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Syntax is the core computational component of language. A longstanding idea about syntactic processing is that it is generally not
available to conscious access, operating autonomously and automatically. However, there is little direct neurocognitive evidence on this
issue. By measuring event-related potentials while human observers performed a novel cross-modal distraction task, we demonstrated
that syntactic violations that were not consciously detected nonetheless produced a characteristic early neural response pattern, and also
significantly delayed reaction times to a concurrent task. This early neural response was distinct from later neural activity that was
observed only to syntactic violations that were consciously detected. These findings provide direct evidence that the human brain reacts
to violations of syntax even when these violations are not consciously detected, indicating that even highly complex computational
processes such as syntactic processing can occur outside the narrow window of conscious awareness.

Introduction
Language is often hailed as a hallmark of human cognition,
and syntax is the defining characteristic of this ability, setting
human languages apart from other forms of animal commu-
nication (Hauser et al., 2002; Pinker and Jackendoff, 2005;
Premack, 2007). Syntax refers to a set of rules that govern how
words in a language can be combined, which allow an infinite
number of meaningful expressions to be created from a finite
vocabulary. Syntactic processing is one of the most complex
cognitive tasks that humans routinely engage in: languages
contain countless syntactic rules, which must be accessed rap-
idly and simultaneously during normal language processing.
Despite this complexity, language is generally spoken and
understood with little apparent effort, and a longstanding hy-
pothesis is that syntactic processing occurs outside of con-
scious awareness, relying upon computational mechanisms
that are autonomous and automatic (Fodor, 1983; Ullman,
2001; Friederici, 2002; Paradis, 2004). However, the claim that
syntactic processing occurs unconsciously has never been di-
rectly tested, perhaps due to the methodological difficulty of
examining this issue.

We developed a novel approach to address this question, in
which we recorded event-related brain potentials (ERPs) to
syntactic violations processed with and without conscious
awareness. We manipulated awareness of syntactic violations
by using a cross-model distraction task, in which an auditory

tone was presented either immediately before or well after the
onset of a visually presented violation (see Fig. 1A). Following
the same logic as a cross-modal attentional blink design
(Dell’Acqua et al., 2003), we reasoned that processing of the
tone should tax limited-capacity, postperceptual resources,
preventing the perceptual representation of the syntactic vio-
lation from being consolidated into working memory and
reaching awareness (Chun and Potter, 1995; Jolicoeur and
Dell’Acqua, 1998). Syntactic violations preceded by an audi-
tory tone should thus be detected less often than syntactic
violations presented well before the tone, enabling us to ma-
nipulate awareness of syntactic violations while keeping the
physical language stimuli identical. In previous studies we fol-
lowed a similar approach to investigating the contribution of
awareness to different neural mechanisms supporting lan-
guage processing (Batterink et al., 2009, 2012).

Syntactic violations typically elicit a biphasic ERP response,
consisting of an earlier negativity usually maximal over left
anterior sites, termed the left anterior negativity and a later
positivity, broadly distributed over posterior sites, known as
the P600 (Neville et al., 1991; Osterhout and Holcomb, 1992;
Friederici et al., 1993). The earlier negativity is thought to
index more automatic mechanisms mediating syntactic pro-
cessing, while the posterior positivity is hypothesized to reflect
later, more controlled mechanisms (Friederici, 2002). Prior
research using task and probability manipulations suggests
that the earlier negative response is less influenced by atten-
tion than the later positivity (Gunter et al., 1997; Hahne and
Friederici, 1999; 2002), but the role of conscious awareness in
generating these two components has not been directly as-
sessed. We hypothesized that if the brain processes syntax
implicitly, in the absence of awareness, undetected syntactic
violations should elicit an early anterior negativity, while only
consciously detected violations should elicit a posterior posi-
tivity. In contrast, if the brain is not capable of processing
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syntax implicitly, undetected syntactic violations should not
elicit a reliable ERP effect.

Materials and Methods
Participants. A total of 45 right-handed, neurologically normal native
English speakers (33 female; age range, 18 –30 years) participated in this
study. Two participants did not complete the second session of the study
and were excluded from all analyses. Only participants who had a suffi-
cient number of trials (�13) in all conditions were included in analyses,
to allow for direct comparisons across conditions, resulting in a final
sample of 24 participants.

Stimuli. Because the identification of word category information (e.g.,
whether a word is a noun, verb, preposition, etc.) appears to be among
the fastest subprocesses that occur during syntactic processing (Neville et
al., 1991; Friederici, 2002), we presented participants with word cate-
gory violations, in which a preposition immediately followed a pos-
sessive noun (e.g., “*We drank Lisa’s by brandy the fire in the lobby”). Each
violation sentence was matched with a corresponding syntactically congru-
ent control sentence, in which the critical preposition word occurred in a
congruent context, following a noun placed after the possessive noun (e.g.,
“We drank Lisa’s brandy by the fire in the lobby”). Stimuli were counterbal-
anced such that each participant saw only the congruent or violation ver-
sion of a given sentences. Participants were presented with a total of
280 experimental sentences, 70 in each tone condition (Pre-Tone,
Late-Tone) by syntactic condition (violation, congruent control) cell.

An additional 560 sentences, not analyzed here, were pseudorandomly
intermixed with the 280 experimental sentences; half of these additional
sentences contained other types of grammatical violations (violations of
tense agreement and subject-verb agreement).

Auditory stimuli were 50 ms pure tones, played at a comfortable lis-
tening level (70 dB), with frequencies of 550, 900, and 1400 Hz (cf.
Dell’Acqua et al., 2003). To avoid cueing participants to the presence of
an upcoming violation, for half of the trials in the congruent Pre-Tone

condition the tone was played 200 ms before
the noun following the possessive noun in the
sentence, the same placement as the violation
sentences, rather than 200 ms before the criti-
cal word (CW). These trials were simply de-
signed to reduce the predictability of the tone
placement and sentence violation status, and
were not included in ERP analyses.

Procedure. Sentences were presented visually
one word at a time (stimulus onset asynchrony,
300 ms; Fig. 1A). On each trial, an auditory
tone was presented either 200 ms before the
onset of the critical violation or congruent con-
trol word, termed the “Pre-Tone” condition,
or well after critical word onset (mean, 1300
ms; range, 700 –3100 ms), referred to as the
“Late-Tone” condition. Using a keypad, par-
ticipants responded as quickly as possible to
the auditory tone, indicating its pitch (low,
medium, or high), and made an offline judg-
ment about whether the sentence was gram-
matical or ungrammatical.

ERP recording and analysis. EEG recordings
were made with a 64-channel Active Two sys-
tem (Biosemi), using our standard recording
and analysis procedures (Batterink and Nev-
ille, 2011). Epochs were extracted from �300
to 1200 ms relative to stimulus onset. Data
were baseline corrected from �300 to �200 ms
preceding stimulus onset, which corresponds
to the 100 ms period preceding the tone in the
Pre-Tone condition, to avoid contaminating
the baseline period with the auditory evoked
potential elicited by the tone.

For statistical analyses, amplitudes were av-
eraged across neighboring electrodes to form

nine channel groups of interest. Time windows for statistical analysis
were selected based on visual inspection of the data as well as on previous
published findings (early window, 100 – 400 ms; late window, 600 –1200
ms). Because the late positivity in the Pre-Tone correctly detected viola-
tion condition began considerably later than the late positivity in the
Late-Tone condition, earlier (600 –900 ms) and later time windows
(900 –1200 ms) were also selected within the original 600 –1200 ms win-
dow to better characterize and compare these effects. For negative effects
observed in both the early and later time windows, analyses were con-
ducted over anterior and central regions, because these effects are gener-
ally more pronounced over anterior scalp (Neville et al., 1991; Friederici,
2002). For the posterior positivities, analyses were conducted over pos-
terior sites. Data were normalized for all distributional comparisons
across conditions to account for amplitude differences (McCarthy and
Wood, 1985).

ANOVA was used for all statistical tests, with violation condition (con-
gruent, violation), anterior/posterior (anterior, central, posterior), and
hemisphere (left, midline, right) as factors. Greenhouse–Geisser correc-
tions are reported for factors with more than two levels. All subjects
included in averages had at least 13 trials in all conditions. In the Late-
Tone Detected condition, grand averages consisted of 1370 congruent
and 1312 violation trials. In the Pre-Tone Detected and Undetected con-
ditions, trial numbers ranged from 674 to 753.

To examine whether there was a clear separation between the early and
late negativities observed in the Pre-Tone Undetected violation condition,
an onset analysis was conducted. Repeated-measures ANOVAs were per-
formed on adjacent 20 ms bins, moving by a 10 ms time window, across
anterior and central electrode regions. The onset and offset were defined as
the first and last of three consecutive significant (i.e., p � 0.05) ANOVAs,
respectively. In addition, because the word before the critical word was not
identical in the congruent and violation conditions, an additional moving
window analysis was conducted from �200 (the end of the baseline correc-
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Figure 1. Example stimuli and analysis strategy. A, Sequence of events in a typical violation trial. One auditory tone was played
during each trial, either immediately before the critical word (Pre-Tone condition) or well after the critical word (Late-Tone
condition). B, Schematic diagram showing how trials in each condition were divided for analysis.
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tion period) to 100 ms across all electrodes to quantify potential condition
differences occurring before our selected early time window (100–400 ms).

Results
Behavioral results
Accuracy
Awareness of syntactic violations was significantly reduced in the
Pre-Tone condition relative to the Late-Tone condition (F(1,23) �
106.0, p � 0.0001; Fig. 2). Specifically, 89% of syntactic violations
were detected in the Late-Tone condition (d� � 3.0), while only
51% of violations were detected in the Pre-Tone condition (d� �
1.6). The false alarm rate (in which participants incorrectly
rejected syntactically acceptable sentences) was 6% for both Pre-
Tone and Late-Tone conditions. Overall accuracy of tone dis-
crimination was 92%. These results confirm that this paradigm
effectively manipulated subjective awareness of syntactic viola-
tions while keeping the physical language stimuli constant across
conditions.

Reaction time
We analyzed median RTs to auditory tones in the Pre-Tone con-
dition to investigate whether processing of syntactic violations
that were not consciously detected exerted an implicit behavioral
cost. Consistent with this hypothesis, the median RT to tones that
preceded undetected syntactic violations (712 ms; SD, 137 ms)
was significantly longer than the median RT to tones that pre-
ceded syntactically congruent control words (678 ms; SD, 114
ms; F(1,23) � 9.43, p � 0.005). Note that participants endorsed
sentences in both these conditions, meaning that only the actual
presence or absence of a violation differentiates them. This result
suggests that the presence of a syntactic violation disrupted on-
line processing, even though participants were unaware of it.

ERP results
ERP waveforms to the three experimental conditions of interest
(correctly detected Late-Tone violations, correctly detected Pre-
Tone violations, and undetected Pre-Tone violations) are shown
in Figure 3. In all cases, syntactic violations are compared to
correctly judged syntactically congruent control words, within
the same tone condition (see Fig. 1B). Correctly detected Late-
Tone violations elicited the hallmark biphasic response: an early
anterior negativity followed by a later positivity, distributed over
posterior electrodes (100 – 400 ms window, F(1,23) � 4.52, p �
0.044; 600 –1200 window, F(1,23) � 27.6, p � 0.001; Fig. 3A). This

finding confirms that our paradigm produces results that are
comparable to many previous ERP studies of syntactic processing
(Neville et al., 1991; Osterhout and Holcomb, 1992; Friederici et
al., 1993; Hahne and Friederici, 1999; Friederici, 2002). Correctly
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Figure 2. Mean performance on the grammaticality judgment task (d�), as a function of
tone condition (n � 24). Error bars represent SEM.
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undetected violations and correctly endorsed correct congruent words in the Pre-Tone condi-
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detected Pre-Tone violations produced a similar pattern, consist-
ing of an early negativity, maximal over left anterior scalp sites,
followed by a later positivity (100 – 400 ms window, F(1,23) � 6.72,
p � 0.016; violation by hemisphere, F(2,46) � 3.51, p � 0.041;
900 –1200 ms, F(1,23) � 5.46, p � 0.028; Fig. 3B). While the am-
plitude of the early negativity in the Pre-Tone condition was not
significantly different from the negativity in the Late-Tone con-
dition (F(1,23) � 0.10, p � 0.75), the posterior positive effect
began later and was significantly reduced in amplitude (600 –
1200 ms, F(1,23) � 12.2, p � 0.002; 900 –1200 ms, F(1,23) � 4.61,
p � 0.043). This reduction may be attributed to refractory period
effects caused by the auditory tone, which elicited an auditory
evoked potential and subsequent P300 in the time window sur-
rounding the onset of the syntactic violation (Woods et al., 1980).

The crucial condition of interest was comprised of undetected
violations in the Pre-Tone condition. Critically, these undetected
violations also elicited an early negativity, maximal over left an-
terior regions (100 – 400 ms, F(1,23) � 13.5, p � 0.001; violation by
hemisphere, F(2,46) � 3.33, p � 0.050; Fig. 3C). The amplitude of
this negativity was marginally greater than the negativity elicited
in the Pre-Tone Detected condition (F(1,23) � 3.21, p � 0.087),
but not significantly different from the negativity in the Late-
Tone Detected condition (F(1,23) � 1.03, p � 0.32). No later
posterior positivity was observed in this condition (900 –1200 ms,
F(1,23) � 0.55, p � 0.47); in contrast, a second negative effect was
observed (600 –1200 ms, F(1,23) � 16.0, p � 0.001; violation by
hemisphere, F(2,46) � 4.27, p � 0.021). Onset analyses revealed
that the early negativity offset at 390 ms, while the later negativity
began at 540 ms and continued to the end of the averaging epoch
(1200 ms). The distributions of these two negativities were not
significantly different (all p values � 0.6).

The distribution of the early negative effects was not signifi-
cantly different across the three conditions (100 – 400 ms, condi-
tion by anterior/posterior, F(4,92) � 1.73, p � 0.19; condition by
hemisphere, F(4,92) � 0.42, p � 0.77). Planned contrasts con-
firmed that the Late-Tone Detected violation effect was not
different from the Pre-Tone Detected violation effect (all distribu-
tional interactions p values �0.14), and that the Pre-Tone Unde-
tected violation effect did not differ from the Pre-Tone Detected
violation effect (all distributional interactions p values�0.7). In con-
trast, the late posterior positivity elicited by Late-Tone violations was
more medial and marginally more posterior than the effect elicited
by Pre-Tone Detected violations (900–1200 ms, condition by ante-
rior/posterior, F(2,46) � 3.24, p � 0.073; condition by hemisphere,
F(2,46) � 5.12, p � 0.011).

Results from the moving window analysis conducted from
�200 to 100 ms revealed that some transient condition differ-
ences emerged before our selected early time window (100 – 400
ms). Congruent and violation ERPs were significantly different
from �160 to �100 ms and from �50 to 0 ms in the Late-Tone
condition, from �70 to �10 ms and from 10 to 50 ms in the
Pre-Tone Detected condition, and from �160 to �120 ms and
from �10 to 40 ms in the Pre-Tone Undetected condition. No
single time point between �200 and 100 ms showed significant
condition differences across all three experimental conditions.
These early ERP differences may be attributed to the fact that the
word before the critical word was not identical in the congruent
and violation conditions, an issue that we will return to in the
discussion section.

Discussion
In summary, both detected and undetected syntactic violations
elicited an early negative effect, which thus represents a neural

marker of implicit syntactic processing. In contrast, only detected
violations evoked a later positivity, which appears to index syn-
tactic processing that is explicit in nature, requiring conscious
awareness for its operation. Undetected syntactic violations also
significantly delayed reaction times to the concurrent tone task,
providing converging behavioral evidence of a dissociation be-
tween implicit and explicit syntactic processing.

Our findings demonstrate that the brain processes syntactic
information implicitly, in the absence of awareness. While other
aspects of language, such as semantics and phonology, can also be
processed implicitly (Dehaene et al., 1998; Wilson et al., 2011),
the present data represent the first direct evidence that implicit
mechanisms also play a role in the processing of syntax, the core
computational component of language. This implicit syntax pro-
cessing subsystem appears to rely upon neural mechanisms that
are dissociable from those mediating explicit syntactic process-
ing, as indicated by the distinct latency and distribution of their
associated ERP effects. These implicit mechanisms are activated
quickly and automatically, in the absence of conscious awareness,
and may be more specialized than the mechanisms subserving
controlled, explicit syntactic processing, which are likely not spe-
cific to language (Patel et al., 1998; Christiansen et al., 2011;
Tabullo et al., 2011).

Localization studies of the early negativity and posterior pos-
itivity support this view. Source localization studies using mag-
netoencephalography have suggested that the early negativity is
generated by inferior frontal cortex and anterior temporal cortex,
possibly the planum porale, with a clear dominance in the left
hemisphere (Knösche et al., 1999; Friederici et al., 200). These
findings converge with ERP studies of lesion patients, which have
shown that the early negativity is absent in patients with lesions in
the left inferior frontal gyrus and the left anterior temporal region
(Friederici and Kotz, 2003). In contrast, the posterior positivity
has been localized to bilateral posterior temporal regions (Service
et al., 2007), with some lesion data suggesting that the basal gan-
glia may also be involved (Frisch et al., 2003). Together, the find-
ing that the early negativity is strongly left lateralized while the
posterior positivity is bilateral is consistent with the idea that the
early negativity reflects mechanisms that are specific to language,
while the posterior positivity may index domain-general, nonlin-
guistic processes such as context-updating, monitoring, or work-
ing memory (Service et al., 2007). These findings are also in line
with the hypothesis that the early anterior negativity is an index of
more automatic mechanisms mediating syntactic processing,
while the posterior positivity reflects later, more controlled
mechanisms (Friederici, 2002).

One interesting and unexpected finding revealed by the pres-
ent study is that undetected violations elicited a marginally more
robust earlier negativity than detected violations (p � 0.087) as
well as an additional robust late negativity. While this late nega-
tivity occurred within the same latency range as the posterior
positive effects, it did not contribute to conscious awareness of
syntactic violations, suggesting that computations performed by
certain specific neural systems do not reach awareness, regardless
of when they take place. Furthermore, the late negativity was not
significantly different in distribution from the early negativity
(Fig. 3C), suggesting that these effects are mediated by the same
neural substrates and represent a common ongoing process.
These observations raise the intriguing possibility that the en-
gagement of explicit mechanisms actively suppresses or “resets”
the operation of implicit mechanisms during the normal course
of syntactic processing. Under normal circumstances, first-pass
syntactic parsing processes may occur automatically in left-
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lateralized language regions, without requiring conscious aware-
ness. If a parsing difficulty is encountered, domain-general
mechanisms that require conscious awareness, indexed by the
late positivity, may be recruited to reanalyze and repair the syn-
tactic error. This transfer of information from one system to the
other when a syntactic problem is experienced may represent an
important evolutionary adaptation, freeing left hemisphere lan-
guage regions to process further input and thereby allowing the
brain to effortlessly keep up with the rapid pace of natural speech.
However, if explicit, domain-general resources are not available,
as occurred in our paradigm when a syntactic violation failed to
reach awareness, this transfer of information may be prevented
from occurring. In this situation, the implicit system may fail to
disengage, continuing to process the syntactic violation rather
than preparing for new incoming input. This explanation con-
verges with evidence from human and animal studies showing
that implicit and explicit processing systems can interact compet-
itively (Poldrack et al., 2001; Poldrack and Packard, 2003;
Fletcher et al., 2005).

One final methodological point concerns the potential impact
of pre-CW differences between the congruent and violation sen-
tences on the observed ERPs. Violations of phrase structure occur
when the syntactic category of a word is structurally uninterpre-
table given the preceding context. Due to the nature of these types
of violations, the context before the critical word cannot be iden-
tical across congruent and violation conditions if the critical
word itself is held constant (Steinhauer and Drury, 2012). In the
present study, we minimized the potential impact of pre-CW
differences by using the possessive clitic ’s (e.g., “Lisa’s”) for the
word preceding the critical word (CW � 1) in the violation con-
dition, ensuring that the CW � 1 word was open-class in both
congruent and violations conditions (Neville et al., 1992). None-
theless, as can be observed most clearly in the Late-Tone condi-
tion (Fig. 3A), some subtle pre– onset condition differences did
occur, which is most likely due to the fact that nonidentical
CW � 1 words were presented in congruent and violation sen-
tences. However, it is unlikely that these pre-CW condition dif-
ferences significantly modulated or altered our main effects of
interest (the early negativity and late positivity). First, the mag-
nitude of these pre-CW differences was small. ERP differences
before 100 ms failed to reach statistical significance except for
short, limited time windows that did not show a consistent over-
lap across the three experimental conditions (Late-Tone De-
tected, Pre-Tone Detected, and Pre-Tone Undetected), and
pre-CW condition differences were considerably smaller in am-
plitude than either the early negativity or late posterior positivity
(Fig. 3). Thus, even if ERP effects due to pre-CW condition dif-
ferences continued into our time windows of interest (e.g., 100 –
400 ms), they were likely limited to slight amplitude modulations
of the underlying violation-related components. Second, it is
worth noting that the violation effects reported here (the early
negativity and later positivity) are in line with a large number of
previous studies that have used a wide range of different para-
digms and syntactic violation types (including syntactic viola-
tions in which the pre-CW context was balanced across
conditions) (for review, see Friederici, 2011). Both the latencies
and distributions of our effects are consistent with these prior
findings, providing additional evidence that our effects primarily
reflect the brain’s response to a syntactic violation, rather than
subtle differences in the CW � 1 word between conditions.

In conclusion, our findings show that the human brain is
exquisitely equipped to process language and its regularities. It
has long been noted that humans can comprehend and use their

native language with apparent effortlessness, despite the enor-
mous complexity involved in this task. One reason for this may be
that at least a portion of the mental computations necessary for
language processing take place outside of awareness, leaving only
a limited subset of processes for the conscious mind to manage.
These findings underscore the importance of implicit cognition,
demonstrating that even highly complex computations can be
processed outside the narrow window of conscious awareness.
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