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When motor commands are accompanied by an unexpected outcome, the resulting error induces changes in subsequent commands.
However, when errors are artificially eliminated, changes in motor commands are not sustained but show decay. Why does the
adaptation-induced change in motor output decay in the absence of error? A prominent idea is that decay reflects the stability of the
memory. We show results that challenge this idea and instead suggest that motor output decays because the brain actively disengages a
component of the memory. Humans adapted their reaching movements to a perturbation and were then introduced to a long period of
trials in which errors were absent (error-clamp). We found that, in some subjects, motor output did not decay at the onset of the
error-clamp block but a few trials later. We manipulated the kinematics of movements in the error-clamp block and found that, as
movements became more similar to subjects’ natural movements in the perturbation block, the lag to decay onset became longer and
eventually reached hundreds of trials. Furthermore, when there was decay in the motor output, the endpoint of decay was not zero but a
fraction of the motor memory that was last acquired. Therefore, adaptation to a perturbation installed two distinct kinds of memories: (1)
one that was disengaged when the brain detected a change in the task and (2) one that persisted despite it. Motor memories showed little
decay in the absence of error if the brain was prevented from detecting a change in task conditions.

Introduction
When motor commands produce unexpected results, the brain
changes the commands on the subsequent trial (Thoroughman and
Shadmehr, 2000). For example, when one reaches while holding an
object that has novel dynamics (Shadmehr and Mussa-Ivaldi, 1994),
the sensory consequences of motor commands are different from
expected. This prediction error alters the motor commands on the
subsequent trial, and the accumulation of this error-dependent
learning, combined with repetition of the motor commands (Huang
et al., 2011), produces a motor memory that can be recalled months
later (Shadmehr and Brashers-Krug, 1997). The ability to protect
and recall a memory can be strengthened by altering the perturba-
tion schedule, amount of repetition, or type of feedback (Huang et
al., 2011; Pekny et al., 2011; Shmuelof et al., 2012). Paradoxically, in
one condition, the motor memory appears transient: if training is
followed by a block of error-clamp (EC) trials, trials in which errors
are artificially eliminated, the motor output decays. That is, error
produces a change in motor output, but absence of error also pro-
duces a change. The change in motor output in the absence of error
has been taken as evidence that error-dependent adaptation pro-
duces a motor memory that is inherently labile, exhibiting decay
(Cheng and Sabes, 2006; Smith et al., 2006; Criscimagna-
Hemminger and Shadmehr, 2008; Joiner and Smith, 2008; Zarahn et

al., 2008; Galea et al., 2011). How is it that recently acquired motor
memories exhibit decay in the absence of error over tens of trials yet
have long-term stability as exhibited by recall months later?

An important clue is an observation that was made by Scheidt
et al. (2000). Subjects learned to compensate for a perturbation
and were then exposed to EC trials. In most healthy subjects, in
the absence of error, the motor output decayed at the very onset
of the EC block, exhibiting zero lag (Scheidt et al., 2000, their Fig.
5B). However, on rare occasions, motor output showed no decay
for tens of trials: in one subject, there was a 60 trial lag (Scheidt et
al., 2000, their Fig. 5C). Therefore, absence of error is not a suf-
ficient condition for decay of motor output. Rather, the trial at
which the decay begins may be probabilistic.

The aim of our study was to better understand why motor output
decays in the absence of error. In our first experiment, we explored
the question of the steady state (or endpoint) to which motor output
decays. We found that this endpoint was never zero but always a
fraction of the motor memory that was last acquired. In our sample
of subjects, we also observed an occasional instance in which the
decay started not at the beginning of the EC block but after a lag. In
our second and third experiments, we explored conditions that
changed this lag. We found that the lag could be extended, some-
times indefinitely, by closely matching the statistics of movements in
the EC trials to the preceding training trials. These results suggest
that motor memories do not passively decay in the absence of error
but are actively disengaged because the brain detects a change in the
task.

Materials and Methods
Fifty-five healthy right-handed subjects with no known neurological im-
pairment participated in this study (aged 23.1 � 4.6 years, 31 females).
All subjects were naive to our apparatus, the paradigm, and the purpose
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of the experiment. This work was approved by the Johns Hopkins Uni-
versity School of Medicine Institutional Review Board.

Subjects grasped the handle of a two-link robotic manipulandum with
their right hand and made reaching or shooting movements, described
below, for �60 min. A screen covered the hand; veridical visual feedback
(3-mm-diameter cursor) was provided throughout the experiment. Sub-
jects were permitted short breaks at defined points in the experiment.
Position, velocity, and force at the handle were recorded at a rate of 200
Hz. During some trials, participants experienced a viscous curl field f �
kBẋ (Fig. 1A), where f is force on the hand, k is a constant describing the
field strength, B is a viscosity matrix describing a counterclockwise curl

field, B � � 0 �15
15 0 �N � s/m, and ẋ is the hand velocity vector. In

some trials, subjects experienced an error-clamp (Fig. 1A) in which the
movement was constrained to the line between the start position and an
endpoint (usually the target, except in experiment 3; see below) by a stiff,
one-dimensional spring (spring coefficient, 6 kN/m; damping coeffi-
cient, 250 Ns/m) (Scheidt et al., 2000). In these trials, we were able to
record the compensatory forces exerted by the subject onto the walls of
the channel formed by the spring. We placed EC trials with 20% proba-
bility randomly throughout each experiment.

Our aim was to understand why motor output decays in EC trials. To
answer this question, we began with a series of experiments in which we
varied the history of the training (experiment 1). We followed up with
another series of experiments (experiments 2 and 3) in which we tested
the hypothesis that the decay occurs only if the brain detects a change
from the force-field (FF) trials to error-clamp (EC) trials.

Experiment 1: reaching with constant error-clamp. In experiment 1,
our aim was to determine the effect of the history of training on the
rate, endpoint, and lag of the decay in motor output in the EC trials.
Participants (n � 24) made point-to-point reaching movements from
a 1-cm-diameter starting circle at approximately midline of the body to a
1-cm-diameter target 10 cm away. The start circle was visible throughout
the experiment. Subjects were instructed to move “rapidly and accu-
rately” to the target once the target appeared and an auditory cue was
played. Once the hand stopped at the target, feedback was provided. If the
movement took too long (�550 ms), the target turned blue. If the move-
ment was too brief (�450 ms), the target turned red. Subjects received a
point and an “explosion” of the target for movements between 450 and
550 ms. Auditory feedback was also provided: a 2000 Hz tone indicated
success, and a 200 Hz tone indicated failure. After each trial, the target
was removed and the robot returned the subject’s hand from the target to
the start position.

Four groups of subjects participated in this experiment (Fig. 1B).
Group 1.1 (n � 6) trained only in field k � 1 (counterclockwise field, 300
trials) without baseline training in null. Group 1.2 (n � 6) trained in null
(k � 0, 250 trials), followed by 300 trials of k � 1 field training. Group 1.3
(n � 6) trained in k � �0.5 (250 trials), followed by 300 trials of training
in k � 1. Group 1.4 (n � 6) trained only in field k � �1, without training
in null. After completion of training in field, all subjects completed 600
EC trials.

Experiments 2: shooting with constant error-clamp. To test the hypoth-
esis that change detection may be a critical component of decay of motor
memories in EC trials, we tried to make the differences between move-
ments in FF trials and EC trials less pronounced. In experiment 2, sub-
jects (n � 12) were asked to “shoot through and past” the target into a
virtual pillow positioned beyond the target. The cursor was turned off
once the subject moved past the target. The goal duration was 150 –250
ms. Feedback for movements that were too fast, too slow, or correct was
identical to the reaching task in experiment 1. If subjects struck the
virtual pillow in the appropriate time but missed the target, the target
turned pink, a 500 Hz tone was played, and the trial was considered
unsuccessful. Group 2.1 (n � 6) trained only in field k � 1 (300 trials)
without baseline training in null. Group 2.2 (n � 6) trained in k � �0.5
(250 trials), followed by 300 trials of training in k � 1. After completion
of training in field, all subjects completed 600 EC trials.

Experiments 3: shooting with variable error-clamp. In experiment 3, we
attempted to make the transition from the FF to the EC block more
difficult to detect by making the EC trials have a variability that matched
the variability of FF trials. Subjects (n � 19) trained only in field k � 1
(300 trials) without baseline training in null. This was followed by a block
of variable EC trials (325 trials). In these trials, as in constant EC trials, the
movement was constrained to a line by a stiff one-dimensional spring
between the start position and an endpoint (Fig. 1A). The variable error-
clamps were designed so that the endpoint of a given EC trial was a
random variable � with a distribution that matched the natural variabil-
ity of the endpoint of subjects’ movements (Fig. 1C) (Shmuelof et al.,
2011). The distribution of this random variable was selected based on the
distribution of the movement endpoints of subjects in experiment 2 at
the end of training. The angular deviation � was drawn from a normal
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Figure 1. Experimental paradigm. A, Participants experienced three types of trials. In FF trials,
participants experienced a viscous curl field f � kBẋ, where f is force on the hand, k is a constant
describing the field strength, B is a viscosity matrix describing a counterclockwise curl field, and ẋ is the
hand velocity. In error-clamp trials, movements were constrained to a straight line by a stiff one-
dimensional spring. Constant EC trials constrained movements in a line to the target. In variable EC
trials, the movement endpoint was a random variable � that matched the natural variability in sub-
jects’ movement (Shmuelof et al., 2011). B, In experiment 1, subjects made point-to-point reaching
movements. In experiments 2 and 3, subjects made shooting movements through and past the tar-
get. k indicates the field strength. Constant EC trials (thin gray lines) were interspersed randomly with
20% probability through the experiment. � (gray points) indicates the movement endpoint in vari-
able EC trials. Black parallel lines indicate constant EC trials.
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distribution with the following mean and variance: � � N(�0.2°, 2.6°).
Note that the small non-zero bias in the mean angular deviation of these
EC trials is equivalent to a 0.03 cm lateral deviation to the right at the end
of the movement, well within the target width of 1 cm (5.7°). As in
experiments 1 and 2, EC trials directly to the target were interspersed with
20% probability throughout the experiment.

Adaptation index. We quantified performance via an adaptation index
during EC trials (Smith et al., 2006). The lateral force produced during an
EC trial was regressed onto the ideal compensatory force profile for a
counterclockwise field with k � 1. The adaptation index was zero if the
forces were uncorrelated and one if they were perfectly correlated. For
example, perfect compensation for a counterclockwise field (k � 1) re-
sults in an adaptation index of 1; perfect compensation for the weak
clockwise field (k � �0.5) results in an adaptation index of �0.5.

Decay of force in EC trials. In all experiments, we assessed whether
subjects reduced their motor output immediately on entering the block
of EC trials or with a lag. The adaptation index of subjects in the last 50
trials of training and during the final EC block were fit using a nonlinear
least-squares fit to a lagged exponential decay f(�):

f��� � � a � � �
�a � b� � exp����� � ��� � b � 	 � . (1)

In Equation 1, � is the trial number in the EC block, a is adaptation index
the subject achieved in FF trials, b is the endpoint of the decay, � is the
rate of decay, and � is the lag:

a � 	0.5, 1.5
,

b � 	� 0.3, 0.3
,

� � 	0.005, 0.5
,

� 
 0.

Predictions of two-state model. We compared our results with the predic-
tions of a two-state model, in which motor output is the sum of two
internal states: (1) one that shows high sensitivity to error but forgets
quickly, termed the “fast” state, and (2) another that shows low sensitiv-
ity to error but forgets slowly, termed the “slow” state (Smith et al., 2006).
On trial n, the motor output is x (n ), resulting in error e (n ). This error
produces an update of the states as follows:

x (n ) � xf (n) � xs(n), (2)

e (n ) � k (n ) � x (n ),

xf
(n � 1) � Af xf

(n ) � Bf e (n ),

xs
(n � 1) � Asxs

(n ) � Bse
(n ).

In Equation 2, xf and xs are the fast and slow states, respectively, k (n ) is
the perturbation, and e (n ) is the error on trial n. The learning rates are
0 � Bs � Bf � 1, and the rates of forgetting are 0 � Af � As � 1. The
learning and forgetting rates were identified using a nonlinear least-
squares fit of predicted motor output to the adaptation index in EC trials
during field training. These parameters were used to predict behavior in
the EC block. Constant EC trials were simulated as having an error e (n ) �
0. To simulate performance in variable EC trials, we computed the rela-
tionship between error, e (n ), and angular deviation, � (n ). We calculated,
for the first 50 trials of experiment 3, the linear relationship between the
error in EC trials, that is, the difference between the field strength k and
the measured adaptation index in that trial, and the endpoint angular
deviation in the subsequent FF trial. A variable EC trial with deviation
� (n ) was simulated as having an error e (n ) � c� (n ), where c is the slope of
the line.

Statistics. All statistical analyses were conducted using MATLAB
(R2012a; MathWorks) or SPSS (version 21; IBM). Unless otherwise in-
dicated, we used Student’s t test, ANOVA, and repeated-measures
ANOVA with Greenhouse–Geisser correction when Mauchly’s test of

sphericity failed. One-tailed tests were used when indicated when there
was an a priori expectation of a directional effect.

Results
Effect of history of training on rate and endpoint of decay
We began by asking whether the decay of motor output that
typically takes place in EC trials is influenced by initial training in
a null field. In all previous publications of which we are aware,
volunteers were initially trained in a null or baseline condition in
which reaches were performed without a perturbation. We won-
dered whether this pretraining affected the motor output in the
EC block. If so, training subjects with a different baseline, or
without baseline training, might change the endpoint of the
decay.

To answer this question, we compared performance of two
groups of subjects. Group 1.1 trained for 300 trials in a counter-
clockwise field (Fig. 1B) but received no previous training in the
null field (i.e., field was at full strength from the very first trial). In
contrast, group 1.2 trained for 250 trials in a null field and was
then exposed to the field (Fig. 1B). Both groups experienced a
block of EC trials after field training. Our measure of motor
output was an adaptation index, which quantified force pro-
duced in EC trials as a function of ideal forces needed to compen-
sate for a counterclockwise force field. To assess performance, we
considered the mean adaptation index at the end of field training
(trials 500 –550) and in the final 50 EC trials in the experiment
(trials 1100 –1150). We found that, by end of field training, per-
formance in the two groups was comparable (Fig. 2A,B; adapta-
tion index: mean � SEM, group 1.1, 0.93 � 0.04; group 1.2,
0.86 � 0.03; two-tailed t test, p � 0.17). The motor outputs
decayed rapidly over the course of �75 EC trials (Fig. 2C) but
showed no additional decay over the next 500 trials (Fig. 2B). The
decay endpoints were similar in the two groups (group 1.1,
0.21 � 0.05; group 1.2, 0.26 � 0.03; p � 0.41). Furthermore, after
600 EC trials, the motor outputs in both groups were still signif-
icantly greater than zero (one-tailed t test, group 1.1, p � 0.005;
group 1.2, p � 2e-4). Therefore, motor output decayed in the EC
trials whether or not subjects were exposed to the null field. The
decay endpoint was not zero but a fraction of the motor output
attained during training.

To further investigate the factors that contributed to the decay
endpoint, we recruited a new group. Group 1.3 first trained in a
clockwise field and then in a counterclockwise field (Fig. 1B).
Subjects learned to compensate for the counterclockwise field as
well as subjects in groups 1.1 and 1.2 (adaptation index: mean �
SEM, group 1.3, 0.89 � 0.01; ANOVA, effect of group on train-
ing, p � 0.25). However, in EC trials, the motor output of group
1.3 declined somewhat faster than groups 1.1 and 1.2 (repeated-
measures ANOVA for trials 550 – 625, significant within-subject
interaction effect between group � trial number, p � 0.02) but
had an endpoint that was similar to the two other groups (adap-
tation index: mean � SEM, group 1.3, 0.28 � 0.07; ANOVA,
effect of group on endpoint, p � 0.57). This suggested that no
matter which sequence of fields subjects trained in, decay end-
point was always a fraction of the last field to which they had been
exposed.

To check the validity of this conclusion, we recruited a new
group and tested them in a field opposite to all previous groups.
Group 1.4 never trained in a null field and was only exposed to a
clockwise field (Fig. 1B). In EC trials, the motor output of group
1.4 also declined (Fig. 2B). Like other groups, the decay endpoint
for group 1.4 was a fraction of the motor output learned in the last
set of FF trials (adaptation index: mean � SEM, group 1.4,
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�0.19 � 0.09; one-tailed t test, p � 0.04). We conducted an
ANOVA to determine the effect of baseline (clockwise, null, or
none) and training (clockwise or counterclockwise) on the decay
endpoint in these four groups. There was a significant effect of
training (p � 3e-4) but no effect of baseline (p � 0.67).

If subjects are reducing their motor output in EC trials to
minimize the effort of their movements (Emken et al., 2007) or
because a motor memory is passively being forgotten from trial to
trial (Smith et al., 2006), we would expect decay endpoints to be
zero. In contrast, our results show that decay endpoint is a non-
zero fraction of the last motor output learned during training.
Furthermore, our results show that, whereas the rate of decay
depends on the sequence of fields that have been learned, the
decay endpoint depends only on the final field that was learned.

A lag to the start of the decay
In closely inspecting our data, we noticed that some subjects did
not show a decay of their motor output at the onset of the EC
trials. Rather, there were some subjects who displayed a lag to the
start of the decay, as shown by the data from two subjects in

Figure 2. Learning and decay in reaching movements in experiment 1. Motor output
was quantified via an adaptation index. The adaptation index represents the linear regres-
sion of the ideal compensatory force profile onto the actual force profile measured in EC
trials. Time course of the change in the adaptation index during baseline training and
adaptation (A) and in final EC trials (B). C, Initial decay. Data are mean � SEM across all
subjects.

Figure 3. Lag to decay in reaching movements in experiment 1. A, Time course of the change
in adaptation index in EC trials for two example subjects (top, group 1.7; bottom, group 1.1). A
delayed exponential was fit to the data. B, Distribution of lags to the start of the decay for all
subjects. The distribution was well fit by an exponential function (gray).
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Figure 3A. To quantify this pattern, for
each subject, we fit a delayed exponential
(Eq. 1) to the final 50 trials of adaptation
and the 600 trials of the EC trials and esti-
mated their lag � (in units of trials).
Across subjects, � is a random variable
with the distribution shown in Figure 3B.
We found that, on average, there was a
small but significant lag of 4.8 � 1.3 trials
(mean � SEM; one-tailed t test, p � 7e-4).
The lag was not different between
groups (ANOVA, effect of group on de-
lay, p � 0.98).

We next wanted to assess the distri-
bution of the lags in this experiment. If
the initiation of decay is a probabilistic
event occurring independently on a
trial-to-trial basis, we would expect the
distribution of lags to be exponential.
We computed the maximum likelihood
fit of the decay lag � to normal, Poisson,
gamma, and exponential probability dis-
tributions and used the Akaike informa-
tion criterion (AIC) to assess the relative
quality of the fits. To fit a Poisson distri-
bution, the lags were rounded to the near-
est integer. To fit a gamma distribution,
which has a probability of zero at zero,
the distribution of the first trial of decay
(i.e., lag plus one) was used. We found
that the decay lag � was best fit by an
exponential probability distribution

P��� �
1

�
exp�� �

��, resulting in � �

4.8 trials (AIC: exponential, 125; normal,
160; Poisson, 238; gamma, 136). The 95%
confidence interval of � was [3.3, 7.5] tri-
als (goodness-of-fit log-likelihood of
�62), further confirming that the mean
of the distribution of the lags is quite likely
to be greater than zero.

The data from experiment 1 (Fig. 3B)
hinted that the start of the decay may be a
probabilistic event: for many subjects, the
decay started at the first EC trial, but for
others started a few trials later. To explain
this probabilistic behavior, we hypothesized
that the decay of motor output may have
been initiated when the brain detected a
change from the FF to the EC trials.

To better understand what may be
changing between these two block of tri-
als, we quantified performance of each
subject at the end of the FF trials (last 20
trials) and at the beginning of the EC trials
(first 20 trials). The data are summarized for each subject in the
left column of Figure 4. We found that, when subjects transi-
tioned from field to EC trials in experiment 1, the EC trials made
the movements artificially more straight (deviation of trajectories
from a straight line: mean � SEM, FF, 18 � 2 cm 2; EC, 0.15 �
0.02 cm 2; one-tailed t test of FF vs EC, p � 3e-7; Fig. 4A), more
similar from trial to trial (intertrial correlation of velocity time

series: FF, 0.41 � 0.03; EC, 0.56 � 0.03; p � 2e-4; Fig. 4B), more
successful in terms of acquiring reward (probability of reward:
FF, 0.43 � 0.04; EC, 0.81 � 0.02; p � 1e-9; Fig. 4C), and shorter
in duration because of a need to make fewer corrections (move-
ment duration: FF, 577 � 13 ms; EC, 479 � 12 ms; p � 1e-7; Fig.
4D). Therefore, at the onset of the EC block, there was a signifi-
cant change in movement kinematics. It seems reasonable that
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Figure 4. Change in behavior between the end of the FF trials (last 20 trials) and the beginning of the EC trials (first 20 trials). A,
Trajectory deviation: sum of the squared deviation of each point in the trajectory from the straight line connecting the start to end
positions. B, Intermovement consistency: correlation between the velocity time series from one trial to the next (Shadmehr and
Mussa-Ivaldi, 1994). C, Probability of reward. D, Movement duration. E, Endpoint angle: the angle between the line from start to
the target and the line connecting the start and end positions. Left column, The change in task parameters for reaching movements
in experiment 1, shooting movements with constant error clamp in experiment 2, and shooting movements with variable error
clamp in experiment 3. Lines are the mean (A–D) or SD (E) of the measure for each subject. One-tailed t test that consistency and
reward increase, and deviation, duration, and endpoint variability decrease, in EC trials. Right column, The ratio of the value of each
measure in FF trials to its value in EC trials (FF:EC ratio). A ratio of 1 indicates no change. Data are mean � SEM across all subjects.
One-tailed t test that FF:EC ratios of consistency and reward increase, and deviation, duration, and endpoint variability decrease, in
later experiments. *p � 0.05, ***p � 0.001.
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the motor system detected some of these changes. We hypothe-
sized that, if detection of these changes is partly responsible for
the non-zero lag that we observed in the initiation of decay, then
reducing the differences between FF and EC trials should increase
the lag. We pursued this idea in experiments 2 and 3.

Increasing the lag
In experiment 2 (Fig. 1B), we asked subjects to make a shooting
movement so that the hand went through and past the target and
then hit a virtual pillow. In this paradigm, they did not have to
correct their movements or stop at the target. Our logic was that,
because a shooting movement to a target at a given distance is
shorter in duration and is straighter than a reaching movement to
the same target, in the shooting task performance at the end of the
adaptation block might be more similar to the EC block, making
it harder for the brain to detect a change. Indeed, we found that
performance measures in the two blocks of trials were now more
similar. The data for the shooting task are summarized for the last
20 FF trials and the first 20 EC trials in column labeled Exp. 2 in
Figure 4. To quantify the change in performance from the end of
FF trials to start of EC trials, we computed the ratio of the value of
each measure in the FF trials to its value in EC trials (FF:EC ratio;
Fig. 4, right column). We found that the change in performance
from FF trials to EC trials was less pronounced in most measures
in the shooting task compared with the reaching task (one tailed
t test, straightness, p � 0.08; consistency, p � 0.03; reward, p �
0.02; movement time, p � 1e-5). Therefore, in the shooting par-
adigm (experiment 2), movements in the FF and EC blocks of
trials were more similar than the reaching movements in the
same two blocks of trials (experiment 1). Did this increased sim-
ilarity affect the decay lags?

We quantified the lag to decay of motor output in the
shooting experiment (experiment 2). Data from two subjects
are shown in Figure 5A. In one of these subjects, we see a lag of
25 trials, whereas in the other subject, the motor output shows
no decay for �300 trials. Interestingly, most subjects, includ-
ing those who show decay in motor output, did not report
observing any changes in the dynamics of the manipulandum
when asked after the experiment was complete. However,
when asked about her perceptions of the experiment, the latter
subject (Fig. 5A, bottom) reported noticing that the manipulan-
dum was pushing her to the left and then began to make her
movements straight, but she showed no evidence of decay. To-
gether, these suggest that explicit awareness of the change in the
task may be independent of the detection of a change by the
motor system.

The distribution of lags for the entire population of
subjects in experiment 2 is shown in Figure 5B. We fit the data
in Figure 5B to an exponential probability distribution,

P��� �
1

�
exp�� �

��, and found that � � 44 trials (95%

confidence interval of [27, 86] trials, goodness-of-fit log-
likelihood of �57). In comparing the lag distributions in exper-
iment 1 and experiment 2, we find that the mean lag is
significantly greater in experiment 2 than in experiment 1
(mean � SEM, experiment 2, 44.3 � 28.8 trials; one-tailed t test,
p � 0.03). Furthermore, we find that the mean of the lag distri-
bution � has increased by an order of magnitude, and the 95%
confidence intervals are well separated. In summary, as we in-
creased the similarity between the movements in the FF and EC
blocks of trials, we found an increase in the decay lags.

To pursue this idea further, we considered an experiment (ex-
periment 3) in which we attempted to delay the decay indefinitely

by making the characteristics of movements in the error clamp
more closely match the statistics of movements that subjects pro-
duced at the end of training in the FF trials. To do so, we focused
on two variables: (1) probability of success, a variable that was
shown previously by Pekny et al. (2011) to act as a cue for the
brain to detect a change in the properties of the task, and (2) the
trial-to-trial variance of movements. In the column marked Exp.
2 in Figure 4, we see that probability of reward increased signifi-
cantly from the end of FF trials to start of the EC block (one-tailed
t test, p � 2e-6). Similarly, the SD of movement endpoints de-
creased significantly during these two periods (one-tailed t test,
p � 5e-8). In experiment 3, we attempted to make these two
measures more similar in the FF and EC trials. To achieve this
goal, we introduced trial-to-trial variance in the EC trials that
matched the variance of movement endpoints at the end of train-
ing in the FF trials.

Figure 5. Lag to decay in shooting movements with constant EC trials in experiment 2. A,
Time course of the change in adaptation index in EC trials for two example subjects. Both
subjects were in group 2.2. A delayed exponential was fit to the data. B, Distribution of lags to
the start of the decay for all subjects.
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In the final FF trials of experiment 2, subjects on average had a
movement endpoint 0.2° to the right of center of the target (target
was 5.7 o in width), with an average within-subject SD of 2.6°. In
experiment 3, we again considered shooting movements, but we
varied the endpoint of the line to which subjects were constrained
in the EC trials to match the variability of movement endpoints of
subjects in the final FF trials of experiment 2. The resulting move-
ments are summarized in the column marked experiment 3 in
Figure 4. We found that endpoint SD, movement duration, prob-
ability of reward, and intermovement consistency were now sim-
ilar at the end of the FF block and the beginning of the EC block
(FF:EC ratio significantly different from 1; two-tailed t test, p �
0.21, p � 0.65, p � 0.15, and p � 0.93 respectively). Therefore, by
making the EC trials slightly variable in experiment 3, we were
better able to match the statistics of FF and EC trials.

Interestingly, a large fraction of subjects in experiment 3
showed no appreciable decay in their motor output, even after
100 or more EC trials. Data from two of these subjects are shown
in Figure 6A. As a population, we observed a mean decay lag of
96.1 � 27 trials (mean � SEM) (Fig. 6B). Eight of the 19 subjects
in this group had a lag of �100 trials. Indeed, as a group, there
was no evidence of decay in the EC trials (Fig. 6C). The lack of
decay cannot be attributable to the small bias in the endpoint
distribution of the movements in the EC block: the bias in the
mean angular deviation of these EC trials is equivalent to a 0.3
mm lateral deviation to the right at the end of the movement, well
within the target width of 1 cm. Compensation of this bias by the
subject would require 0.21 N of force to the left at the end of
the movement. Subjects instead maintain a force of 6.7 � 1.0 N
to the right (mean � SEM, EC trials 100 –120) in the final 50 ms
of their movement in EC trials.

One way to compare the decay lags in the various experiments
is to consider the cumulative probability distribution of lags in
each experiment (Fig. 7). These distributions allow us to estimate
at what trial we can say with some reasonable certainty that the
decay will have started in most subjects. As we moved from reach-
ing to shooting, the decay lag (with 75% certainty) in the EC
block shifted from six trials in experiment 1 to 22 trials in exper-
iment 2. When we made the EC trials more closely resemble FF
trials, the decay lag shifted (with 75% certainty) from 22 trials in
experiment 2 to 165 trials in experiment 3. Of course, at 95%
certainty, these numbers are even farther apart. Therefore, the
start of decay in motor output is a probabilistic event that can be
manipulated by altering the properties of EC trials.

Predicting the lag of an individual
We next considered whether the changes in movement kinemat-
ics from the FF to EC trials can be used to predict the lag to decay
for individual subjects. For each experiment, we used a multiple
linear regression model, with the FF:EC ratio of each subject’s
straightness, consistency, reward, movement time, and endpoint
variability as predictors of their lag. We also included the mean
and variability of the adaptation index at the end of field training
as additional predictors and a constant term. For each experi-
ment, the value of these parameters did not linearly predict the
lag to decay (experiment 1: R 2 � 0.17, F test, p � 0.854; experi-
ment 2: R 2 � 0.62, F test, p � 0.556; experiment 3: R 2 � 0.22, F
test, p � 0.856). This suggests that the motor system of different
subjects may be weighing these parameters differently, so a single
linear model for all subjects is not appropriate. Alternatively,
other, related parameters may be driving the process of change
detection, or these parameters may have a nonlinear effect.

Predictions of two-state model
We compared our results to the predictions of a two-state model
that we previously proposed to describe the process of adaptation
(Smith et al., 2006). This model has been successful in fitting
performance during adaptation trials in several previous experi-

Figure 6. Lag to decay in shooting movements with variable EC trials in experiment 3. A,
Time course of the change in adaptation index in EC trials for two example subjects. Both
subjects were in group 3.1. A delayed exponential was fit to the data. B, Distribution of lags to
the start of the decay for all subjects. C, Time course of the change in adaptation index in EC trials
for all subjects. Data are mean � SEM across subjects.
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ments (Kording et al., 2007; Ethier et al., 2008; Joiner and Smith,
2008; Keisler and Shadmehr, 2010; Sing and Smith, 2010). Fur-
thermore, for these experiments, the two-state model is equiva-
lent to the multiple-context model proposed by Lee and
Schweighofer (2009) in which large errors signal a contextual
switch for the slow state. This is because, in some of our groups,
subjects did not receive baseline training and accordingly were
exposed to only one context, because no large errors are pre-
sented in EC trials to signal a contextual switch. We were inter-
ested in determining the extent to which these models could
account for the data during EC trials.

We fit the two-state model to subjects’ performance during FF
trials in experiment 1.1 and used the parameters to predict sub-
jects’ behavior in EC trials. The results are shown in Figure 8A.
The two-state model fits the FF trial data well (Af � 0.876, Bf �
0.315, As � 0.995, Bs � 0.056, R 2 � 0.68 for trials 1–300). It also
appears to provide a good prediction of the behavior in EC trials
(R 2 � 0.71 for trials 301–900). However, there are two funda-
mental differences between the predictions of the model and the
actual data. First, the model predicts that the decay in motor
output will always begin at the onset of the EC block, whereas the
data suggest that the initiation of decay is a probabilistic event
that depends on the similarity between movements in these two
blocks of trials. Second, in the model, the endpoint of the decay is
zero, whereas in the data, the endpoint is a fraction of the motor
commands that were produced in the FF trials. This suggests that,
if decay is attributable to de-instantiation of motor memory, it
is only effective for a component of that memory and not its
entirety.

Finally, we fit the model to subjects’ performance during FF
trials in experiment 3.1 and used the parameters to predict sub-
jects’ behavior in the variable EC block (Fig. 8B). Again, the
model fits the field data well (Af � 0.432, Bf � 0.422, As � 0.938,
Bs � 0.199, R 2 � 0.69 for trials 1–300). However, the two-state
model does not predict the lack of decay in variable EC trials
(R 2 � 0.07 for trials 301– 625). Rather, in the variable EC block,
the model predicts rapid decay of motor output to zero.

Discussion
A few hundred movements with a novel tool can produce a motor
memory that can persist for days, weeks, or months after training
(Shadmehr and Brashers-Krug, 1997; Joiner and Smith, 2008).
However, motor memories have been considered inherently
transient; that is, in the absence of an error signal, the motor
output that was acquired during training decays immediately and
automatically. This decay has been attributed to a number of
possible processes, including trial-to-trial forgetting (Smith et al.,
2006; Criscimagna-Hemminger and Shadmehr, 2008; Joiner and
Smith, 2008; Galea et al., 2011) and optimization of effort
(Emken et al., 2007; Ganesh et al., 2010). Our results challenge
these views and suggest that decay is not forgetting or optimiza-
tion in the absence of error but a reflection of de-instantiation of
a component of motor memory.

We considered a standard reach task in a force field and made
three observations. First, decay of motor output in EC trials was
not to zero but to an endpoint that was a non-zero fraction of the
motor output in the last field subjects trained in. This observation
was independent of the long-term history of training. Second, the
rate of decay was biased by the history of training, because previ-
ous training in null or the opposite field accelerated the rates of
decay. Third, there was a lag to the initiation of decay. The lag was
a probabilistic variable that differed among subjects: occasion-
ally, a subject would show little or no decay for many EC trials
and then initiate decay. We were able to extend this lag signifi-
cantly by making EC trials more closely resemble FF trials during
learning.

Figure 7. Cumulative probability distribution of the lag to decay in experiments 1–3. An
estimated cumulative probability density estimate for each experiment (in color) is overlaid on
the data (black).

Figure 8. Predictions of the two-state model for experiment 1.1 (A) and experiment 3.1 (B).
The model (black line) was fit to the behavior during field training for each experiment and used
to predict behavior on the 600 constant (A) or 325 variable (B) EC trials. Data (gray) are the time
course of the change in the adaptation index, mean � SEM across all subjects.
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Our results challenge three assumptions in current models of
motor learning. The first assumption is that decay or removal of
a memory in absence of error is an inherent part of motor mem-
ories, often attributed to a process of forgetting (Cheng and
Sabes, 2006; Smith et al., 2006; Kording et al., 2007; Zarahn et al.,
2008). Although others have shown that reinforced memories
persist and can be recalled later (Pekny et al., 2011; Shmuelof et
al., 2012), our results suggest for the first time that the reduction
in motor output in EC trials is tied to a probabilistic event that
depends on change detection in the parameters of the task. Once
a change is detected, decay follows, suggesting that decay is a form
of de-instantiation and not an inherent part of the acquired
memory, i.e., decay is an active process that is initiated after an
event is detected. We speculate that, when the motor system de-
tects a change in the parameters of the task, it de-instantiates part
of the motor memory, which behaviorally masquerades as decay.

Second, our results are inconsistent with the assumption that
decay is attributable to minimization of effort, a hypothesis pro-
posed by Emken et al. (2007). In this case, one would expect the
endpoint of decay to be independent of the training schedule.
Here, we found that the endpoint of decay was a non-zero frac-
tion of the last field subjects learned. For example, subjects who
most recently trained in a counterclockwise field maintained a
significant component of their recently learned motor output for
600 trials, although the training was only for 300 trials, whereas
subjects who most recently trained in a clockwise field main-
tained a significant component in the opposite direction.

Third, our results suggest that retention of a motor memory,
as assayed in movements in the absence of error, consists of not
one but multiple processes: (1) a process that detects a change in
context, behaviorally assayed via the decay lag; (2) a process that
de-instantiates a component of the memory, behaviorally assayed
via the rate of decay; and (3) a component of the memory that
appears immune to this process of de-instantiation, behaviorally
assayed via the endpoint of decay.

We interpret our results as follows. Motor memories consist
of multiple components: (1) one component that can be easily
de-instantiated as task parameters change and (2) another com-
ponent that is resistant to de-instantiation, expressed as decay
endpoint. A recent brain stimulation study suggests a role for the
primary motor cortex (M1) in the persistent component of mo-
tor memory, i.e., the endpoint of decay. Galea et al. (2011) trained
subjects in a visuomotor rotation task. After subjects learned to
compensate for the visual perturbation, they made movements in
a series of trials in which no visual feedback was presented, akin to
EC trials in force field learning. Galea et al. (2011) applied trans-
cranial direct current stimulation (tDCS) to M1 and found that
the stimulation had no effect on rates of acquisition compared
with a sham group. However, M1 tDCS significantly elevated the
endpoint of the decay. This suggests a role for M1 in the persistent
component of memories, assayed by the endpoint, at least for a
visuomotor rotation task. Because M1 has been shown to be in-
volved in use-dependent plasticity (Bütefisch et al., 2004), it is
plausible this memory may develop in M1 through repetition and
reinforcement.

Recently, Huang et al. (2011) suggested that learning to com-
pensate for a perturbation installs a motor memory that may have
three components: (1) a forward model that associates motor
commands with their sensory consequences and learns from pre-
diction errors (Izawa et al., 2012; Schaefer et al., 2012); (2) a bias
in motor output that develops because of repetition of the motor
commands (Diedrichsen et al., 2010; Verstynen and Sabes, 2011);
and (3) a reinforcement-dependent bias that develops because of

reward-dependent association between stimuli and the resulting
motor commands (Huang et al., 2011; Izawa et al., 2012;
Shmuelof et al., 2012). One may speculate that the decay end-
point in our data is the motor output that is being expressed by
one of these processes, perhaps the process that learns from rep-
etition and/or reinforcement.

We observed that the rate of decay was modulated by the
history of training (experiment 1). Pekny et al. (2011) demon-
strated that, in EC trials, when a change was inserted by manip-
ulating reward feedback, previous motor memories were
transiently recalled. The magnitude of recall was comparable
with the magnitude of the persistent component of memory in
that work. We speculate that the persistent component of mem-
ories is briefly recalled when a change is detected, resulting in the
changes in rates of decay. Alternatively, Huang and Shadmehr
(2009) showed that the statistics of the history of training played
a role in the subsequent rate of decay in EC trials. Although this
finding cannot explain the recall of memory in the study by Pekny
et al. (2011), in our work, it may be that groups 1.2 and 1.3 have
experienced larger errors than group 1.1 and so decay faster.
Once a change is detected, a combination of recall of previous
memories and sensitivity to task statistics likely play a role in the
process of de-instantiation.

We hypothesized that the similarity between FF and EC trials
was a key factor in detecting a change and indeed showed that, by
making these trials more similar, the lag to decay could be ex-
tended. However, one limitation of our work is that, using a
linear model, we could not explain why a given subject produced
their particular lag in a given experiment. That is, although our
interpretations are likely true in a probabilistic sense, we have not
shown that subjects who show greater lag in a given experiment
are also those whose movements are more similar in the field and
EC blocks. It is possible that individual subjects weigh different
kinematic and task factors differently, and so a single model
across subjects is not appropriate, or these or other parameters
may have an nonlinear effect. This question would benefit from
additional exploration in future work.

We also observed that, in experiment 2 and experiment 3,
subjects had trial-to-trial variability in their behavior during the
EC block before the onset of decay. In experiment 3, this may be,
in part, a result of learning from the errors presented in the vari-
able EC trials. However, learning from error cannot explain the
variability seen in the constant EC trials in experiment 2, because
no errors are presented. The low frequency of that variability in
experiment 2 suggests the behavior is not simply noise in the
motor output. Subjects may be exploring their environment, or
the variability may be a manifestation of the instability of the
component of the motor memory that will be de-instantiated.

In summary, we offer evidence that adaptation installs two
distinct types of motor memory: (1) one that is actively de-
instantiated during detection of change in the environment and
(2) one that persists despite that detection.
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