-
ample, GLP-1 and NPY could each serve as cotransmitters

Figure 3. Neuropeptide secretion after exposure to aversive taste stimuli. ELISA-based measurements of GLP-1 (A,D), NPY (B,E), and glucagon (C,F ) from circumvallate papillae of Tas1r3�/�

(gray) or Tas1r3�/� (white) mice upon stimulation with citric acid (A–C) or NaCl (D–F ). E, Black bars represent stimuli that include 50 �M amiloride. Data are mean � SEM. Each bar represents n �
5 mice. ANOVAs (stimulus concentration � genotype): A, F(1,5) � 0.1, p � 0.99. B, F(1,5) � 1.2, p � 0.4. C, F(1,5) � 1.5, p � 0.2. D, F(1,5) � 0.9, p � 0.5. E, F(1,5) � 6.1, p � 0.001. F, F(1,5) �
1.2, p � 0.3. *p � 0.05 versus buffer control for that genotype (Scheffé post hoc).

Table 1. Patterns of tastant-dependent peptide secretion

Peptide released

Stimulus quality GLP-1 Glucagon NPY

Sweet 1a 2a 1a

Polysaccharide 1b 2b 1b

Umami 1a 2a NR
Sour NR NR 1b

Salty (aversive) NR NR 1b

Bitter NR NR NR
aT1R3-dependent.
bT1R3-independent.

NR, No response.
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with ATP, as both the GLP-1 receptor and the Y4 receptor are
expressed on intragemmal nerve fibers (Shin et al., 2008; Hur-
tado et al., 2012). Validation of such a model for quality cod-
ing awaits further experimentation.

How glucagon might contribute to quality coding is less clear,
as immunohistochemical evidence suggests that its receptor is
restricted to TRCs and that it is likely an autocrine regulator of
glucagon-secreting cells (Elson et al., 2010). Glucagon may act
upstream of neurotransmission, possibly as a negative regulator
of GLP-1 secretion. Such a model would parallel regulatory loops
in the gastrointestinal tract, where peptides released from the
proximal gut can potentiate peptide release from more distal sites
via neural pathways (Roberge et al., 1996; Hira et al., 2009). A
number of other peptides and small molecules likely function as
autocrine or paracrine modulators of TRC function, including
NPY (Zhao et al., 2005), CCK (Herness et al., 2002), ATP (Huang
et al., 2009), serotonin (Huang et al., 2009), and GABA (Dvory-
anchikov et al., 2011). Thus, there is ample opportunity for pro-
cessing gustatory information before it leaves the taste bud.
However, it remains unclear how taste information is trans-
formed by intercellular signaling within the taste bud, and what
role neuropeptides play in this processing.

The mechanisms that couple tastant detection to peptide se-
cretion are correlated with perceptual quality. Our findings that
glucose, sucralose, and MSG fail to impact peptide secretion in
Tas1r3�/� mice (Fig. 1) are consistent with an obligatory role of
T1R3 in sweet and umami taste receptors (Zhao et al., 2003). The
appetitive polysaccharide Polycose was unsurprisingly T1R3-
independent, as deletion of this receptor subunit has no effect on
behavioral and/or electrophysiological responses to Polycose
(Treesukosol et al., 2009; Zukerman et al., 2009). Responses to
appetitive stimuli are even more variable in their requirement for
KATP channel function. Glucose and sucralose effects on GLP-1
and glucagon secretion were completely abolished in the pres-
ence of diazoxide and mimicked by glibenclamide (Fig. 2),
whereas MSG maintained its ability to enhance GLP-1 secretion
and inhibit glucagon secretion in the presence of diazoxide. The
requirement of KATP channel closure for sweet, but not umami,
transduction (at least in the context of neuropeptide secretion) is
consistent with a report that the KATP channel subunit SUR1 is
found in many, but not all, T1R3-expressing TRCs (Yee et al.,
2011). However, the effects of KATP channel drugs on both
glucose- and sucralose-dependent peptide secretion suggest that
these channels act downstream of the sweet taste receptor and are
not restricted to a glucose-specific transduction mechanism. In-
terestingly, diazoxide only partially countered the effects of Poly-
cose, suggesting that the as yet unidentified polysaccharide taste
receptor (Sclafani, 2004) is either expressed in both sweet and
umami TRCs or in a separate TRC population. NPY secretion in
response to either NaCl or citric acid is, like salty and sour taste
(Zhao et al., 2003), T1R3-independent (Fig. 3). The insensitivity
of NaCl-dependent NPY secretion to amiloride suggests that this
response is related to ENaC-independent aversive salt taste
(Chandrashekar et al., 2010) and is consistent with studies sug-
gesting that high concentrations of salts can co-opt sour-sensitive
pathways (Frank, 1973; Ninomiya et al., 1982; Spector and
Travers, 2005; Oka et al., 2013). The ability of NaCl, but not the
sodium salt of glutamate (i.e., MSG), to elicit NPY secretion may
reflect the inhibitory effects of the organic anion on ENaC-
independent salt responses (Formaker and Hill, 1988; Elliott and
Simon, 1990).

Our results suggest the possibility of a peptide code for taste
quality in the gustatory periphery. Just two of the peptides tested

here (GLP-1 and NPY) would allow for the differentiation of
sweet, umami, bitter, and sour/aversive salt tastes. The inability of
the three peptides to differentiate polysaccharide or amiloride-
sensitive sodium taste indicates that other taste bud peptides
(Dotson et al., 2013) would be required to fully code taste quali-
ties. Additionally, peptide signaling within the taste bud could
impact other aspects of gustatory coding, such as for stimulus
intensity or hedonic valence. Behavioral and physiological stud-
ies are needed in animals lacking one or more “taste” peptides or
their receptors to fully resolve how the gustatory system uses
peptide signaling to represent the complexity of foods and other
sources of taste stimuli.
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