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Feature-Specific Information Processing Precedes Concerted
Activation in Human Visual Cortex
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Current knowledge about the precise timing of visual input to the cortex relies largely on spike timings in monkeys and evoked-response
latencies in humans. However, quantifying the activation onset does not unambiguously describe the timing of stimulus-feature-specific
information processing. Here, we investigated the information content of the early human visual cortical activity by decoding low-level
visual features from single-trial magnetoencephalographic (MEG) responses. MEG was measured from nine healthy subjects as they
viewed annular sinusoidal gratings (spanning the visual field from 2 to 10° for a duration of 1 s), characterized by spatial frequency (0.33
cycles/degree or 1.33 cycles/degree) and orientation (45° or 135°); gratings were either static or rotated clockwise or anticlockwise from
0 to 180°. Time-resolved classifiers using a 20 ms moving window exceeded chance level at 51 ms (the later edge of the window) for spatial
frequency, 65 ms for orientation, and 98 ms for rotation direction. Decoding accuracies of spatial frequency and orientation peaked at 70
and 90 ms, respectively, coinciding with the peaks of the onset evoked responses. Within-subject time-insensitive pattern classifiers
decoded spatial frequency and orientation simultaneously (mean accuracy 64%, chance 25%) and rotation direction (mean 82%, chance
50%). Classifiers trained on data from other subjects decoded the spatial frequency (73%), but not the orientation, nor the rotation
direction. Our results indicate that unaveraged brain responses contain decodable information about low-level visual features already at
the time of the earliest cortical evoked responses, and that representations of spatial frequency are highly robust across individuals.

Introduction
Neurons of the mammalian primary visual cortex (V1) are sen-
sitive to low-level visual features, such as orientation (OR), and
spatial frequency (SF). Neurons with similar response properties
are organized close to each other at the fine-scale columnar level
as well as in coarse-scale spatial maps ( Chalupa and Werner,
2003). Most of the knowledge about the cortical organization of
neurons selective to low-level visual features has been obtained
from invasive animal electrophysiology (Hubel and Wiesel,
1963) and optical imaging (Bonhoeffer and Grinvald, 1991),
whereas direct observations of homologous neurons in the hu-
man visual system are limited.

In particular, studies investigating the timing of stimulus-
feature-specific information processing have followed an

“activation-based” approach. For instance, invasive recordings
from the macaque visual cortex have characterized the temporal
progression of activation by quantifying the timing of neuronal
firing in different visual areas (Schmolesky et al., 1998; Lamme
and Roelfsema, 2000). Likewise, noninvasive recordings with
electroencephalography (EEG; Di Russo et al., 2002) or mag-
netoencephalography (MEG; Vanni et al., 2001) have quanti-
fied the earliest discernible evoked-response onsets or peaks.
Although a detailed description of the temporal sequence of
cortical activation is valuable, it does not present a complete
picture of stimulus-feature-specific information processing.
To complement activation-based approaches (Hari et al., 2010),
we directly investigated the information content of unaveraged
single-trial, early visual MEG responses using a multivariate de-
coding strategy.

Until recently, noninvasive functional imaging methods were
considered to be too coarse to exploit the fine-scale organization
of the human visual cortex. However, multivariate pattern anal-
yses (MVPA) of functional magnetic resonance imaging (fMRI)
data comprising activity from voxels larger than 25 mm 3 in vol-
ume have enabled above chance-level decoding of the orientation
of visual gratings from the human primary visual cortex (Haynes
and Rees, 2005; Kamitani and Tong, 2005). Consequently,
Kriegeskorte et al. (2006) proposed information-based brain
mapping as a broad approach for functional neuroimaging to
map brain regions containing information about the task or stim-
ulus under study. In this approach, one seeks information about
prespecified attributes of the task or stimulus, embedded in the
activity patterns of functional imaging.

Received Aug. 8, 2012; revised Feb. 19, 2013; accepted March 20, 2013.
Author contributions: P.R., S.P., R.H., and L.P. designed research; P.R., M.J., and S.P. performed research; P.R.,

M.J., and S.P. contributed unpublished reagents/analytic tools; P.R., M.J., S.P., R.H., and L.P. analyzed data; P.R.,
M.J., S.P., R.H., and L.P. wrote the paper.

We were supported by the Academy of Finland, the Brain2Brain European Research Council Advanced Grant
#232946 (R.H.), and the FP7-PEOPLE-2009-IEF program #254638 (S.P.). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of this manuscript.

The authors declare no competing financial interests.
This article is freely available online through the J Neurosci Author Open Choice option.
Correspondence should be addressed to Pavan Ramkumar, Brain Research Unit and MEG Core, O.V. Lounasmaa

Laboratory, School of Science, Aalto University FI-00076 Aalto, Espoo, Finland. E-mail: pavan@neuro.hut.fi.
P. Ramkumar’s present address: Sensorimotor Performance Program, Rehabilitation Institute of Chicago and

Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611.
S. Pannasch’s present address: Institut für Psychologie III, Ingenieurpsychologie und Kognitive Ergonomie, Tech-

nische Universität D-01062 Dresden, Germany.
DOI:10.1523/JNEUROSCI.3905-12.2013

Copyright © 2013 the authors 0270-6474/13/337691-09$15.00/0

The Journal of Neuroscience, May 1, 2013 • 33(18):7691–7699 • 7691



In this study, encouraged by the suc-
cess of information-based brain mapping
with fMRI, we attempted to go beyond the
activation-based quantifications of tem-
poral information processing by (1) in-
vestigating whether it is possible to decode
low-level visual features, such as OR, SF,
and rotation direction (RD), from single-
trial MEG responses using time-insensitive
pattern classifiers, and if so, (2) quantifying
how early and for how long the responses
contain information allowing above-chance
decoding using time-resolved pattern
classifiers.

Materials and Methods
Subjects
Nine healthy volunteers (four females and five
males; mean age 27 years, range 21–39 years)
with normal or corrected-to-normal vision
participated in the study after written informed
consent. The recordings had prior approval by
the Ethics Committee of the Helsinki and
Uusimaa Hospital District ( protocols No.
9-49/2000 and No. 95/13/03/00/2008, granted to N. Forss and R. Hari).
Seven of nine subjects participated in all the main experiments (see the
following section.).

Stimuli and experiments
Figure 1 shows the grating stimuli. In the main experiments, static or
dynamic full-field annuli spanned 2–10° in the parafoveal visual field
(Fig. 1 A, B). The annuli were filled with linear sinusoidal gratings at two
different ORs (45 and 135°) and two different SFs (0.33 and 1.33 cycles
per degree [c/deg]). The dynamic stimuli comprised annuli with mono-
tonically increasing (or decreasing) OR, i.e., gratings rotating clockwise
or anticlockwise from 0 to 180° or vice versa over a 1 s duration.

In two control experiments with a single subject, SF classification perfor-
mance was compared for gratings at three contrast levels and three phases:
the 2–10° annuli comprised sinusoidal gratings of three different contrast
levels (full, half, and one-fourth; Fig. 1C), or three different relative phases (0,
one-fourth cycle phase shift, and half cycle phase shift; Fig. 1D).

For all stimuli except the contrast control experiment (see below, Con-
trol experiment 1: spatial frequency coding as a function of contrast), the
luminance (mean intensity) as well as the Michelson contrast (Imax �
Imin)/(Imax � Imin) were identical.

Projector delay estimation. Since we are interested in accurate temporal
characterization of sensory stimulus discrimination, it is important to
quantify the delay between the onset command from the stimulus system
and the actual onset of the stimulus. The largest contribution to this delay
is expected to be from the projector. We measured the projector delay by
attaching a photodiode to the stimulus screen, and subsequently aver-
aged the signal with respect to the stimulus trigger. The patches were
24.8 � 24.8° squares, presented 100 times each for 1 s, with an inter-
stimulus interval (ISI) of 1 s. The MEG responses to these patches were
averaged with respect to the stimulus trigger. To confirm that the decod-
ing accuracy trace follows the onset of the stimulus faithfully, we at-
tempted to distinguish between a black and a white stimulus patch by
decoding the photodiode signal.

Experiment 1: static gratings with different orientation and spatial fre-
quency. The aim of Experiment 1 was to identify the OR and SF of large
circular sinusoidal gratings (i.e., to distinguish between gratings with one
of two ORs and SFs) from single-trial MEG responses. Eight volunteers
participated in this experiment (four females, four males, mean age 25.5
years, range 21–39; Subjects 1– 8). Each grating (cf. Fig. 1A) was pre-
sented 100 times for 1 s. We presented the gratings in a random order
with an ISI of 1 s.

Experiment 2: dynamic gratings with different rotation directions. In this
experiment, we attempted to decode the direction of grating rotation

(clockwise vs anticlockwise). Eight volunteers (four females, four males,
mean age 27.6 years, range 25–39; Subjects 2–9) participated in this ex-
periment. We presented dynamic gratings with an SF of 1.33 c/deg (Fig.
1B). Gratings rotated for 180° in 15 discrete frames, each 40 ms in dura-
tion. The first five frames (0 –200 ms) represented a fade-in period: a
horizontally oriented grating presented at monotonically increasing con-
trast (0, 0.2, 0.4, 0.6, and 0.8), and the following 15 frames (200 – 800 ms)
consisted of gratings with uniformly increasing (or decreasing) OR, such that
the sixth and the fifteenth frame were horizontal (corresponding to 0° to
180°). The last five frames (800–1000 ms) were used for fade out: the hori-
zontal grating decreased in contrast (0.8, 0.6, 0.4, 0.2, and 0). The stimuli
were constructed as videos presented at 25 frames per second. Each video was
presented 100 times in a random order for 1 s, with an ISI of 1 s.

Control experiment 1: spatial frequency coding as a function of contrast.
To eliminate the possibility that the decoder is mainly influenced by
evoked responses to local contrasts rather than by spatial frequency, we
measured the response to both SF gratings (0.33 and 1.33 c/deg) at three
different contrasts (full, half, and one-fourth), pooled together the trials
at all contrasts except the target contrast, and attempted to decode the SF
at the target contrast (Fig. 1C). One male volunteer (aged 21 years)
participated in this experiment. We presented static gratings oriented at
135° for 1 s with an ISI of 1 s (Fig. 1C). Each grating was shown 50 times
at each contrast in a random order.

Control experiment 2: spatial frequency coding as a function of phase. To
eliminate the possibility that the decoder is dominated by a response
component specific to the phase of the grating, or by local contrasts at
certain eccentricities, we varied the phase of each SF grating and at-
tempted to decode the SF of a target phase stimulus based on the single-
trial evoked responses to the other phase stimuli (Fig. 1D). One male
volunteer (aged 21 years) participated in this experiment. As in the pre-
vious control experiment, we presented dynamic gratings oriented at
135° for 1 s with an ISI of 1 s. The gratings had a spatial frequency of either
0.33 c/deg or 1.33 c/deg. Each grating was presented at one of three
different phase shifts (30°, 120°, or 210°; Fig. 1D) with respect to the
gratings presented in the main experiments. Each grating was displayed
50 times at each phase in a random order.

Apparatus
All stimuli were presented with a Panasonic D7700 DLP projector on a
back-projection screen placed 120 cm in front of the subject. The result-
ing viewing angle was 34.7° horizontally and 25.8° vertically. All stimuli
were displayed with a size of 24.8 � 24. 8° of visual angle, with the
gratings themselves spanning eccentricities from 2 to 10°. Dynamic stim-
uli were presented at a frame-rate of 25 frames per second.

Figure 1. All stimuli used in the study were sinusoidal gratings within annuli spanning the full visual field at eccentricities
between 2° and 10°. A, In the static-grating experiment, stimuli were of two distinct SFs (left, 0.33 c/deg; right, 1.33 c/deg) and two
distinct ORs (top, 45°; bottom, 135°). B, In the rotating-grating experiment, gratings with an SF of 1.33 c/deg rotated either
clockwise or anticlockwise in the range of 0 –180°. C, In the cross-contrast decoding experiment, static gratings oriented at 135°
were presented at full, half, and one-fourth contrasts. D, In the cross-phase decoding experiment, static gratings, oriented at 135°,
were presented at zero, quarter-cycle, and half-cycle phase shifts.

7692 • J. Neurosci., May 1, 2013 • 33(18):7691–7699 Ramkumar et al. • Information Precedes Concerted Activation



Cortical responses were recorded with a 306-channel neuromagne-
tometer (Vectorview; Elekta Oy) in a magnetically shielded room
(Imedco AG) at the Brain Research Unit of the O.V. Lounasmaa Labo-
ratory, Aalto University. The MEG signal was bandpass filtered through
0 –330 Hz and sampled at 1000 Hz. At the beginning of each measure-
ment, we acquired the head position of the subject relative to the MEG
sensors using four small head position indicator (HPI) coils attached to
the scalp. The coils were briefly energized to emit single frequencies
between 300 and 330 Hz.

Concurrently with MEG data, we acquired eye movement data using
an SR Eyelink 1000 (SR Research) infrared eye-tracking system (sampled
at 1000 Hz) to ensure that our subjects fixated on the center of the screen
within an interval of 200 ms before and after each stimulus was shown.
Each trial started with the presentation of a fixation cross. For the detection
of fixations, we used the algorithm provided by SR Research. The on-line
parser analyzed the sample data in search for saccades; everything that was
not detected as a saccade was marked as a fixation (or blink, if no sample data
were available). Saccades were identified by deflections in eye position ex-
ceeding 0.1°, with a minimum velocity of 30° s�1 and a minimum accelera-
tion of 8000° s�2, maintained for at least 4 ms. If the initial fixation at the
fixation cross did not occur correctly (i.e., was �200 ms or �100 pixels away
from the cross), the stimulus was not displayed. In general, subjects did not
have any difficulty fixating at the center of the screen.

Data analysis
Decoding the photodiode trace. To estimate the delay of the projector with
respect to the onset command from the stimulus program, we presented
either black or white patches, and recorded the luminance of the stimulus
screen using a photodiode. The photodiode signal was averaged across
these trials with respect to the rising trigger corresponding to the stimu-
lus onset command. Since the onset of the averaged signal lagged behind
the trigger onset consistently by 36 ms (see Results, Projector delay and
effects of filtering on latency), we used this constant delay during latency
estimation. We then decoded the color of the stimulus patch from the
photodiode signal in a time-resolved manner, with a 20 ms window
shifted forward by 1 ms, using a linear support vector machine (SVM)
classifier.

Preprocessing. The MEG data were preprocessed using temporal Signal
Space Separation (Taulu and Simola, 2006) and then bandpass filtered
between 0.1– 40 Hz with a causal, second-order infinite impulse re-
sponse, approximately linear-phase Butterworth filter. We compensated
for the 36 ms lag of the stimulus onset with respect to the trigger signal
from the stimulus system. Evoked responses from 300 ms preceding the
stimulus onset up to 260 ms post offset (i.e., 1260 ms post onset) were
extracted from the continuous data using the trigger signals and then
baseline-corrected using a time window from –300 to –100 ms with
respect to the trigger signal associated with the stimulus onset.

Analysis of filtering effects on latency estimation. To study the effects of
filtering, if any, on the decoding latency and accuracy, we performed
time-resolved decoding of SF on a single subject’s MEG responses on
both filtered and unfiltered data.

Feature extraction and classification. Once the data had been extracted
into a 3D matrix of trials � time points � channels, we reshaped this
matrix into a 2D form, gathering the spatiotemporal data from selected
channels into a single feature vector corresponding to each trial. We
selected only a subset of 40 channels from the parieto-occipital regions
labeled “Occipital” by the MEG vendor.

For all decoding problems, we used linear SVM implemented in the
MATLAB Bioinformatics toolbox (http://www.mathworks.com/products/
bioinfo). Multiclass decoding problems were addressed using the voting
method, i.e., selecting the majority class predicted by all possible pairwise
SVMs.

From the extracted MEG signal features, we performed subjectwise
decoding as follows. First, we shuffled the order of the trials to avoid any
learning or adaptation effects. For time-resolved classifiers, we repeated
this shuffling separately for each time window so that accidental biases
resulting from the shuffling procedure would not affect all time windows.
Second, we partitioned the data into five nonoverlapping sets, with each
set containing an equal number of trials per class. Third, we performed

fivefold cross-validation, i.e., we trained classifiers on all but one parti-
tion and tested them on the remaining partition. We considered the
mean accuracy across the folds to represent the generalization accuracy.
Fourth, to estimate confidence intervals on the test-set accuracies, we
used a Monte Carlo bootstrapping approach as follows. From the predic-
tions on the test samples, we drew 400 predictions with replacement,
computed the mean accuracy on those predictions, and repeated this 999
times. Across these repetitions, we reported the 2.5th and 97.5th percen-
tile scores as an estimate of the 95% confidence interval.

Time-insensitive decoding. For the static-gratings experiment, we at-
tempted to solve a four-class decoding problem, i.e., to identify both the
OR (45° or 135°) and the SF (0.33 c/deg or 1.33 c/deg) from a single trial.
Since the SVM is inherently a binary classifier, we adopted a standard
multiclass SVM strategy, where we combined the outputs of pairwise
two-class SVMs by a majority-voting method. To obtain error estimates
on the classification accuracy, we performed fivefold cross-validation.
From the predicted ORs and SFs, we computed confusion matrices. The
entry at row i and column j of the confusion matrix represents the per-
centage of samples belonging to class i, labeled as class j by the classifier.
Thus, the diagonal entries of the confusion matrix represent the classwise
accuracy, and the off-diagonals represent misclassification. In addition
to the four-class decoding problem, we also attempted to decode SF
separately for each OR, and OR separately for each SF. Likewise, for the
rotating gratings experiment, we attempted to decode the direction of
rotation as clockwise or anticlockwise.

Time-resolved decoding using moving and growing windows. To under-
stand which temporal features of the evoked responses were important
for each decoding problem, we built two types of time-resolved pattern
classifiers defined on windowed segments of the single-trial evoked
response.

First, we built moving window classifiers using responses from 20 ms
windows, which were gradually shifted in 1 ms steps over the duration of
the evoked response from 300 ms before stimulus onset up to 260 ms
after stimulus offset. Second, we built growing window classifiers, by
starting with a 20 ms window ranging from –300 to –281 ms, and grad-
ually increased the window size in 1 ms steps, up to 1260 ms after stim-
ulus onset. For the static stimuli, we repeated the SF decoding for each
OR, and the OR decoding for each SF separately and subsequently aver-
aged these accuracies.

Statistical testing of decoding onset and offset times. To estimate the time
instant at which decoding exceeds chance level, we adopted the following
procedure. We set the empirical chance-level threshold as two SDs above
the mean decoding accuracy in the baseline range of –300 to 0 ms. Al-
though the features of the stimulus were unpredictable a priori, the ra-
tionale for using an empirical threshold, rather than a theoretical baseline
of 50%, was to account for possible biases resulting from the small train-
ing set size.

For each time window, we performed a one-tailed t test (to the right) to
ascertain when the decoding exceeded chance-level threshold (40 accu-
racies: 8 subjects � 5 cross-validation folds). For the SF and OR decoding
traces, we estimated these latencies both at stimulus onset and offset. We
set a strict significance threshold of � � 0.00005, recognizing that the
neighboring time windows are not independent. In particular, given that
a single time point is common to maximally 20 time windows, a conser-
vative Bonferroni correction for multiple comparisons would still keep
the corrected significance level at � � 0.001.

To estimate confidence bounds on the latencies, we applied Monte
Carlo bootstrapping. We sampled the 40 decoding accuracies 999 times
with replacement, and applied the one-tailed t test as described above.
We then reported their median and 95% confidence bounds.

To test the hypothesis that SF-specific information is available both
earlier and for longer than OR-specific information in single-trial
responses, we constructed a bootstrap distribution of 999 samples
for each corresponding latency, and then compared these distribu-
tions using a nonparametric Kolmogorov–Smirnov test for equality
of distributions.

Robustness analysis. To rule out that the decoding results obtained
were due to specific biases in training or test sets resulting from the
selection of the train, test split ratio of 80:20, we varied the ratio of
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training to test set sizes from 5:95 to 80:20, in
steps of 5%. For each split ratio, we random-
ized the training and test set samples 10 times
to obtain error estimates on the classification
accuracies. We then reported the mean and SD
of the mean classification accuracies across the
eight subjects.

Intersubject classification. Despite known
differences in subject-specific responses due to
differences in cortical folding, head shape, size,
and position, we attempted to investigate
whether a decoder that learned from seven sub-
jects could predict OR or SF from the MEG
responses of the eighth subject. To minimize
intersubject variability, we aligned head posi-
tions using a method based on signal space
separation (Taulu and Simola, 2006) by trans-
lating single-subject data to the average head
position across all subjects and measurements.
Once normalized, we performed a leave-one-
subject-out test, where an SVM classifier
learned from trials of all but one subject, and
was subsequently tested on the held-out sub-
ject. We applied such a classifier to each two-
class problem viz. static OR (for each SF), static
SF (for each OR), and RD.

Cross-contrast and cross-phase decoding. For
the control experiment, we trained classifiers
to identify the SF of the grating by pooling
training data across two contrasts (or phases)
and testing on the third contrast (or phase,
respectively).

Results
Projector delay and effects of filtering
on latency
To accurately quantify the latencies at
which the stimulus discrimination begins,
the delay between the stimulus delivery
command and the actual delivery of the
stimulus must be accurately estimated
and accounted for. We measured the pro-
jector delay by averaging the photodiode
signal with respect to the trigger of the
stimulus system. We found that the
stimulus onset lagged behind the trigger
by 36 ms (Fig. 2A).

In addition, we decoded the color of the stimulus patch (black
vs white) from single trials of the photodiode signal using a time-
resolved decoder. The timing of decoding accuracy onset agreed
with the photodiode signal onset time (Fig. 2B).

The inset in Figure 2A shows that the rise time of our projector
from baseline to full luminance was 2 ms (from 36 to 38 ms after the
stimulus trigger). Since visual perception likely begins before the
stimuli reach full luminance, we applied the conservative correction
of 36 ms to all latencies.

To assess the effects of filtering on the decoding accuracy, we
decoded spatial frequencies from one subject’s filtered and unfil-
tered data in a time-resolved manner. Figure 2C shows the decoding
accuracy traces obtained from filtered and unfiltered data. As the
filtering did not introduce any delay, we chose not to apply any
latency correction to the filtered data during subsequent analysis.

Time-insensitive decoding of visual features
To examine whether single-channel evoked responses showed
differences between different stimulus conditions, we visually in-

spected the trial-averaged evoked responses. Figure 3 shows
representative evoked responses in a single subject at a parieto-
occipital planar gradiometer, averaged across 100 trials for each
condition. The responses are shown for two spatial frequencies at
a given orientation (Fig. 3A) and for two orientations at a given
spatial frequency (Fig. 3B). Although the differences are most
prominent at the main peaks of the evoked responses at �70 and
�100 ms, the responses start to differ already at �50 ms. It is
important to note that our multivariate classifier used informa-
tion from several channels and was thus more sensitive than any
single channel to the subtle differences between the responses to
different stimulus categories. We quantified the earliest peak la-
tency of the evoked response by noting the time stamp of the
maximum response amplitude within 100 ms after stimulus on-
set. Pooled across subjects, channels, and static gratings, we esti-
mated this peak latency to be 71.4 � 4.4 ms.

To examine whether single-trial responses contain sufficient in-
formation to decode low-level visual features, we presented large
sinusoidal gratings for 1 s (Fig. 1) and applied decoders to the entire

Figure 2. A, The average photodiode responses to 100 trials each of black (black trace) and white (gray trace) stimulus patches
were averaged with respect to the stimulus trigger (gray vertical dashed line). The photodiode signal begins to change 36 ms after
the stimulus trigger, as indicated by the arrow on the top left. The dotted lines indicate the region near the photodiode signal onset,
from which the signal in the inset is displayed. The inset shows the 2 ms rise time to maximum luminance. B, Time-resolved
decoding of the stimulus patch color from the single-trial photodiode responses. C, Time-resolved decoding of SF from a single
subject’s single-trial filtered (gray) and unfiltered (black) MEG responses.
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epoch from stimulus onset up to 260 ms after stimulus offset, from a
selection of parieto-occipital planar gradiometer channels.

In Experiment 1 (see Materials and Methods, Experiment 1:
static gratings with different orientation and spatial frequency),
we attempted to simultaneously decode OR and SF of static sinu-
soidal gratings from unaveraged responses (Fig. 1A), represent-
ing two ORs and two SFs (chance level 25%). We used 80% of the
trials for training an SVM classifier and the remaining 20% of the
trials for predicting the OR and SF. We repeated this across five
random cross-validation folds to estimate the variability of the
classifier. Figure 4A shows the mean classification accuracies and
their bootstrapped 95% confidence intervals across five cross-
validation folds for all eight subjects. The accuracy across subjects
and validation folds was on average 64.2%.

Figure 4B shows the mean OR classification accuracy as a
function of SF classification accuracy for each subject, along with
95% confidence intervals (CI) bootstrapped across the cross-
validation folds.

In general, the decoding accuracy was a third better for SFs
than ORs (mean and 95% CIs: 91.3% and [88.5%, 93.7%], vs
66.8% and [62.3%, 71.3%]; p � 0.0001).

Figure 4C shows the confusion matrix averaged across sub-
jects, with each column representing one predicted category and
each row representing one actual category, summarizing how the
test samples were classified or misclassified. As indicated by the
dark blue entries, ORs tend to get confused with each other more

often than do SFs. To test the hypothesis that SFs can be decoded
better for one OR versus another, we performed a two-sided
Wilcoxon rank-sum test to compare the medians of the mean SF
decoding accuracies for each OR, across the five cross-validation
folds and eight subjects. The result did not reach the threshold of
statistical significance (p � 0.35).

In Experiment 2 (see Materials and Methods, Experiment 2:
dynamic gratings with different rotation directions), we at-
tempted to decode the RD (clockwise vs anticlockwise; range
0 –180°; Fig. 1B) from single-trial responses to dynamic gratings.
The RDs were classified well above chance (mean and 95% CIs:
81.8% and [76.1%, 86.4%]).

Time-resolved decoding of visual features
Having established that information about low-level visual fea-
tures can be decoded from single trials using the entire response
epoch, we investigated the role of temporal features. To this end,
we performed time-resolved decoding from signals in 20 ms win-
dows that were shifted across the epoch in 1 ms steps (moving
windows) or in windows growing forward in time by 1 ms steps
(growing windows), from 300 ms before the stimulus onset up to
260 ms after the stimulus offset.

Figure 5 shows the accuracies averaged across eight subjects
for classifiers trained on moving (left) and growing (right) win-
dows. The time points— corresponding to leading edges of win-
dows at which above-chance decoding performance was
obtained—are indicated by black bars below the accuracy
traces in Figure 5 A, C,E.

For the SF and OR decoders, Figure 5, A and C, show that the
accuracy (1) quickly exceeds chance level after stimulus onset; (2)
reaches a peak �70 and 90 ms, respectively; (3) drops down to
near chance level after the stimulus onset-locked transient
evoked responses; and (4) shows another transient increase and
fall after the responses to stimulus offset, with peaks at �1110 and
1120 ms.

Table 1 lists the median onset and offset latencies of successful
decoding following onsets and offsets of the stimuli, along with
95% CIs estimated using Monte Carlo bootstrapping.

In the following, we report median estimates of decoding on-
set and offset latencies at stimulus onset and offset.

The SF decoder gave significantly above-chance performance
(p � 0.00005, uncorrected) as early as 51 ms; i.e., already in the
32–51 ms window (Fig. 5A, inset), and the above-chance perfor-
mance continued until the 243–262 ms post onset window. In
comparison, the OR decoder gave above-chance performance
(p � 0.00005, uncorrected) as early as 65 ms (46 – 65 ms window
onwards; Fig. 5C, inset) and remained above chance until the
174 –193 ms window.

Likewise, for the offset response, SF-specific information was
available for �160 ms, between the 1041–1060 ms and 1200 –
1219 ms windows, and OR-specific information was available for
only �15 ms from the 1079 –1098 ms to the 1104 –1123 ms
windows.

Together, these latency estimates suggest that SF-specific in-
formation was available earlier and lasted longer than OR-
specific information during both stimulus onset and offset. To
test this hypothesis statistically, we estimated distribution of la-
tencies using bootstrapping and then compared the distributions
of decoding onset and offset latencies for SF and OR. The corre-
sponding SF and OR latencies were found to be statistically sig-
nificantly different (p � 0.00001; Kolmogorov–Smirnov test).

Finally, RD-specific information was available from the 279 –
298 ms post onset window (Fig. 5E, inset), or at least as early as 98

Figure 3. Evoked responses to static gratings. Responses averaged across 100 trials for a
representative subject’s parieto-occipital planar gradiometer. A, Low (0.33 c/deg; red) and high
(1.33 c/deg; blue) spatial frequencies for gratings oriented at 135°. B, Gratings oriented at 45°
(red) and 135° (blue), both at 1.33 c/deg. Shaded boundaries show SEMs. Arrows show the
median onset of above-chance decoding accuracy (see Results, Time-resolved decoding of vi-
sual features and Fig. 5).
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Figure 4. Time-insensitive decoding. A, Subjectwise classification accuracies for the four-class decoding problem: identification of both SF and OR from a closed set. The chance level (25%) is
given as a dashed line. Error bars indicate bootstrapped 95% CIs. B, Decoding accuracies for the two-class problem: OR (x-axis) versus SF ( y-axis). Each circle represents one subject; error bars indicate
bootstrapped 95% CIs. C, Confusion matrix for the four-class decoding problem, viz. prediction of OR and SF. Individual confusion matrices estimated from each subject and cross-validation fold were
averaged. Entries in each row show percentage of trials predicted as the category corresponding to the respective column. Chance level is 25%. The categories—indicated by schematics depicting
the stimulus features— correspond to left-oriented (135°) high SF, left-oriented low SF, right-oriented (45°) high SF, and right-oriented low SF.

Figure 5. Time-resolved decoding. Performance of time-resolved classifiers using windows moving or growing in 1 ms time steps is shown. The moving and growing window traces for SF (A, B),
OR (C, D), and RD (E, F ) are shown, along with chance-level threshold as solid lines and overall accuracies from time-insensitive classifiers as dotted lines. The bounds on each trace indicate
bootstrapped 95% CIs across eight subjects. Subjectwise accuracy traces were themselves obtained by averaging across five cross-validation folds. Black bars at the bottom of each trace show the
duration in which above-chance decoding ( p � 0.00005) was obtained. Insets in A, C, and E show the accuracy traces around the stimulus or rotation onset. Arrows within the insets indicate the
leading edge of the windows at which chance level was first exceeded. The gray patches in A–D show the stimulus time course. The light gray patches for E and F between 0 –200 ms and 800 –1000
ms indicate the periods of contrast fade-in and fade-out of the grating, and the dark gray patches indicate the duration of rotation. The arrows in E and F show the onset of stimulus rotation.
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ms after the onset of rotation that occurred after 200 ms. This
information continued to be available up to 822– 841 ms after
stimulus onset. No RD-specific information was available after
stimulus offset.

Intersubject classification
Next, we investigated intersubject differences in single-trial re-
sponses by attempting to predict for each subject the OR and SF
of static gratings, as well as the direction of rotation of the rotat-
ing gratings by training a classifier on the remaining seven sub-
jects (see Materials and Methods, Intersubject classification).
Table 2 shows the individual classification accuracies for SF (for
each OR), OR (for each SF), and RD. As expected due to inter-
subject variability, mean accuracies are worse than those ob-
tained when decoders were trained and tested separately on data
from individual subjects (see above, Time-insensitive decoding
of visual features). Nevertheless, SFs were classifiable above
chance (73.6 � 4.9 (SD) for gratings oriented at 135° and 72.0 �
5.1 (SD) for gratings oriented at 45°).

Robustness analysis
In supervised machine learning, with a very small test-set size, it is
possible to overestimate the generalization performance of the
classifier. To study how many training samples (each sample
comprising 40 parieto-occipital planar gradiometer signals of
1.2 s duration) were needed for robust learning, we attempted to
classify SF (separately for each OR) and OR (separately for each
SF) by varying the proportion of samples in the training set from
5% to 80% in steps of 5%.

Figure 6 shows the classification accuracies for the SF (A), OR
(B), and RD (C) as a function of the training set proportion. As
expected, the decoding performance gradually increases with in-
creasing training-set proportion. Above-chance accuracies were
obtained already with 5% of the data for SF, OR, and RD.

Cross-contrast and phase decoding
Finally, we studied in one subject whether the representation of
SF is invariant to contrast and phase of the stimulus by training
and testing cross-contrast and cross-phase SF decoders, respec-
tively. Specifically, a pattern classifier was trained on responses to
two of three possible contrasts (or phases) and tested on the
responses to the left-out contrast (or phase). Table 3 shows that
the obtained accuracies were above chance for all possible com-
binations of training and test sets, and that they were comparable
to the SF decoding accuracies for a single contrast and phase (see
above, Time-insensitive decoding of visual features). Therefore,
our main results cannot be attributed to responses to local con-
trast edges.

Discussion
We obtained four main results from the multivariate decoding
analysis of single-trial MEG signals. First, we demonstrated that
three low-level visual features are encoded robustly in single-trial
MEG responses. Second, we showed that these visual features
could be successfully decoded from 20 ms epochs; the informa-
tion about visual features is available earlier than evoked-
response peaks, and information about SFs is available earlier and
for a longer duration than ORs. Third, we demonstrated that
despite intersubject differences, it was possible to predict (above
chance level) the SF from the data of any of the subjects using
classifiers trained on the data of the seven other subjects, suggest-
ing a highly robust representation of SF across subjects. Last, a
control experiment confirmed that SF information can be de-
coded regardless of contrast or phase of the stimulus.

Representation of visual information in large
neuronal populations
Tuning properties of single neurons in V1 to characteristic fea-
tures of visual stimuli are well established (Hubel and Wiesel,
1963). Several studies have also investigated the temporal char-
acteristics of these tuning properties (Ringach et al., 1997; Mazer
et al., 2002). However, until very recently (Graf et al., 2011;
Berens et al., 2012), the representation of stimulus features in
populations comprising tens of neurons had not been experi-

Figure 6. Robustness analysis. Classification performance for the static and dynamic grat-
ings as a function of the percentage of samples in the training set are shown. Accuracies are
shown as a function of the number of training samples used to train the classifier. The propor-
tion of samples in the training set was varied from 5 to 80%, and the remaining trials were used
for testing. Accuracies are shown for (A) SFs, (B) ORs, and (C) RDs. Error bars indicate SD of the
mean classification accuracies across the eight subjects.

Table 1. Periods of successful decoding

Stimulus
feature

Stimulus onset at 0 ms Stimulus offset at 1000 ms

Decoding onset Decoding offset Decoding onset Decoding offset

SF 51 (50 –53) 262 (247–287) 1060 (1057–1067) 1219 (1202–1239)
OR 65 (58 –72) 193 (174 –261) 1098 (1090 –1106) 1123 (1115–1179)
RD 298 (284 –313) 841 (772– 863)

The numbers refer to latencies (in milliseconds) at which decoding emerged above (decoding onset) and returned
back to (decoding offset) chance level at stimulus onset and offset. The values were obtained using a one-tailed t test
against an empirical baseline estimated from the 	�300 ms, 0
 interval (see Material and Methods). Each entry
gives the median and the 95% CI from the bootstrap distribution.

Table 2. Classification accuracies for intersubject analysis

Spatial frequency Orientation
Rotation
directionSubject 135° 45° 1.33° 0.33°

1 70.5 74 53.5 53.5 —
2 75 70.5 54 53 56.5
3 66.5 73 64 58.5 61
4 75 68 45.5 55 56
5 75.5 78 53.5 50 49
6 69 64 59 53 56.5
7 74.7 69.5 53.7 55.8 54
8 82.5 79 55.5 57 53
9 — — — — 58
Mean � SD 73.6 � 4.9 72.0 � 5.1 54.2 � 5.0 54.5 � 2.7 55.5 � 3.6

Each row corresponds to the decoding accuracies on one subject’s data obtained with a classifier trained on data from
all other subjects. The columns give the classification accuracies (percentage of trials correctly classified) for each
stimulus feature (two-class problem). Chance level is 50%.

Table 3. Classification accuracies for cross-contrast and cross-phase decoding

Target contrast Accuracy Target phase Accuracy

1 75 0 81
Half 79 ¼ 73
One-fourth 78 ½ 71

A spatial frequency decoder was trained on responses to gratings with contrasts (phase) other than the target
contrast (phase) and tested on responses to gratings with the target contrast (phase).
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mentally demonstrated. Our study complements these recent re-
ports by demonstrating visual feature representation at the very
different spatial scale of tens of thousands of neurons, in humans.

Evidence for rapid visual information processing
Over the past decade, several studies have provided neural evi-
dence regarding the speed of information processing in the visual
system (Thorpe et al., 1996; VanRullen and Thorpe, 2001; Bisley
et al., 2004; Hung et al., 2005; Liu et al., 2009; Thorpe, 2009).

Judging from spike-onset latencies, layer 4C of macaque V1 re-
ceives the earliest input at 44 ms after stimulus onset (Schmolesky et
al., 1998). Furthermore, a recent time-resolved decoding study of
spike counts from a macaque V1 population revealed that orienta-
tion can be read out at latencies as early as 30 ms (Berens et al., 2012).
Our results show that in the human brain visual features can be
decoded above chance as early as 50 ms, i.e., around the time when
the main visually evoked MEG responses of human visual cortex
typically start to emerge (Vanni et al., 2001). By showing that stim-
ulus features can be reliably decoded from the cortex as early as �50
ms, our study complements this body of work, and implies that the
human visual system has inferred low-level visual features at or be-
fore this time. Although a good correspondence exists between the
timing of single-neuron firing in primate V1 and the onset of MEG
signal decoding in our study, we may be dealing with very different
phenomena at different scales, and therefore our results must be
interpreted with caution.

Time-resolved encoding and decoding models are readily ap-
plicable to study the dynamics of pre-attentive stimulus discrim-
ination versus conscious decision making (Lamme and
Roelfsema, 2000; VanRullen and Thorpe, 2001). However, since
our subjects were not asked to perform an overt discrimination
task, we cannot tell apart the influence of stimulus discrimination
processes, variable signal-to-noise ratio (SNR) of the responses,
and conscious perceptual judgment on the decoding results.

Dynamics of spatial frequency and orientation processing
V1 population firing rates show selectivity to different low-level
features at different times (Lamme et al., 1999). Thus, the dynam-
ics of population-level signals may carry important information
about visual feature processing.

It is worth noting that in our data, as well as in the population
firing-rate data presented by Lamme et al. (1999), stimulus-
feature decoding for static stimuli was successful only during the
transient onset and offset responses. In contrast, in recent at-
tempts to decode orientation of gratings from MEG signals
(Duncan et al., 2010; Koelewijn et al., 2011), gamma-band re-
sponses contained static stimulus-specific information from 200
ms onward. Hence in future studies, time-resolved decoding
could be used to elucidate how stimulus-feature selectivity
evolves as a function of time and what aspects of visual informa-
tion are reflected in transient evoked responses versus longer
lasting gamma-band responses.

Our estimates of decoding onset and offset latencies (see Re-
sults, Time-resolved decoding of visual features; Fig. 5A,C; Table
1) suggest that SF-specific information is present 1.6 and 6.4
times as long as OR-specific information at stimulus onset and
offset, respectively. It is likely that the contrast between responses
to the two ORs and to the two SFs might differ and emerge (above
the noise level) at different times, and that these unequal
contrast-to-noise ratios could explain the timing differences be-
tween SF and OR decoding.

However, these timing differences could be explained by two
other possibilities, which are speculative at present. One possibil-

ity is that neurons tuned to SF and OR exhibit different rates of
neuronal adaptation, suggested by monkey V1 recordings
(McLelland et al., 2010). Another possibility is that broader tem-
poral selectivity of SFs than ORs may be explained by latency
differences between high and low SFs. In particular, the differ-
ence between SF and OR decoding might derive from different
contributions from magnocellular (M) and parvocellular (P) in-
puts as the faster M pathway is known to be sensitive to lower SFs,
and single cells in V1 receive projections from both pathways.
Furthermore, Mazer et al. (2002) found significant latency differ-
ences in spikes for high and low SFs from single V1 neurons in
behaving macaques, but no similar effect for orientation was
reported.

Why are spatial frequencies and orientations classifiable?
Our results with static and dynamic gratings suggest that SF- as
well as OR-selective activity is robustly observable from single-
trial MEG data. It is well known from early electrophysiology and
optical imaging studies that the primary visual cortex consists of
orientation hypercolumns that are organized in a pinwheel-like
structure (Hubel and Wiesel, 1963), or SF-selective cells that are
arranged in alternating bands (Tootell et al., 1981; Sirovich and
Uglesich, 2004). Since it is unlikely that our sensor-level MEG
signals would reflect activity due to fine columnar structure, our
data could be taken to suggest that several columns sensitive to a
certain SF or OR in our relatively large stimuli were activated in a
very synchronized manner, thereby producing distinct spatio-
temporal fingerprints for different stimulus features.

The nonuniform distribution of SF-selective neurons with re-
spect to eccentricity (Tootell et al., 1981), or differential SF-
tuning in different visual cortical areas (Henriksson et al., 2008),
may give rise to these discriminative fingerprints. Similarly, a
recent fMRI study (Freeman et al., 2011) suggested that groups of
V1 neurons are tuned to radial orientations, in addition to having
a pinwheel-like columnar structure (Hubel and Wiesel, 1963).
Given that our large gratings span a wide range of eccentricities
(from 2 to 10°), it is possible that our MEG data contain such
orientation-specific fingerprints. However, measurements of re-
sponses to a wider range of orientations as well as explicit source
modeling are required to confirm these interpretations.

Decoding challenges for MEG versus fMRI
Despite the complementary nature of EEG/MEG signals with re-
spect to fMRI, few attempts have been made to decode low-level
stimulus-specific information from EEG/MEG signals. Duncan
et al. (2010) applied MVPA to single-trial MEG signals, both
evoked responses from 0 to 300 ms poststimulus and frequency
spectra from 300 to 2300 ms poststimulus, to decode at �70%
accuracy between two oblique orientations of gratings presented
for 2.5 s to either the left or right visual field. Koelewijn et al.
(2011) found significant differences in the evoked MEG re-
sponses and grating-induced MEG gamma responses between
oblique versus cardinal gratings, suggesting that noninvasive
measurements contain discriminative information about the ori-
entation of gratings. Although recent decoding studies have
shown that the gamma band is informative of task or stimulus
parameters (Fuentemilla et al., 2010; Polanía et al., 2012;
Jafarpour et al., 2013), we restricted our analysis to the evoked re-
sponses and low-pass filtered the data at 45 Hz in this study.

It is important to point out one key difference between MEG
and fMRI with respect to decoding: unlike fMRI, which offers
relatively uniform SNR throughout the brain, the sensitivity of
MEG to different parts of the cortex is highly nonuniform be-
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cause of MEG’s differential depth (better sensitivity for superfi-
cial than deep sources) and orientation sensitivity (better
sensitivity for tangential vs radial currents with respect to the
skull; source current orientation in the tangential plane directly
affects the orientation of the field pattern). As an example of this
effect, even a small change in current orientation may be detected
with MEG (Hari et al., 1996). Thus, these nonuniform sensitivi-
ties of MEG might prove to be assets rather than shortcomings.

In summary, the implications of this study for noninvasive
electrophysiology and low-level vision are as follows: The differ-
ences between the temporal accuracy traces of the time-resolved
classifiers suggest interesting differences between the processing
of spatial frequency and orientation of visual stimuli. The decod-
ability of visual information nearly 20 ms before the peak of the
cortical visual-evoked response was unexpected and certainly
merits further investigation. Although earlier studies have re-
ported time-resolved decoding of object-level information from
electrophysiological data (Hung et al., 2005; Liu et al., 2009;
Carlson et al., 2011), our decoding study is the first to present a
detailed characterization of the rapid neural processing of visual
features using a noninvasive technique in humans. Analogous to
information-based brain mapping with fMRI (Kriegeskorte et al.,
2006), the time-resolved decoding approach presented here is
suitable to unravel, in addition to the type of information pro-
cessed in the brain, the exact temporal structure and dynamics of
the processing.
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coupled periodic replay in working memory. Curr Biol 20:606 – 612.
CrossRef Medline

Graf AB, Kohn A, Jazayeri M, Movshon JA (2011) Decoding the activity of
neuronal populations in macaque primary visual cortex. Nat Neurosci
14:239 –245. CrossRef Medline

Hari R, Nagamine T, Nishitani N, Mikuni N, Sato T, Tarkiainen A, Shibasaki
H (1996) Time-varying activation of different cytoarchitechtonic areas
of the human SI cortex after tibial nerve stimulation. Neuroimage 4:111–
118. CrossRef Medline

Hari R, Parkkonen L, Nangini C (2010) The brain in time: Insights from
neuromagnetic recordings. Ann N Y Acad Sci 1191:89 –109.

Haynes JD, Rees G (2005) Predicting the orientation of invisible stimuli
from activity in human primary visual cortex. Nat Neurosci 8:686 – 691.
CrossRef Medline

Henriksson L, Nurminen L, Hyvärinen A, Vanni S (2008) Spatial frequency
tuning in human retinotopic visual areas. J Vis 8(10):5. 1–13. CrossRef
Medline

Hubel DH, Wiesel TN (1963) Shape and arrangement of columns in cat’s
striate cortex. J Physiol 165:559 –568. Medline

Hung CP, Kreiman G, Poggio T, DiCarlo JJ (2005) Fast readout of object
identity from macaque inferior temporal cortex. Science 310:863– 866.
CrossRef Medline

Jafarpour A, Horner AJ, Fuentemilla L, Penny WD, Duzel E (2013) Decod-
ing oscillatory representations and mechanisms in memory. Neuropsy-
chologia 51:772–780. CrossRef Medline

Kamitani Y, Tong F (2005) Decoding the visual and subjective contents of
the human brain. Nat Neurosci 8:679 – 685. CrossRef Medline

Koelewijn L, Dumont JR, Muthukumaraswamy SD, Rich AN, Singh KD
(2011) Induced and evoked neural correlates of orientation selectivity in
human visual cortex. Neuroimage 54:2983–2993. CrossRef Medline

Kriegeskorte N, Goebel R, Bandettini P (2006) Information-based func-
tional brain mapping. Proc Natl Acad Sci U S A 103:3863–3868. CrossRef
Medline

Lamme VA, Roelfsema PR (2000) The distinct modes of vision offered by
feedforward and recurrent processing. Trends Neurosci 23:571–579.
CrossRef Medline

Lamme VA, Rodriguez-Rodriguez V, Spekreijse H (1999) Separate process-
ing dynamics for texture elements, boundaries and surfaces in primary
visual cortex. Cereb Cortex 9:406 – 413. CrossRef Medline

Liu H, Agam Y, Madsen JR, Kreiman G (2009) Timing, timing, timing: fast
decoding of object information from intracranial field potentials in hu-
man visual cortex. Neuron 62:281–290. CrossRef Medline

Mazer JA, Vinje WE, McDermott J, Schiller PH, Gallant JL (2002) Spatial
frequency and orientation tuning dynamics in area V1. Proc Natl Acad Sci
U S A 99:1645–1650. CrossRef Medline

McLelland D, Baker PM, Ahmed B, Bair W (2010) Neuronal responses dur-
ing and after the presentation of static visual stimuli in macaque primary
visual cortex. J Neurosci 30:12619 –12631. CrossRef Medline

Polanía R, Paulus W, Nitsche MA (2012) Noninvasively decoding the con-
tents of visual working memory in the human prefrontal cortex with
high-gamma oscillatory patterns. J Cogn Neurosci 24:304 –314. Medline

Ringach DL, Hawken MJ, Shapley R (1997) Dynamics of orientation tuning
in macaque primary visual cortex. Nature 387:281–284. CrossRef
Medline

Schmolesky MT, Wang Y, Hanes DP, Thompson KG, Leutgeb S, Schall JD,
Leventhal AG (1998) Signal timing across the macaque visual system.
J Neurophysiol 79:3272–3278. Medline

Sirovich L, Uglesich R (2004) The organization of orientation and spatial
frequency in the primary visual cortex. Proc Natl Acad Sci U S A 101:
16941–16946. CrossRef Medline

Taulu S, Simola J (2006) Spatiotemporal signal space separation method for
rejecting nearby interference in MEG measurements. Phys Med Biol 51:
1759 –1768. CrossRef Medline

Thorpe SJ (2009) The speed of categorization in the human visual system.
Neuron 62:168 –170. CrossRef Medline

Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual
system. Nature 381:520 –522. CrossRef Medline

Tootell RB, Silverman MS, De Valois RL (1981) Spatial frequency columns
in primary visual cortex. Science 214:813– 815. CrossRef Medline
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