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The Generalization of Visuomotor Learning to Untrained
Movements and Movement Sequences Based on Movement
Vector and Goal Location Remapping
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The planning of goal-directed movements is highly adaptable; however, the basic mechanisms underlying this adaptability are not well
understood. Even the features of movement that drive adaptation are hotly debated, with some studies suggesting remapping of goal
locations and others suggesting remapping of the movement vectors leading to goal locations. However, several previous motor learning
studies and the multiplicity of the neural coding underlying visually guided reaching movements stand in contrast to this either/or debate
on the modes of motor planning and adaptation. Here we hypothesize that, during visuomotor learning, the target location and move-
ment vector of trained movements are separately remapped, and we propose a novel computational model for how motor plans based on
these remappings are combined during the control of visually guided reaching in humans. To test this hypothesis, we designed a set of
experimental manipulations that effectively dissociated the effects of remapping goal location and movement vector by examining the
transfer of visuomotor adaptation to untrained movements and movement sequences throughout the workspace. The results reveal that
(1) motor adaptation differentially remaps goal locations and movement vectors, and (2) separate motor plans based on these features are
effectively averaged during motor execution. We then show that, without any free parameters, the computational model we developed for
combining movement-vector-based and goal-location-based planning predicts nearly 90% of the variance in novel movement sequences,
even when multiple attributes are simultaneously adapted, demonstrating for the first time the ability to predict how motor adaptation

affects movement sequence planning.

Introduction

Although every voluntary movement is shaped by motor learn-
ing, the mechanisms underlying this adaptability remain unclear.
A reductionist approach to understanding these mechanisms
would entail the identification of the features used for motor
planning, followed by an examination of how those features
adapt. Along these lines, a central theory in motor control posits
that the key feature of motor planning is the movement vector
(MV); that is, the plans for point-to-point reaching movements
are internally represented as movement vectors from start loca-
tions (SLs) to movement goals, and the adaptive changes in mo-
tor planning are driven by the remapping of movement vectors
(Georgopoulos et al., 1986; Caminiti et al., 1991; Gordon et al.,
1994; Shadmehr and Mussaivaldi, 1994; Rossetti et al., 1995;
Krakauer et al., 2000; Sober and Sabes, 2003, 2005; Wang and
Sainburg, 2005; Tanaka et al., 2009). Correspondingly, neuro-
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physiological and behavioral studies have shown that adaptive
changes in motor planning can often be explained by the remap-
ping of movement vectors (Wise et al., 1998; Krakauer et al.,
2000; Paz et al., 2003; Wang and Sainburg, 2005; Tanaka et al.,
2009). The movement vector planning hypothesis is further
supported by the generalization of sensorimotor learning to
movements with similar movement vectors, even when other
attributes, such as start or goal locations (GLs), are altered
(Krakauer et al., 2000; Wang and Sainburg, 2005).

However, several previous studies have shown that adaptation
to visuomotor transformations is not limited to movement vec-
tor learning (Simani et al., 2007; Malfait et al., 2008; Cressman
and Henriques, 2009; Izawa and Shadmehr, 2011; Salomonczyk
et al., 2011). These studies have found a small but significant
proprioceptive recalibration of hand position following adapta-
tion to visuomotor transformations that directly affect move-
ment planning because the motor system weighs visual and
proprioceptive sensory information to estimate the start location
of movements (Rossetti et al., 1995; Sober and Sabes, 2003, 2005).
Moreover, it would be surprising if visuomotor adaptation was
based entirely on the remapping of a single feature, either move-
ment vectors or goal locations, given what we know about the
richness and diversity in the neural coding of movement repre-
sentations. In particular, movement vectors, start locations, and
goallocations are all represented in motor planning areas and any
or all of these features could be remapped during motor adapta-
tion (Graziano et al., 1994; Lacquaniti et al., 1995; Duhamel et al.,



Wu and Smith e Movement Vector and Goal Location Remapping

1997; Batista et al., 1999; Avillac et al., 2005; Buneo and Andersen,
2006; Pesaran et al., 2006). In line with this idea, previous find-
ings have suggested that location-based and movement-vector-
based control may be distinct processes that are differentially
remapped by motor adaptation (Lackner and Dizio, 1994; Dizio
and Lackner, 1995; Kurtzer et al., 2005; Ghez et al., 2007; Scheidt
and Ghez, 2007; Simani et al., 2007). However, the way in which
these features are combined during motor planning is not yet well
understood.

Here we hypothesize that, during motor adaptation, the target
location and movement vector are differentially remapped, and
that these features contribute to motor planning with weightings
independent of the amount of remapping. If this were the case,
motor adaptation would depend on three distinct factors: the
amount of movement vector remapping, the amount of goal lo-
cation remapping, and the differential weighting of movement-
vector-based planning and goal-location-based planning. We
begin by designing a series of experiments that dissociate the
effects of motor adaptation on movement-vector-based and
goal-location-based planning, allowing us to quantify the contri-
butions of these three factors for both individual movements and
movement sequences. We then test the idea that these three fac-
tors can be used to characterize the planning of goal-directed
movement sequences by building and testing a combined re-
mapped feature (CRF) model that quantitatively predicts the ef-
fects of motor adaptation based on separate contributions from
these factors. Remarkably, we find that this model can predict
nearly 90% of the variance introduced by the effects of motor
adaptation on novel movement sequences.

Materials and Methods

Participants. Ninety-three naive neurologically intact adults (53 female,
three left-handed) between the ages of 18 and 59 participated in this
study. Data from three subjects were not included because they could not
perform the task consistently. One could not consistently move with the
requested rapidity, one was unable to consistently perform movement
sequences, and one subject failed to show consistent adaptation to the
trained visuomotor rotations. All experimental procedures were ap-
proved by Harvard’s Committee on the Use of Human Subjects, and all
subjects provided informed written consent before the experiment be-
gan.

Apparatus. The same apparatus was used in all three experiments in
this study (See Fig. 1A). Subjects sat at a desk facing a horizontal LCD
monitor. The height of the chair was adjusted at the start of each exper-
iment so that the subject was in a comfortable position for viewing and
reaching under the LCD monitor. Underneath the monitor, using a stan-
dard power grip as illustrated in Figure 1A, subjects grasped and moved a
vertically oriented foam handle (cylindrical with a 25 mm diameter) that
contained an embedded stylus. Movements were performed on top of a
digitizing tablet that recorded hand position (12 inches by 19 inches;
Intuos3, WaCom), and the foam cylinder was lined from below with
Teflon tape so that it could slide smoothly over the tablet’s surface. The
subject’s midline was aligned with the center of the digitizing tablet which
corresponded to the center of the workspace and the LCD monitor.
Vision of the tablet and the subject’s arm were obstructed by the LCD
monitor for the duration of the experiment.

General experiment protocol. This study included three different exper-
iments in which subjects made arm reaching movements while grasping
a foam handle with their dominant hand. During each experiment, a
digitizing tablet recorded hand position, and a 0.25 cm diameter cursor
represented this position on the monitor. A +30% visual magnification
was applied to the cursor such that a 1.0 cm hand movement resulted in
a 1.3 cm cursor movement; this magnification was present from the very
first movement throughout the duration of the experiment, independent
of applied visuomotor rotations and should not affect rotation learning
or its transfer. Subjects were instructed to perform two types of visually
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guided movements: individual point-to-point movements 9.0 cm in
length and movement sequences that consisted of two point-to-point
submovements, each 9.0 cm in length. The individual movements were
either performed from the center circle to one of the six peripheral tar-
gets, as shown in the left column of Figure 2A, or between two adjacent
peripheral targets. The center circle and all six peripheral target circles
were 1.2 cm in diameter in hand space. For movement sequences, the first
submovement began at the center circle and was directed at one of the six
peripheral targets, and the second submovement started at the end of the
first submovement and was directed toward one of the two adjacent
peripheral targets.

The targets shown in Figure 2A illustrate the location of the six targets
and center circle (C), drawn to scale. At the start of each trial, a target was
displayed for 250 ms before the go cue. During this waiting interval, the
center circle was colored yellow, and subjects were instructed to continue
holding the cursor inside the center circle. After 250 ms, the color of the
center circle changed to purple, cueing subjects to move to the displayed
target. Auditory rewards were provided following individual movement
trials based on two criteria, movement duration and movement end
point. Movement duration was defined as the amount of time during
which hand velocity exceeded 5.0 cm/s. The time of movement onset was
determined as the time at which hand velocity first exceeded and re-
mained above 5.0 cm/s for 100 ms, while the time of the movement end
point was defined as the time at which hand velocity first decreased below
and remained below 5.0 cm/s for 300 ms. Subjects received auditory
reward following movements with 200—400 ms duration with locations
of movement end points inside the presented target. Movement direc-
tion was measured as the angle between the vector from hand position at
movement start to that at 100 ms into the movement and the vector from
the center of the start location and the center of the intended target. Note,
however, that we focused our analysis on the end points rather than the
movement directions of the no-visual-feedback probe trials because,
compared to analysis of movement direction, this allowed for two-
dimensional rather than one-dimensional information about adaptive
changes in movement planning. Following each trial, the subject re-
turned the cursor to the center circle. We assessed the feedforward move-
ment plan by removing visual feedback of the cursor on selected
individual movement trials, which we refer to as probe or test trials (Fig.
2A, bottom row), and on all movement sequence trials. Movements from
the center circle to each of the peripheral targets were administered with
visual feedback on ~50% of the trials during the baseline and testing
periods. In contrast, individual movements between peripheral target
locations and movement sequences used to probe the effects of adapta-
tion were never administered with visual feedback. Visual feedback was
restored before the start of the following trial when the cursor was within
2.0 cm of the center circle so that subjects could position their hands for
the next trial.

All experiments followed the same general paradigm (Fig. 2B), which
consisted of 1950 trials spread over four experiment periods. First, sub-
jects were administered a 300 trial familiarization period, which con-
sisted entirely of individual movements with visual feedback so that they
could become accustomed to the task instructions and learn the required
movement speed (data not shown in Fig. 2). Following the familiariza-
tion period, subjects performed 300 trials during which movement se-
quences and no-visual-feedback trials (Fig. 2A, bottom left) were
intermixed with continuous visual-feedback trials (Fig. 2A, top left) to
gauge the baseline performance of the feedforward motor system, before
the onset of visuomotor rotation learning.

The training period, which followed the baseline period, consisted of
450 continuous visual-feedback trials during which subjects were ex-
posed to one of several possible patterns of visuomotor rotations
(Krakauer et al., 1999, 2000; Wang and Sainburg, 2005; Mazzoni and
Krakauer, 2006; Ghez et al., 2007; Scheidt and Ghez, 2007; Cressman and
Henriques, 2009; Izawa and Shadmehr, 2011). The visuomotor rotations
that we used in this study were either +30° (counterclockwise), —30°
(clockwise), or 0° (no rotation). On initial exposure to a nonzero visuo-
motor rotation, subjects make a hand movement directly to the target,
resulting in a cursor movement that is rotated off course around the
center circle by +30°, as shown in the middle panel of Figure 1B. How-
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ever, with practice, subjects reduce the errors in the cursor movements by
performing hand movements that are rotated in the opposite direction of
the applied visual rotation (Fig. 1B, right). In Experiments 1 and 2, non-
zero rotations were trained to two of the six peripheral target locations,
and in Experiment 3, nonzero rotations were trained to four of the six
peripheral target locations.

The testing period, which followed the training period, consisted of
900 trials of which approximately half were no-visual-feedback move-
ment sequence, probe, or test trials used to assess the transfer of motor
adaptation. The remaining trials were pseudorandomly intermixed con-
tinuous visual feedback trials used to reinforce the visual rotations that
were trained for each target location. In each experiment, the same visuo-
motor rotation pattern was applied during the training and testing peri-
ods; the specifics of these patterns will be described later. The experiment
was performed in 150 trial blocks with rest breaks of 1-5 min between
blocks. Thus there was always a rest break at the end of each experimental
period and a single rest break was provided in the familiarization and
baseline periods, whereas two breaks were provided in the training pe-
riod, and five in the testing period.

Design principles for Experiments 1-3. The experiments we conducted
in this study were inspired by a computational model of motor planning
that we develop in Results for characterizing the effects of visuomotor
learning. In short, this model encapsulates the idea that motor planning
is jointly dependent on GL-based and MV-based movement plans by
representing the effects of visuomotor learning as a weighted average of
GL and MV remapping. Experiments 1 and 2 were designed to determine
the parameterization of this model for individual movements and move-
ment sequences, respectively, whereas Experiments 3a and 3b were de-
signed to rigorously test the model. The basic idea behind the
experimental designs is that probing untrained conditions can yield con-
siderable insight into the internal representations for learning (Krakauer
etal., 2000; Wagner and Smith, 2008; Gonzalez Castro et al., 2011; [zawa
and Shadmehr, 2011; Joiner et al., 2011; Brayanov et al., 2012; Sing et al.,
2013). The details about how we designed experiments to achieve these
goals are presented below and detailed in the sections that follow.

The model we develop for characterizing motor planning that is jointly
dependent on GL-based and MV-based motor plans is parameterized by
different weightings (W, and Wy,,,) for these individual plans, and by
different remapping gains (R, and R,y that characterize the extent to
which GL-based and MV-based adaptations are learned. Since the final
plan is a weighted average of the individual GL-based and MV-based
plans, W, and W,;,, must sum to one, and therefore together represent
only one free parameter. The model thus has three free parameters, one
for weightings and two for the remapping gains. As shown in Equations 4
and 5 in Results, where the model is formally presented, these parameters
combine into coefficients that multiply experimentally accessible move-
ment attributes: the start location, movement vector, and goal loca-
tion of the hand. We therefore designed Experiments 1 and 2, the
attribute-isolating experiments, to individually measure these coeffi-
cients, K, Kyy»> and K¢, with the idea that the W and R parameters,
and thus the full model, could be recovered from the experimentally
measured K values, allowing the model to be rigorously tested in
Experiments 3a and 3b. However, visuomotor adaptation typically
affects multiple movement attributes simultaneously, and it is thus
difficult to dissociate the effects of adapting each individual attribute.
To address this issue, we designed Experiments 1 and 2 with specific
test movements (Experiment 1) and test sequences (Experiment 2),
distinct from the movements in which adaptation was trained. These
test movements were chosen so that the trained motor adaptation
would affect only one attribute of each test movement or test se-
quence. This allowed the adaptation of individual movement attri-
butes to be examined independently of one another so that Kg; , Kyv»
and K, could be individually measured.

Similarities and differences between Experiments 1 and 2. In Experiment
1, test movements proceeded as follows: subjects first moved from the
center circle to a displayed target with continuous visual feedback, but as
the cursor approached this target, a second target appeared, adjacent to
the first. Subjects completed the initial movement and held the cursor
within the first target for an additional 300 ms. After this period, subjects
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moved toward the second target, while visual feedback of the cursor was
removed at movement onset. In contrast, in Experiment 2, subjects made
a movement sequence by performing two submovements in rapid suc-
cession, without any additional delay. Visual feedback was withheld at
the onset of the first submovement for the duration of the entire move-
ment sequence, and was only restored when subjects returned to C for the
start of the next trial.

Since Experiments 1 and 2 were both designed to examine the effects of
adapting each movement attribute independently, and only differed in
the types of test trials being used (individual movements vs movement
sequences), we used the same rotation pattern for both experiments.
Specifically, we applied a +30° counterclockwise rotation on movements
from C to the peripheral targets T2 and T5, while movements from C to
the other four targets (T1, T3, T4, and T6) were trained with 0° rotation.

Design of Experiments 1 and 2: the attribute-isolating experiments. We
designed the test movements and test sequences so that each of them
shared only a single movement attribute (MV, GL, or SL) with the move-
ments for which a nonzero visuomotor rotation was trained. The amount
of adaptation associated with each individual attribute (SL, MV, and GL)
of a test movement or test sequence was assessed by examining the dif-
ferences between baseline and adapted attribute-matched movements.
An MV-matched movement shares its movement vector with the test
movement in Experiment 1, or the second submovement of the test
sequence in Experiment 2, as shown in Figures 3 and 4. The vector
differences in the end points of the baseline and adapted MV-matched
movements define the MV adaptation vectors (AMV). Similarly, GL-
matched movements share a goal location with test movements, and
SL-matched movements end at the start location of the corresponding
test movements. Correspondingly, vector differences in the end points of
the baseline and adapted GL-matched movement and SL-matched
movement define the GL-adaptation vector (AGL) and SL-adaptation
vector (ASL), respectively, as shown in Figures 3 and 4.

The effect of MV adaptation was isolated by examining test move-
ments and test sequences with MVs that were adapted during the training
period, while the SL and GL of the test movement were unadapted
(ASL = 0 and AGL = 0). Since movements from C to T2 and C to T5
were rotated during the training period, the 30° and —150° MVs were
adapted (note that these directions are with respect to the positive
x-axis). Since the movements between T3 and T4 and between T1 and T6
shared these adapted M Vs, they served as test movements for evaluating
the effect of MV adaptation. Figure 4A shows an example test movement
that measures the effect of MV adaptation. Here, we focus on the test
movement, illustrated in the left column of Figure 4A, from the SL of T4
to the GL of T3 (black arrow), with an MV-matched movement (blue
arrow) of C to T2, a GL-matched movement (red arrow) of C to T3, and
an SL-matched movement (green arrow) of C to T4. Note that in the
middle column of Figure 4A, the adapted MV-matched movement (blue
trace) is rotated relative to the baseline MV-matched movement (cyan
trace), while the baseline and adapted GL-matched movements (magen-
ta/red traces) lie on top of each other, as do the baseline and adapted
SL-matched movement (yellow/green traces); hence, AMV # 0, whereas
ASL = 0 and AGL = 0. The difference between the end points of the
adapted and baseline MV-matched movements define AMV, and is rep-
resented as the solid blue arrow in the middle column of Figure 4A.

If the movement vector adaptation of the MV-matched movement
fully transfers to the test trial, we would expect the adapted test end point
to be shifted by AMV relative to the baseline end point (dashed blue
arrow). Since only the MV was adapted, changes in the test trial must be
due to the adaptation of MV (AMV), and the effects of movement vector
adaptation can be evaluated in isolation. In other words, movement
vector adaptation of the test trial induced changes in its end point (Fig.
4A, right column, black ellipse, black dashed test adaptation vector ar-
row), and the coefficient Ky, represents the gain on AMV that best
approximates this change. We computed K}y, by finding the magnitude
of the scalar projection of the test adaptation vector onto AMV (black X).
The same analysis was conducted for each of the four movement config-
urations with an adapted movement vector.

Corresponding analyses were conducted to isolate the effects of GL
adaptation (Fig. 4B) and SL adaptation (C). In the GL-adaptation cases,
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AGL # 0, whereas AMV = 0 and ASL = 0, allowing learning-related
changes in the test trials to be attributed specifically to AGL. Correspond-
ingly, changes in the test trials could be specifically attributed to ASL in
the SL-adaptation cases in which ASL # 0, whereas AMV = 0 and AGL =
0. This allowed us to calculate the gains (K, , and Kg; ) on AGL and ASL
that best approximate the difference between the baseline and adapted
test end points in each of the GL-isolating and SL-isolating movement
configurations.

Design of Experiments 3a and 3b: the attribute-combination experi-
ments. Experiment 3 (n = 40) investigated how movement sequences
were affected by simultaneous adaptation of MV, GL, and SL, whereas
Experiments 1 and 2 examined the effects of adapting only one of these
attributes at a time. This experiment allowed us to compare the effective-
ness of pure MV-based, pure GL-based, and combined MV-GL-based
models. In Experiment 3a (n = 20), we examined the effects of adapting
two attributes on movement sequences, either SL and GL or SL and MV.
Movements from C to the peripheral targets T2, T3, T5, and T6 were all
trained with the same rotation (11 subjects trained with +30° rotations,
while 9 subjects trained with —30° rotations) while movements from C to
T1 and T4 were trained with no rotation. On movement sequences dur-
ing the testing period, subjects made a first submovement to one of the
targets trained with rotation (T2, T3, T5, or T6) followed by a second
submovement to an adjacent target. SL adaptation affected each move-
ment sequence because the first submovement in each sequence had
always been trained with rotation. In addition to the SLs, GLs were
adapted on half of the movement configurations (those with second
submovements made between T2 and T3 or between T5 and T6), while
MVs were adapted on the other half (those with second submovements
made from T2 or T6 to T1 or from T3 or T5 to T4).

Experiment 3b (n = 20) investigated the effects of simultaneously
adapting all three attributes. The training paradigm was similar to that in
Experiment 3a; however, there was no training given on movements
from C to T1 and C to T4 because visual feedback of the cursor was
withheld on all movements made to T1 and T4. Again, 11 subjects trained
with +30° rotations to T2, T3, T5, and T6, while 9 subjects trained with
—30° rotations to those targets. We expected partial adaptation of the C
to T1 and C to T4 MVs and target locations due to the generalization
from training rotations on movements to the other four targets, similar
to the results observed in a previous study (Krakauer et al., 2000). Exper-
iment 3b had the same movement configurations as Experiment 3a, but
all three attributes were adapted on each sequence. Since the first target
(T2, T3, T5, T6) had been trained with rotation, SL was fully adapted
adaptation in each movement sequence. When the location of the second
target was also adapted (second submovements between T2 and T3 or T5
and T6), the GL of the test sequence was fully adapted, while the MV was
only partially adapted. However, when the second target was T1 or T4,
the GL was only partially adapted, while MV of the submovement was
fully adapted.

Data analysis. The adaptation vectors associated with each movement
attribute (AMV, AGL, and ASL) were determined by examining the
adaptive changes of attribute-matched movements (Figs. 3, 4). We fo-
cused our analysis on the end points of these attribute-matched move-
ments because, compared to analysis of movement direction, this
allowed for two-dimensional information about adaptive changes in
movement planning. The adaptive change in movement vector (AMV)
was computed as the difference in end points between the baseline and
adapted MV-matched no-feedback probe trials. These probe trials began
at the center location (C) and had the same visual displacement as the test
trial. Similarly, the adaptive change in startlocation (ASL) was defined as
the difference in end points between the average baseline and average
adapted SL-matched probe trials, and the adaptive change in goal loca-
tion (AGL) was defined as the difference in end points between the
average baseline and average adapted GL-matched probe trials. The SL-
matched probe trials were no-visual-feedback movements from C to the
first target, whereas the GL-matched probe trials were no-visual-
feedback movements from C to the second target.

In Experiments 1 and 2, four different movement configurations were
used to probe each of the gains that we estimated (K, Kg;, and Kg; ).
On average, each subject repeated each configuration 25 times during the
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testing period and 10 times during the baseline period. To compute
AMV, AGL, and ASL for each individual, we determined the gains based
on the average movements for each configuration and then averaged the
gains across the four configurations. Note that the confidence ellipses for
movement end points in Figures 4—8 represent SEs across subjects.

In Experiment 3, we evaluated the goodness of fit for MV-based, GL-
based, and combined MV-GL-based models on movement sequences
with multiple simultaneously adapted movement attributes. Since a
value of W,,; = 1 produces pure MV-based planning, the MV-based
model constrained Wy,; = 1 and had one free parameter, Ry This
corresponded to fitting Ky, as a free parameter with Kg; = 1 and K;; =
0. Similarly, since a value of Wy,; = 0 produces pure GL-based planning,
the GL-based model constrained Wy,; = 0 and had one free parameter,
R, This corresponded to fitting K, as a free parameter with K5; = 0
and Ky, = 0. For the combined MV-GL-based model, all three param-
eters (W, R, and Ry, or Kgp, Kyy» and Ki;; ) had nontrivial values.
These parameters were either fit on the Experiment 3 data (CRF best-fit
model, with three free parameters) or predetermined based on the
across-subject averages from Experiment 2 (CRF predetermined model,
with no free parameters). The ability of these models to account for the
data observed in Experiment 3 was quantified by computing the predic-
tion error defined as the mean Euclidean distance between the end point
data and the model prediction.

We performed two types of cross-validation to calculate prediction
error and R for each of the models. Leave-one-out cross-validation was
performed by determining the model parameters on the group average
data from all but one of the subjects, and then applying a model with
those parameters to the remaining subject. Significance levels associated
with leave-one-out cross-validation were computed by performing a
paired t test comparing the fraction of variance accounted for by each
type of model. This form of cross-validation assesses the goodness of fit of
the model for each individual subject, but is prone to the noise inherent
within single subject data. Thus, we also performed repeated twofold
cross-validation to reduce the effect of noise originating from each sub-
ject. To perform this kind of cross-validation, we recursively divided each
of the four subgroups (*=30° training in Experiment 3a and #+30° training
in Experiment 3b) in half and determined the model parameters by
fitting on the average data from one half of the subjects, and then evalu-
ating the resulting model on the average data from the other half of the
subjects. This analysis was then repeated after swapping the fitting and
testing groups, and iterated 1000 times based on different randomly
chosen subject groupings, with the two resulting error and R* values
being averaged on each iteration. This generated a distribution from
which the mean and SE plotted in Figure 8, E and F, can be determined.
Significance levels associated with repeated twofold cross-validation
were computed by totaling the number of iterations on which one model
outperformed the other. Note that since each of the subgroups in Exper-
iment 3 had an odd number of subjects, either 9 or 11, the fitting and
testing groupings were not exactly equal in size. Instead they contained 4
or 5 subjects in the case of 9 person subgroups, and 5 or 6 subjects in the
case of 11 person subgroups. We can think of the variance associated with
each subject’s data as arising from two components: one reflecting how
the entire population of neurologically intact participants would hypotheti-
cally perform, and one reflecting individual subject-specific noise. The latter
component should average out if data from multiple subjects are combined.
Since the average data from approximately five subjects was used to eval-
uate the goodness of fit for the cross-validated model, repeated twofold
cross-validation would be expected to eliminate ~80% of the noise
variance, thus allowing us to back-calculate an estimate of the total in-
tersubject variance present during the leave-one-out cross-validation.
Subtracting this intersubject variance from the residual of the leave-one-
out cross-validation produces an estimate of the “true” R* values for each
of the models in the absence of intersubject noise.

Results

We performed a series of experiments to determine how motor
adaptation affects the planning of untrained visually guided
movements and movement sequences, focusing on how the ef-
fects of motor adaptation could be accounted for by planning
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Figure 1.  Basic experimental setup. 4, lllustration of the experimental apparatus. B, Visuo-
motor rotation learning. During the baseline period, the cursor path matches the hand path. On
initial exposure to a visuomotor rotation, the subject’s hand movements continue as in baseline,
but the cursor movements are rotated. The subject learns to rotate his hand movements so that
the cursor moves straight to the target.

movements in terms of two key features: the GL and the MV. We
began by developing a computational framework for under-
standing how these two features affect the adaptive planning of
goal-directed reaching movements. We then experimentally
characterized the simplest cases in which motor adaptation af-
fected only one movement attribute at a time, to isolate the spe-
cific effects that each attribute had on movement planning for
both individual movements and movement sequences. Using
these results, we were able to parameterize a computational
model we developed so that it could make specific predictions for
the end points of movement sequences. We then proceeded to
test these predictions on complex movement sequences for which
multiple attributes were simultaneously adapted.

Computational framework

We hypothesized that motor plans based on movement vector
(Xumv) and goal location (X, ) are averaged, and that the weight-
ing of these two features (W) determines the extent to which
the remapping of each feature affects the net motor output

(XTOT):
XTOT =Wy - XMV + (1 — Wyp) 'XGL- (1)

Note that Wy, is the weighting of the vector versus the location
plan, such that when Wy, = 1, the motor output depends only on
the MV-based plan, whereas when W,,; = 0, the motor output
depends only on the GL-based plan. Also note that we use Carte-
sian coordinates to describe the spatial locations and displace-
ment vectors in our model; however, the experiments in this
study were conducted in a single workspace, and thus cannot
dissociate whether the various spatial locations and displacement
vectors are represented in intrinsic coordinates, extrinsic coordi-
nates, or a combination of the two (Brayanov et al., 2012).

We considered the effects of motor adaptation on X given
the relationship expressed in Equation 1. In particular, we exam-
ined how three different effects of adaptation might alter X,y
and Xg;. As illustrated in Figure 3B—D, motor adaptation may
affect three movement attributes: the movement vector, start lo-
cation, and goal location associated with a particular movement.
Figure 3B shows the geometry of these three adaptations, whereas
Figure 3, C and D, shows how they might affect motor planning.
Note here that AGL, AMV, and ASL are the overall adaptation
vectors affecting goal location, movement vector, and start loca-
tion, respectively.

As illustrated in Figure 3D, if full goal location remapping
were to occur, the GL-based motor plan (the red dashed arrow)
would be directed at the adapted GL. In contrast, if no GL remap-
ping were to occur, the GL-based motor plan (the magenta
dashed arrow) would be directed at the baseline GL. Note that the
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adaptation vector associated with the goal location (AGL) spans
the locus of end points between these two extremal GL-based
motor plans. Thus we can define a remapping gain, Rg,, with a
value between 0 and 1 that describes the amount of goal location
remapping (AXg; ) that occurs in terms of AGL:

A)_)(GL = RGL ° AGT‘ (2)

We also hypothesized that during motor adaptation, movement
vector and goal location are remapped independently of one an-
other. If full movement vector remapping were to occur, the
MV-based motor plan (Fig. 3C, dark blue dashed arrow) would
match the displacement of an adapted movement with the same
MV (Adapted MV arrow). In contrast, if no MV remapping were
to occur, the MV-based motor plan (light blue dashed arrow)
would match the displacement of a baseline movement with the
same MV (Baseline MV arrow). Note that the adaptation vector
associated with the movement vector (AMV) spans the locus of
end points between these two extremal MV-based motor plans
but is offset from the baseline movement end point by the adap-
tation vector associated with the start location (ASL). This offset
specifically affects the MV-based plan (Xy,y) because this plan is
based on a displacement relative to the (adapted) start location,
whereas the GL-based plan (X, ) is based on the intended end
point independent of the start location. Therefore, the adaptive
change in the movement vector (AX,,,) depends on both ASL
and AMV modulated by a remapping gain, R, and can be
expressed as follows:

AXyy = ASL + Ryy - AMV. (3)

Equations 2 and 3 highlight an important distinction between the
effects of GL and MV adaptation. Since MV-based motor plans
are derived from a displacement relative to the start location of
the movement, ASL specifically affects the MV-based plan (Xyy).
In contrast, the GL-based plan (X, ) is based on the intended end
point independent of the start location, and so it is unaffected by
adaptation of the start location of the movement.

Based on Equations 1-3, the adaptive change in the net motor
output (AX;or) depends on both the weighting coefficient
(Wy) and the remapping coefficients (Ry,, and Ry, ) for move-
ment vector and goal location, as follows:

A)_)(TOT =Wy - AS{MV + (1= Wy) - A)_)(GL =Wy - Agi +
Wy * Ry * AMV + (1 — Wy,) * Rg - AGL.  (4)

Correspondingly, when a single movement is adapted, the
learned adaptation could result from remapping of the move-
ment vector (Ry,y) or the goal location (R, ) associated with this
movement or a combination of the two.

Design of Experiments 1 and 2: attribute-

isolating experiments

It is difficult to dissect the contributions of movement vector and
goal location remapping by focusing on trained movements, be-
cause their effects are intrinsically coupled in all trained move-
ments. Wang and Sainburg (2005) offered a key insight into
dissociating the effects of adaptation on goal location and move-
ment vector. The idea is that the effects of adaptation on these
features can be uncoupled by adapting one movement and exam-
ining how this adaptation affects another—a test movement. In
particular, Wang and Sainburg (2005) designed an experiment to
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Figure2. Motor performance during the baseline, training, and testing periods. 4, Top, Hand paths for movements to each of the six peripheral targets with continuous visual feedback during

baseline, initial exposure to rotation, early training, and the testing period. Thirty degree rotations were applied on movements from Cto T2 and from Cto T5 during the training and testing periods.
Bottom, Hand paths for no-visual-feedback probe trials to each target. Note that targets are drawn to scale; in subsequent figures targets are drawn larger for ease of viewing. Hand paths in the
baseline and testing periods are across-subject averages; however, individual movements are shown for the initial exposure and early training epochs to avoid unnecessary smoothing. B, Learning
curves showing the average movement direction measured 100 ms after movement onset over the course of an experiment. Trace colors match the movement colors in A.

put the effects of movement vector remapping and goal location
remapping in opposition for individual test movements.

Here, we refined this approach by training adaptation to a
single target (i.e., a single combination of movement vector and
goal location) as opposed to a range of targets so that the remap-
ping of these features could be examined independently of one
another, thus isolating the effects of R, and R, rather than
oppositely coupling them. We also designed test movements to
examine the extent to which goal location and movement vector
influence the planning of movements, independently of the ex-
tent to which these features are remapped, allowing us to deter-
mine Wy, . This weighting coefficient, Wy, effectively modulates
the contribution of each feature to the planning of untrained
movements so that, in conjunction with Ry, and R, , these three
factors collectively determine the effect of motor adaptation on
untrained movements. We predict that if Wy, Ry,y, and R, are
identified, the effect of adaptation on untrained movements and
movement sequences can be quantitatively determined from
Equation 4.

We thus designed Experiments 1 and 2 to characterize the
three factors that determine the effects of motor adaptation on
the planning of an untrained movement: the amount of MV re-
mapping (Ry), the amount of GL remapping (R, ), and the
weighting between an MV-based plan and a GL-based plan
(Wy1). We can use Equation 4 as a guide to show how this can be
accomplished. Note that this equation describes the adaptive
change in the motor output (AX ) as a linear combination of
the adaptation vectors for three movement attributes, the start
location (ASL), the movement vector (AMV), and the goal loca-
tion (AGL), where their gains are based on Wy, Ry, and Ry,
and should not change from one movement to the next. This can
be made explicit by rewriting Equation 4 in terms of these gains,
as follows:

AXyor = Ky + ASL + Kyy + AMV + K, » AGL,  (5)

where the gains are Kg; = Wy, Ky = Wy * Ry, and K =
(1 — Wyp) * Ri1- The form presented in Equation 5 makes it clear
that if the effects of each adaptation vector (ASL, AMV, and AGL)
can be isolated, the corresponding gains can be uniquely deter-
mined as follows:

_ A)_)(TOT _ ||Pr0jAﬁ(A)?TOT)” _ A}_)(TOT - ASL

TASL IAST| IAST|P
if AMV = 0and AGL =0, (6)
_ AjzTOT _ ||Pr0jAW(AXTOT)H _ AXTOT - AMV
MW AMY [AMV]| |AMV|P
if ASL=0and AGL =0, (7)
_ AXTOT _ ”prOjAa(AXTOT)” _ AXTOT - AGL
“AGL IAGL]| IAGLJP
if AMV = 0and ASL = 0. (8)

We thus designed Experiment 1 to determine each of these gains
by independently controlling the magnitudes of the three attri-
bute adaptation vectors, as illustrated in Figure 4. Once these
gains (K, Kgp, Kgp) are measured, the weighting and remap-
ping coefficients can be determined from these three gains:
Wy, = K1, Ryy = Kuv/Ks» R, = K /(1 — Kgp). Motor ad-
aptation generally affects multiple attributes simultaneously,
and it is difficult to dissociate the effects of adapting each
attribute. To address this issue, we designed these two exper-
iments to use specific test movements (Experiment 1, n = 15)
and test sequences (Experiment 2, n = 35) in which the adap-
tation of these movement attributes could be examined inde-
pendently of one another.

As shown in Figure 2A, subjects were trained on movements
from a center circle to six peripheral targets (T1-T6). We trained
subjects with +30° visuomotor rotations on movements from C
to T2 and from C to T5, while movements from C to the other
peripheral targets (T1, T3, T4, and T6) were trained with no
rotation (i.e., 0° rotation). We then examined test movements in
which only one of the three movement attributes was adapted
during training. For each test movement, the start location was
one of the peripheral targets (T1-T6), and the goal location was
one of the two peripheral targets adjacent to the SL. For example,
a test movement from T4 to T3 was affected by only MV adapta-
tion because it shared a MV with the movement from C to T2,



10778 - ). Neurosci., June 26, 2013 - 33(26):10772—10789 Wu and Smith  Movement Vector and Goal Location Remapping

A B C D

No Training AMV

MV-Matched

+30°

R, -AMV AMV
= === Fully remapped MV-based planning Movement
- === Unremapped GL-based planning Movement

=== Fully remapped GL-based planning Movement

* Example Adapted Test Movement

Figure3. Illustration of the CRF model. 4, Illustration of an example test movement (black arrow) that is to be affected by visuomotor adaptation. The effects of the CRF model on the
test movement can be described in terms of the adaptation associated with three attribute-matched movements. The movement-vector-matched movement (MV-Matched; blue arrow)
shares the same visual displacement as the test movement. The goal-location-matched movement (GL-Matched; red arrow) shares a goal location with the test movement. The
start-location-matched movement (SL-Matched; green arrow) is aimed at the start location of the test movement. B, Motor adaptation produces changes in each attribute-matched
movement. These changes can be represented in terms of the attribute adaptation vectors (AMV, AGL, and ASL) defined as the differences between the baseline and adapted
attribute-matched movements. C, Pure MV-based motor planning with full remapping would predict an adapted movement with a displacement matching the adapted MV-matched
movement (blue dashed arrow). However, pure MV-based motor planning with zero remapping would predict an adapted movement with a displacement matching the baseline
MV-matched movement (light blue dashed arrow), and intermediate remapping would predict an end point lying along the translated AMV. D, Pure GL-based motor planning with full
remapping would predict an adapted movement directed toward the adapted goal location (red dashed arrow). In contrast, pure GL-based motor planning with zero remapping would
predict an adapted movement directed toward the baseline goal location (magenta dashed arrow), and intermediate remapping would predict an end point lying along AGL. E, Extremal
points associated with the CRF model. Note that the adapted test movement begins at the Adapted SL, and that the MV-based motor plan is affected by ASL, while the GL-based motor
planis not. F, Mixing of the MV-based and GL-based motor plans in the CRF model in line with the form of this model shown in Equation 4. Note that the illustration in Fis a zoomed-in
version showing the top left area of E. The adapted test movement (dark gray arrow) is predicted by a weighted combination of an MV-based plan and a GL-based plan. In this illustration
we used a GL-based plan (X, depicted as the thick red X) with 25% remapping (Rg, = 0.25), and an MV-based plan (X, depicted as the thick blue X) with 70% remapping (R, =
0.70). The net motor output (XTOT, depicted as the thick orange X) is based on weighted combination (I, = 0.55) of 55% MV-based planning and 45% GL-based planning. Note that
the adapted test movement should always lie inside the quadrilateral defined by the start and end points of the AGL vector (red arrow) and the displaced AMYV vector (blue arrow).

which was trained with +30° rotation, while its SL (T4) and GL
(T3) were not adapted during the training period because 0°
rotation was trained from C to T3 and from C to T4 as illustrated
in Figure 4A. Before the test movement, subjects moved to the SL
from C and waited an additional 300 ms for the go cue before
moving to the GL. In actuality, subjects waited 752 = 27 ms (note
that means = SEM are provided throughout this paper unless
noted otherwise) between the end of the first movement and the
start of the test movement. Visual feedback of the cursor was
removed at the onset of the test movement and was restored only
when the subject returned to C after the test movement. Note that
because of the regular hexagonal layout of the peripheral targets,

the target displacements for the training (center-out) and test
(edge-traversing) movements were identical, as shown in Figures
4and>5.

Adaptation to visuomotor rotations during the training
period in Experiment 1

Before examining how learning visuomotor rotations transferred
to untrained movements, we examined the data from the baseline
and training periods. During the baseline period, subjects made
quick movements (movement duration, 425 = 3 ms, mean *
SEM; peak speed, 48.44 * 0.28 cm/s) from C to each of the six
peripheral targets. These movements were essentially straight and
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Design of the attribute-isolating experiments. A, The effects of movement vector adaptation can be isolated for a test movement (T4 to T3) when the MV-matched movement

(Cto T2) is trained with rotation while the GL-matched (Cto T3) and SL-matched (C to T4) movements are trained with zero rotation. When this is the case, the difference in end points
of the baseline and adapted MV-matched movements define a nontrivial AMV (middle column, thick solid blue arrow). AGL and ASL can be defined analogously, but are both essentially
zero because the SL-matched and GL-matched movements were trained with zero rotation. If AGL and ASL are essentially zero, the adaptation vector, which indicates the difference in
end points between the baseline test movements and the adapted test movements, will depend only on AMV, and the gain associated with it (K},,) can be estimated by comparing the
adaptation vector with the translated version of AMV as shown in the third column, which is a zoomed in depiction of the lower right area in the second column. B, C, Analogously, test
movements with isolated GL adaptation (B) and with isolated SL adaptation (C) can be trained when visuomotor rotations are applied in isolation to the GL-matched and the SL-matched
movements, respectively, to estimate K, and K, . Note that the traces shown in the second and third columns are across-subject-averaged movements based on experimental data from
three of the movement configurations studied in Experiment 1. Note that the ellipses drawn on the hand path plots in this and the subsequent figures all represent 1 SEM for movement

end points.

aimed directly at the targets (Fig. 24, first column), with no-
visual-feedback probe movements and continuous visual-
feedback movements to the same targets essentially identical to
one another (Fig. 24, first column, compare colored, gray traces).
When a visuomotor rotation was applied during the training
period, hand movements were initially directed toward the base-
line position associated with the target (Fig. 24, second column).
But gradually, subjects adapted to the visuomotor rotation, and
hand movements rotated away from the visual target (Fig. 2A,
third column). Ultimately, by the end of the training period and
during the testing period, subjects made cursor movements

straight to the intended targets with rotated hand paths (Fig. 24,
fourth column, B). Thus, during the testing period, movements
to a given target were essentially identical regardless of the availabil-
ity of visual feedback on cursor position (Fig. 2A, fourth column,
compare colored, black traces). Similar to previous visuomotor ro-
tation studies (Krakauer et al., 1999, 2000; Wang and Sainburg,
2005; Ghez et al., 2007; Scheidt and Ghez, 2007; Izawa and Shad-
mehr, 2011), we found nearly full adaptation on movements trained
with rotation (90 = 1% adaptation), while movements trained with
zero rotation showed minimal changes following the training period
(3 = 1% adaptation) as shown in Figure 3B.
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Results of the attribute-isolating experiment for individual movements. 4, Four different movement configurations with isolated MV adaptation from Experiment 1. Dashed blue arrows

indicate the shifted AMV, as shown in Figure 2. All hand paths display across-subject average movements with SE ellipse at the end point. The blue X indicates the best fit location of K, over all four
movements. Note that analysis of the lower right configuration was detailed in Figure 4A. B, Test movements with isolated GL adaptation. Red arrows indicate the shifted AGL. C, Test movements

with isolated SL adaptation. Green arrows indicate shifted ASL.

Isolating the effects of movement vector, goal location, and
start location adaptation

To study the effects of movement vector adaptation indepen-
dently of SL adaptation and GL adaptation, subjects performed a
test movement in which the MV-matched movement was trained
with a +30° rotation, while the GL-matched movement and SL-
matched movement were trained with 0° rotation. In the example
shown in Figure 4A, the test movement (T4 to T3) has an MV-
matched movement (C to T2) that was trained with a +30° visuo-
motor rotation. In contrast, the GL-matched movement (C to
T3) and the SL-matched movement (C to T4) were both trained
with a 0° rotation. Since neither the GL nor the SL of the test
movement is adapted, this manipulation isolates the effect of MV
adaptation. This effect can be observed by comparing the differ-
ence between the adapted and baseline test movements (Fig. 4A,
middle, black vs gray movements). If the rotation learned in the

MV-matched movement (C to T2) movement vector fully trans-
fers to the test movement (T4 to T3), the change in MV observed
in the test movement would match the change in movement
vector (AMV) of the MV-matched movement (C to T2). How-
ever, the example given in Figure 4A shows ~21° of rotation
(black vs gray data) for the test movement compared to ~28° of
rotation for the MV-matched movement (blue vs cyan data).
The gain on this transfer (Ky,y) can be quantified as a fraction of the
learned change in movement vector (AMV) by projecting the
test-movement adaptation vector (dashed black arrow) onto
the trained adaptation vector (AMV), as shown in the right col-
umn of Figure 4A. For each subject, we applied this analysis to the
four configurations of MV-isolating test movements in Experi-
ment 1 (Fig. 5A) to estimate Ky, from our data and found similar
gains for all participants (Kyn, = 0.69 * 0.03, mean = SEM). The
tight error bars on Ky, and the tight confidence ellipses on the
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test-movement data used to measure it indicate that subjects dis-
played remarkably consistent generalization of the trained pat-
tern of adaptations in this experiment.

Analogously, to study the effects of goal location adaptation
independently of MV adaptation and SL adaptation, subjects
performed test movements in which the GL-matched movement
was trained with a +30° rotation while the MV-matched move-
ment and SL-matched movement were trained with no rotation.
In the example shown in Figure 4B, the test movement (T1 to T2)
has a GL-matched movement (C to T2) that was trained with a
+30° rotation, while the MV-matched movement (C to T3) and
SL-matched movement (C to T1) were trained with 0° rotation.
This particular manipulation isolated the effect of GL adaptation
from the effects of MV adaptation and SL adaptation, and this
effect can be observed by comparing the difference between the
adapted and baseline test movements (Fig. 4B, middle, black vs
gray movements). The example in Figure 4B shows ~1.1 cm of
shift for the adapted test-movement end point compared to 4.2
cm of shift for the adapted GL-matched movement. We quanti-
fied the gain of this transfer (K ) by projecting the test-
movement adaptation vector (dashed black arrow) onto the
trained adaptation vector (AGL) as shown in the right column of
Figure 4B. To estimate K;; from our data, we applied this analysis
to each of the four configurations of GL-isolating test movements
(Fig. 5B) in each subject, finding a significant transfer of goal
location adaptation to the untrained test movements in all par-
ticipants (Kg;, = 0.17 = 0.01, mean = SEM).

We also isolated the effects of start location adaptation by
having subjects perform test movements in which the SL-
matched movement was trained with a +30° rotation while the
MV-matched movement and GL-matched movement were
trained with zero rotation. In the example shown in Figure 4C,
the test movement (T2 to T1) has a SL-matched movement (C to
T2) that was trained with a +30° rotation, while zero rotation was
trained on the MV-matched movement (C to T6) and GL-
matched movement (C to T1), thus isolating the effect of SL
adaptation. Similarly to the above examples, the difference be-
tween the adapted and baseline test movements shows the effect
of SL adaptation (Fig. 4C, middle, black vs gray movements).
Again, we quantified the gain of this transfer (K, ) by projecting
the test-movement adaptation vector (dashed black arrow) onto
the trained adaptation vector (ASL), as shown in the right col-
umn of Figure 4C. We applied this analysis to each of the four
movement configurations of SL-isolating test movements (Fig.
5C) in each subject, to estimate Kg; from our data and found
significantly positive gains in all participants (Kg; = 0.72 = 0.01,
mean *= SEM). Note that in Figures 4A—C, all adaptive changes
were measured from the same C to T2 movement; thus
AMV = AGL = ASL for different test movements, illustrating
that adaptation of a single movement can affect different
movement attributes of untrained test movements.

Experiment 2: attribute-isolating experiment for

movement sequences

In Experiment 2, we studied the transfer of visuomotor adapta-
tion to the planning of movement sequences. In this experiment
there were two subgroups of subjects, neither of which partici-
pated in Experiment 1. As in Experiment 1, we examined the
effects of adaptation for movement vector, goal location, and
start location in isolation from one another. However, during the
movement sequences in Experiment 2, a second target appeared
on the monitor halfway through the first submovement, and sub-
jects were trained to proceed to the second target immediately
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after completing the first submovement. The dwell time between
the end of the first submovement and the onset of the second
submovement was thus substantially shorter than in Experiment
1 (311 £16msvs752 £ 27 ms, p < 0.0001, when measured using
a 5 cm/s speed threshold). During these movement sequences,
visual feedback was removed at the onset of the first submove-
ment of the sequence and remained off for the entire duration of
the movement sequence. Similarly to Experiment 1, we designed
Experiment 2 so that the visuomotor adaptation affected only
one of the second submovement’s three attributes at a time, with
the affected attribute depending on the specifics of the movement
sequence. Thus, as in Experiment 1, each of the three attributes
was perturbed in isolation. As in the Experiment 1 data, we found
that subjects displayed remarkably consistent generalization of
the trained pattern of adaptations in Experiment 2, as evidenced
by the tight confidence ellipses on the test-movement data shown
in Figure 6. The confidence ellipses though small were, however,
noticeably larger than in the Experiment 1 data, suggesting
greater variability in the execution of movement sequences as
would be expected. As in Experiment 1, we found highly signifi-
cant transfer of adaptation in all three movement attributes (Fig.
6A—C), but the adaptation gains were significantly reduced for each
of the three attributes (Kyn, = 0.43 * 0.04, K5, = 0.11 + 0.02, Ky =
0.56 = 0.02 for Experiment 2 compared to Ky, = 0.69 = 0.03,
Kg =0.17 £ 0.01, Ky, = 0.72 = 0.01 for Experiment 1; p < 0.05 for
all three decreases), as shown in Figure 6D. One key difference be-
tween Experiments 1 and 2 is the lack of visual feedback at the
start location of the test movement. Without visual feedback of
hand position, the internal estimate of start location becomes
more dependent on proprioceptive information (Sober and Sa-
bes, 2005), which results in reduced transfer of the visuomotor
adaptation to the test sequence. A second difference is that the
reduced dwell times between submovements that occur in move-
ment sequences are known to result in altered motor planning
compared to individual movements (Howard et al., 2012). Thus,
compared to the movement sequences studied in Experiment 2,
the individual movement test trials studied in Experiment 1
would be expected to elicit greater transfer of adaptation since the
original adaptation was also trained in individual movements.
This may account for the somewhat reduced, although highly
significant R* value for the model in the Experiment 2 data (0.75
vs 0.95), as well as the reduced attribute gains.

Differential weighting and remapping of movement vectors
and goal locations

Using Equations 4 and 5, we can compute the differential weight-
ing (W, ) and remapping of goal locations (R, ) and movement
vectors (Ryy) from the contributions of each attribute’s adapta-
tion vectors to the net motor output (Kg; , Ky,y» Kgp) determined
in Experiments 1 and 2. We find that, in combination, these
factors can accurately characterize the planning of both individ-
ual movements and movement sequences when movement attri-
butes are adapted in isolation (R* = 0.95 = 0.01 for individual
movements, R?=0.75 = 0.06 for movement sequences, mean *
SEM), as shown in Figure 6F. However, in both cases, movement
vectors displayed significantly more remapping than goal loca-
tion (Ryy = 0.95 £ 0.04, R5;, = 0.60 = 0.05 for individual
movements; p < 0.0001; Ry, = 0.77 = 0.07, Rg; = 0.24 = 0.05
for movement sequences; p < 0.0001), as shown in Figure 6E. On
the other hand, individual movements appear to be predomi-
nantly planned based on movement vectors, while movement
sequences weigh GL-based plans more evenly with MV-based
plans [Wy,; = 0.72 * 0.01 for individual movements, indicating a
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ratio between MV-based (W,,;) and GL-based planning (1 —
Wy) that is about twice as high (2.6X) as the ratio between
MV-based and GL-based planning for movement sequences
(1.3X) arising from W,,; = 0.56 = 0.02; Fig. 6E].

Experiment 3: predicting the planning of movement
sequences following the adaptation of multiple attributes

In Experiment 3, we tested the ability of the model presented in
Equations 4 and 5 to accurately predict the complex effects of
motor adaptation on movement sequences with multiple simul-
taneously adapted features. We refer to this model as the CRF
model because it combines the multiple effects of motor adapta-
tion. As described in Equation 4, the CRF model accounts for the
differential remapping of movement vectors (Ry,) and goal lo-
cations (R ), and modulates the MV-based and the GL-based
plans based on a weighting (W,,; ). However, this model may also
be expressed in terms of the gains (Kg;, Ky;y», and K;) used to
linearly combine the effects of three attribute adaptation vectors
(ASL, AMV, and AGL) as shown in Equation 5. Since we have
demonstrated that K¢, Ky, and K, are determined by Wy,
Ryv» and R, both formulations are mathematically equivalent.
Critically, because the parameters of the CRF model for move-
ment sequences were individually determined in Experiment 2,
we can, without any free parameters, test the ability of this model
to predict more complex movement sequences with multiple
adapted attributes.

We therefore designed experiments in which subjects per-
formed movement sequences that were affected by the adapta-
tion of either two (Experiment 3a) or three (Experiment 3b)
attributes simultaneously. This is in contrast to the attribute-
isolating experiments (Experiments 1 and 2) discussed above in
which only a single attribute was affected for each individual
movement or movement sequence. Separate groups of subjects
were recruited for Experiment 3a (n = 20) and 3b (n = 20), and
in each of these experiments, subjects performed eight different
movement sequences in which multiple attributes were adapted
simultaneously. Because approximately half of the subjects in
each group learned counterclockwise (+30°) versus clockwise
(—30°) visuomotor adaptations that affected the planning of
these sequences (see Materials and Methods; see Fig. 8 A, B, mid-
dle diagrams), we studied a total of 32 adaptation-sequence com-
binations, 16 each in Experiments 3a and 3b.

Predictions of the CRF model

Figure 7A-D illustrates how the CRF model predicts changes in
motor planning in an example movement sequence with two-
attribute adaptation. In this example, the second submovement
(T3 to T4) is simultaneously affected by start location and move-
ment vector adaptation because both the SL-matched movement
(C to T3) and the MV-matched movement (C to T5) received
+30° visuomotor rotation training, whereas the GL-matched
movement (C to T4) was trained with 0° rotation (Fig. 7B). Here
we used the predetermined values for K, and Kg; from Exper-
iment 2 to compute the contributions of MV and SL adaptation
to this test sequence (Fig. 7C). Figure 7D illustrates how a linear

<«

Figure 6. Results of the attribute-isolating experiments for movement sequences. A-C,
Same as in Figure 5, but for the movement sequence data studied in Experiment 2. D, Mean and
SEM across subjects for Ky, K, and K, found in Experiments 1and 2. E, Mean and SEM for I#/,,,
Ryy. and Rg, found in Experiments 1 and 2. F, Mean and SEM for the fraction of variance
accounted for by the CRF model in Experiments 1and 2.
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combination of AMV and ASL can predict the adaptation-
induced change in test sequence end point. Note that the blue,
red, and green dots represent the individual contributions of MV,
GL, and SL to the model prediction, respectively (Fig. 7C,D). In
this two-attribute adaptation example, there was no adaptation
of the GL of the test sequence and thus no contribution from AGL
to the model prediction (red dot). The CRF model predicts that
the adapted test end point (black dot and error ellipse) will be
deviated from the baseline test end point (gray error ellipse) by
the vector sum of the ASL (green dot) and AMV (blue dot) con-
tributions (orange X) as shown in Figure 7D.

An example of a three-attribute adaptation movement se-
quence is shown in Figure 7E-H. In this example, all three attri-
butes of the test sequence’s second submovement (T3 to T2) are
adapted. In addition to the +30° training of the SL-matched
movement (C to T3) and GL-matched movement (C to T2),
rotation learning generalized to the MV-matched movement (C
to T1) so that it was also partially rotated, as illustrated in Figure
7F. Consequently, parameterizing the CRF model with the pre-
determined weights from Experiment 2 generates nontrivial con-
tributions (blue, red, and green dots) from each of the three
attributes (AMV, AGL, and ASL). Taking the vector sum of these
contributions (orange X) predicts the end point of the adapted
test sequence (black dot and SE ellipse) relative to the baseline test
sequence (gray SE ellipse), as shown in Figure 7H. Note that this
view of the CRF model prediction is analogous to that presented
in Figure 3 based on the weighting and remapping of movement
vectors and goal locations.

Specifics of the design of the two-attribute and three-attribute
adaptation experiments
We designed Experiment 3a so that two movement attributes
were simultaneously adapted: either start location and goal loca-
tion or start location and movement vector. To accomplish this,
movements from C to the peripheral targets T2, T3, T5, and T6
were trained with *30° rotations, while movements to from C to
T1 and T4 were trained with 0° rotation (Fig. 84, middle). This
training affected the start and goal locations for the four sub-
movements between T2 and T3 and between T5 and T6, but held
the movement vectors unchanged (Fig. 84, top). In contrast, this
training affected the start locations and movement vectors for the
four test sequences terminating at T1 or T4, but held the goal
locations unchanged (Fig. 8A, bottom). Figure 8A shows the pre-
dictions of the CRF model (orange and purple Xs) as well as the
contributions from AMV, AGL, and ASL (blue, red, and green
dots) for all 16 two-attribute adapted sequences examined in
Experiment 3a. The predictions of the CRF model with the pa-
rameters predetermined from Experiment 2 are shown as the
orange Xs, while the predictions from the CRF model with pa-
rameters fit to the Experiment 3 data are shown as the purple Xs
(Fig. 8A). Note the close similarity between these predictions.
Experiment 3b was similar to Experiment 3a except that T1
and T4 were untrained rather than being trained with zero rota-
tion during the training period. This resulted in noticeable, non-
zero generalization of motor learning to T1 and T4 from the
trained movements (T2, T3, T5, and T6) as shown in Figures 7F
and 8B. This generalization is roughly in line with the findings of
a previous study that found that when two movement directions
90° apart are trained with the same visuomotor rotation, ~55%
generalization was observed midway between (Krakauer et al.,
2000). Since the trained targets nearest to T1 and T4 were 120°
apart from each other in Experiment 3a, we would expect less
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Predictions of the CRF model when two or three movement attributes are adapted simultaneously. A-D, A movement sequence with two adapted attributes from Experiment 3a. 4,

Experimental paradigm. B, Baseline and adapted movements. The color scheme is the same as in Figures 3 and 4. Two attributes, MV and SL, are adapted during the training period, while the
GL-matched movement was trained with zero rotation. As a result, AMV and ASL are nonzero, whereas AGL s essentially zero. C, Test-movement sequence shown with the contributions of AMV,
ASL, and AGL as predicted by the CRF model (colored dots). D, A zoomed in version of € showing the model prediction (orange X) generated by the addition of the AMV and ASL contributions in
line with the form of the CRF model shown in Equation 5. The orange linesin D and H show a graphical depiction of the model prediction as the sum of contributions from AMV, ASL, and AGL. E-H,
A movement sequence with three adapted attributes from Experiment 3b, where AMV, ASL, and AGL are all nonzero. E, Experimental paradigm. F, Similar to B, but with adaptation of all three
attributes. G, Same asin C. H, Same as in D, but the model prediction now has nonzero contributions from ASL, AMV, and AGL. Average test movements are shown, with across-subject SE ellipses

around movement end points.

generalization. In line with this prediction, we found 36 * 4%
(mean = SEM) generalization on probe trials to T1 and T4 dur-
ing the testing period. As a result, movements between targets
with adapted start and goal locations now had a partially adapted
movement vector as well (Fig. 8B, top, blue arrows), and test
sequences ending at T1 and T4 had a partially adapted goal loca-
tion (Fig. 8B, bottom, red arrows). This partial generalization
allowed us to examine how test sequences were affected by simul-
taneously adapting all three attributes of the second submove-
ment, as in the example documented in Figure 7E-H. Thus,
whereas single movement attributes were adapted in isolation in
Experiments 1 and 2, two or three movement attributes were
simultaneously adapted in Experiments 3a and 3b, respectively.
In Figure 8, the predictions of the CRF model with the parameters
predetermined from Experiment 2 are shown as orange Xs, while
the predictions from a fit CRF model which best characterized the
data in Experiment 3 are shown as purple Xs (Fig. 8B).

Comparison of the predictions of the CRF model to
single-feature-based models

As in the Experiments 1 and 2, we found that subjects displayed
remarkably consistent generalization of the trained pattern of
adaptations in Experiment 3, as evidenced by the tight confidence
ellipses on the test-movement data shown in Figure 8, A and B.
Critically, we find that the CRF model with predetermined coef-
ficients from Experiment 2 predicts the movement sequences
studied in Experiment 3 significantly better than models which
assume pure GL- or MV-based planning (p < 0.0001 for both;
Fig. 8C,D), even when these models are fit to the data with free
parameters. The net motor output for the purely MV-based plan
would entail full weighting for the MV-based plan versus the
GL-based plan (Wy,; = 1) so that only movement vector remap-
ping (Ry;y) would be relevant. In contrast, a purely GL-based
plan would entail full weighting for the GL-based plan versus the
MV-based plan (W, = 0), so that only goal location remapping



Wu and Smith e Movement Vector and Goal Location Remapping

A: Two-Attribute Adaptation

Leave-one-out Cross-validation Leave-one-out Cross-validation

3 80
—+

60

40

Prediction Error (cm)

20

Variance Accounted for (%)

. Baseline Endpoint
. CRF - Best Fit Model

Figure8.

. GL-Based Planning Model

J. Neurosci., June 26,2013 - 33(26):10772-10789 « 10785

B: Three-Attribute Adaptation
N

No Training

-30°

-30

No;raining

Repeated Two-Fold Cross-validation Repeated Two-Fold Cross-validation

3 100
_'_

_ 3 80
£, 3
= o

S 2 60
& =

kS < 40
o [
o 1 o
& &

S 20

0 0

MV-Based Planning Model

CRF - Predetermined Model

Experimental results and evaluation of model predictions for movement sequences with multiple simultaneously adapted movement attributes. 4, Adapted test-movement sequences

from the two-attribute adaptation experiment (Experiment 3a). Note that 16 different movement configurations are shown. Colored dots indicate the contributions from AMV, AGL, and ASL as
predicted by the coefficients predetermined in Experiment 2, and the orange Xs indicate the corresponding predictions of the predetermined CRF model. Purple Xs indicate the predictions of the CRF
model with parameters refit to best account for the Experiment 3 data (best-fit CRF model). B, Same format as 4 but for the three-attribute adaptation experiment (Experiment 3b). Note that the
average test movements are shown with across-subject SE ellipse around movement end points. €, The prediction error of the pure GL-based, pure MV-based, best-fit CRF, and predetermined CRF
models, computed using leave-one-out cross-validation. D, The fraction of variance (R2) accounted for by each model shown in C relative to the baseline test sequence end point. E, F, The same as

Cand D but for repeated twofold cross-validation to reduce noise across subjects. Error bars represent SEM across subjects.

(Rgy) would be relevant. Correspondingly, each of these models
contains one free parameter, Ryn, or Rgp, respectively, in the
Equation 4 version, or Ky, or K, respectively, in the Equation
5 version.

We compared the pure GL-based and pure MV-based models
to a version of the CRF model in which the coefficients were
predetermined from Experiment 2 and a version in which the

coefficients were fit to the Experiment 3 data. We used leave-one-
out cross-validation to characterize the ability of the different
model fits to explain individual subject data. This entailed repeat-
edly fitting the free parameters in each model to the data from all
but one of the subjects, and testing this fit on the remaining
subject. Because cross-validation entails testing each model on
data that were not used in fitting it, the number of free parameters
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in each model does not bias the assessment of goodness of fit.
Thus models with different numbers of free parameters can be
compared without specifically accounting for the model com-
plexity or degrees of freedom. Note that there was no fitting in the
predetermined CRF model because the same coefficients were
used each time.

We found that the pure MV- and GL-based planning models
provide similar quality fits to one another, accounting for 31.2 =
8.1% and 34.8 * 3.8% of the total variance (mean = SEM),
respectively, in the individual subject data. In contrast, the pre-
determined CRF model explains the adaptive changes in the
movement sequence end points considerably better, accounting
for 73.3 = 2.9% of the total variance and performing better than
both the pure MV-based and pure GL-based models for 37 of 40
subjects (Fig. 8D; p < 0.0001 for both the predetermined CRF vs
pure MV-based models and the predetermined CRF vs pure GL-
based models). Moreover, when the parameters of the CRF
model are chosen to best fit the data in Experiment 3 (Fig. 8A, B,
purple Xs), this model accounted for essentially the same fraction
of variance (74.7 % 3.3%) as when the parameters were predeter-
mined with 27 of 40 of the subjects better characterized by the
single best-fit CRF model and 13 of 40 subjects better character-
ized by the predetermined CRF model (p = 0.12, paired ¢ test).
The close match between the goodness of fit for the predeter-
mined and best-fit CRF models underscores the predictive power
of the results from Experiment 2. Interestingly, if the predeter-
mined values from Experiment 1 are used instead of those from
Experiment 2, the quality of the fit deteriorates noticeably, ac-
counting for only 62.2 + 5.4% (mean * SEM) of the total vari-
ance (p < 0.005 for the predetermined parameters from
Experiment 2 vs Experiment 1; data not shown in Fig. 8).

We designed Experiments 3a and 3b to test the CRF model
over a wide variety of different movement configurations, rather
than to maximize the precision of our end point estimate for each
configuration. Correspondingly, the movement sequence test
data for each subject were divided into eight different sequence
types, thus reducing by a factor of eight the number of trials we
could average together to estimate each end point position. This
resulted in confidence ellipses for each subject’s data that were
often comparable in size to the errors between each subject’s
mean data and the CRF model predictions, suggesting that a large
fraction of the error in the cross-validated model predictions may
be due to noise in estimating the mean data for each subject. If
this is the case, the “true” R* values characterizing the ability of
the CRF model to explain the effects of motor adaptation on
movement sequence planning may be substantially higher than
the single-subject R* estimates made above, which are based on
noisy data.

One approach to reducing the noise in the mean estimate is to
average data across subjects. Thus, to make a better estimate of
the true R? value of the CRF models, we performed repeated
twofold cross-validation in which the data from a randomly cho-
sen half of the subjects were repeatedly used to fit the model, and
the mean data from the other half were used to assess the good-
ness of the model. With this approach, we find that the CRF
model with predetermined coefficients accounts for 86.7 = 1.9%
of the variance (mean = SEM), while the best-fit CRF model
accounts for 89.0 £ 1.9% of the variance. Because there were ~10
subjects in each of the four subgroups in Experiment 3, the re-
peated twofold cross-validation allowed us to average across an
average of five subjects, thus reducing the mean variability by a
factor of about five (~80%). Extrapolation of this reduction in
variability yields estimates for the true R* values of the predeter-
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mined and best-fit CRF models of 90.1 and 91.3%, respectively.
This suggests that only 9-10% of the total variance arises from
factors unrelated to GL-based and MV-based planning, such as
biomechanical factors not accounted for by the combined re-
mapped feature model.

Discussion

We examined the adaptive control of individual movements and
movement sequences by characterizing how goal location and
movement vector contribute to motor planning and how these
features are remapped during visuomotor rotation learning. We
began by demonstrating that these factors can be represented in
terms of scalar gains on the adaptation vectors (ASL, AMV, AGL)
of three movement attributes: the start location, movement vec-
tor, and goal location (see Equations 1-5). By performing a series
of experiments to independently adapt each of these attributes
(Experiments 1 and 2), we were able to directly measure the
corresponding gains (Kg;, Ky, K1), allowing us to determine
the weighting and remapping of movement-vector-based and
goal-location-based motor plans. Interestingly, we found that
these factors accurately characterized the adaptive changes in
motor output for both individual movements (R* = 0.95) and
movement sequences (R* = 0.75), with the latter showing in-
creased weighting of goal location compared to movement vector
but decreased transfer of adaptation of both GL and MV remap-
ping. We then used the coefficients from the attribute-isolating
experiment to parameterize a model that combined remapped
features (the CRF model) to predict how movement sequences
would be affected when multiple attributes are adapted in com-
bination. Remarkably, we found that this model accounted for
nearly 90% of the variance associated with this motor adaptation,
significantly more than a best-fit pure movement vector model
(partial R* = 0.73, p < 0.0001) and a best-fit pure goal location
model (partial R* = 0.76, p < 0.0001). Our results show that
multiple features contribute to the planning of both point-to-
point and compound reaching arm movements, and that a com-
putational model that takes the remapping of multiple features
into account accurately predicts how visuomotor adaptation af-
fects the planning of movement sequences.

Implications for the neurophysiological representation of the

CRF model

As noted in the derivation of Equation 5 from Equation 4, the
CRF model we propose can be expressed in two distinct forms.
Equation 5 expresses the adaptive changes in planning as re-
sponses to changes in the SL, MV, and GL. We take advantage of
this form by directly measuring the adaptive responses to isolated
changes in these three attributes to determine the adaptive gains
(K> Kyys Kir) associated with each in Experiments 1 and 2, and
by directly comparing quantitative predictions based on these
gain estimates to experimental data in which multiple movement
attributes were simultaneously adapted to test the CRF model in
Experiment 3. Equation 4, in contrast, casts the adaptive control
of motor planning in terms of the weighting (W, ) and remap-
ping (Rg. and Ry,) of a goal-location-based plan and a
movement-vector-based plan. If interpreted literally, Equation 4
suggests that the motor system makes multiple plans in parallel
before weighting them against one another to generate motor
output.

Intriguingly, multiple simultaneous neural representations of
motor plans are known to arise during the planning of a goal-
directed arm reaching movement (Kalaska et al., 1997; Desmur-
get et al., 1998; Andersen and Buneo, 2002; Andersen and Cui,
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2009). A likely source for GL-based planning is the parietal cor-
tex, the hub that integrates both somatosensory (Mountcastle,
1957) and visual information (Robinson et al., 1978; Andersen et
al., 1987) for the control of movement (Andersen et al., 1997;
Kalaska et al., 1997; Andersen and Buneo, 2002; Buneo and An-
dersen, 2006; Beurze et al., 2007; Andersen and Cui, 2009). The
parietal reach region encodes the goal location of visually guided
movements primarily in eye-centered coordinates (Batista et al.,
1999; Buneo et al., 2002; Connolly et al., 2003; Pesaran et al.,
2006), whereas parietal cortex area 5 encodes target locations
relative to both eye position and limb configuration (Lacquaniti
et al., 1995; Scott et al., 1997; Buneo et al., 2002). The represen-
tation of target locations and movement vectors in an intrinsic,
limb-based coordinate frame is essential for generating motor
commands and muscle activations, as both GL-based and MV-
based planning ultimately require the transformation of visual
information into limb configuration space. The ventral premotor
area (PMv) is also believed to primarily code target locations
(Graziano etal., 1994); however, the dorsal premotor area (PMd)
primarily codes movement vectors (Scott et al., 1997; Pesaran et
al., 2006), suggesting that MV-based planning may depend on
PMd rather than PMyv. Even in M1, where neural responses are
less related to motor planning and more related to motor execu-
tion, both the position and velocity of ongoing movement (which
relate to GL-based and MV-based planning, respectively) are si-
multaneously encoded (Ashe and Georgopoulos, 1994; Paninski
et al., 2004; Wang et al., 2007). Future work examining how the
neural representations associated with motor planning change
during visuomotor adaptation will give further insight into the
mechanisms underlying the remapping of movement vector and
goal location representations.

Comparison to sequences of eye movements

The adaptive planning of eye movement sequences has been
studied more extensively than arm movement sequences (Frens
and van Opstal, 1994; Wallman and Fuchs, 1998; Tanaka, 2003;
Quaia et al., 2010; Zimmermann et al., 2011), and the neural
mechanisms for the planning and control of eye saccades are
better understood than for arm movements (Robinson, 1964;
Desmurget et al., 1998; Leigh and Zee, 1999). The adaptive con-
trol of saccades is highly complex, with learning that is specific to
both the kinematic and behavioral context (Deubel, 1995, 1999;
Edelman and Goldberg, 2001; Hopp and Fuchs, 2004, 2010; Pé-
lisson et al., 2010). The prevailing theory on the planning of
saccadic eye movements states that locations of visual targets are
specified by a difference vector in the retinotopic reference frame;
this vector is then transformed into a movement vector and then
a specific pattern of muscle activations (Wurtz and Goldberg,
1989; Carpenter, 1991; Mazzoni et al., 1996; Leigh and Zee, 1999;
Quaiaetal.,2010). However, studies examining the adaptive con-
trol of saccade sequences have revealed both MV- and GL-based
remapping (Frens and van Opstal, 1994; Wallman and Fuchs,
1998; Tanaka, 2003; Quaia et al., 2010; Zimmermann et al.,
2011), with different results depending on details of the paradigm
and types of saccade sequences elicited. These results are in line
with the current findings demonstrating the remapping of both
MV and GL during motor adaptation. One study focused on
adaptation of SL (Tanaka, 2003), one on GL adaptation (Zim-
mermann et al., 2011), another compared one condition with GL
adaptation to another condition where GL and MV adapted to-
gether (Frens and van Opstal, 1994), and two others dissociated
GL from MV adaptation (Wallman and Fuchs, 1998; Quaia et al.,
2010). However, none of these studies compared the effects of SL,
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MV, and GL adaptation as in the current study, allowing us to
dissociate the weighting from the remapping of the movement
vectors and goal locations. Thus, even in the two studies that
specifically dissociated adaptation of these features (Wallman
and Fuchs, 1998; Quaia et al., 2010), it is unclear whether the
differences in GL and MV adaptation are due to differences in the
weighting of these two features, the remapping of them, or both.

Remapping of movement vectors or positions?
The current results challenge the conclusions of a previous study
that argued for the existence of movement vector remapping
without goal location remapping during visuomotor learning
(Wangand Sainburg, 2005). Interestingly, the basic methodology
in that study is very similar to the current work (which it in-
spired) in that the effects of visuomotor rotation learning on
untrained test movements were examined in both cases. How-
ever, instead of fully dissociating MV and GL remapping as in our
Attribute-isolating experiments, the experimental design placed
MYV and GL remapping in conflict. Although post-adaptation
movements were not fully aligned with predictions from either
type of remapping, the data were clearly better characterized by
the MV prediction, and the authors concluded that visuomotor
adaptation remaps movement vectors rather than goal locations.
However, the results of Wang and Sainburg (2005) preclude
the possibility of GL remapping in lieu of MV remapping, rather
than ruling out their coexistence. In line with this idea, the AGL-
isolation experiment we perform, with an example illustrated in
Figure 4B, shows that GL-based remapping clearly contributes to
motor planning (p < 0.0001). In fact, the data of Wang and
Sainburg (2005) appear to be well explained in retrospect by the
dual remapping of both movement vectors and goal locations
predicted by the CRF model: the coefficients determined in Ex-
periment 1 for the planning of individual movements indicate a
substantially larger effect of movement vector (68%) than goal
location (17%), thus predicting the data of Wang and Sainburg
(2005) to fall in between the pure MV and pure GL predictions,
but much closer to the MV prediction, which is indeed what they
found.

Multisensory integration during motor planning

In the current study, movement SL was altered by motor adapta-
tion to dissociate GL-based motor plans from MV-based motor
plans and dissect the differential contributions of these two fea-
tures toward movement planning. Several previous studies have
also altered movement start locations, but surreptitiously,
thereby creating a mismatch between proprioceptive and visual
sensory information (Rossetti et al., 1995; Sober and Sabes, 2003,
2005). As in the current results, these studies found that the
change in start location was not fully reflected in the subsequent
movement. Instead, the movement end point invariably fell be-
tween the baseline end point and the end point resulting from the
execution of the baseline movement vector from the altered start
location. However, these studies implicitly assumed that motor
planning was based purely on movement vectors and explained
their results entirely based on a visual-proprioceptive weighting
rather than an MV-GL weighting. Correspondingly, they as-
sumed that the motor system’s estimate of the start location was
the point from which the executed movement vector would have
reached the movement goal. However, this need not be the case.
Our paradigm alters the start location without creating a visual—
proprioceptive mismatch per se, yet results in end point changes
similar to those observed previously. This demonstrates that the
visual-proprioceptive weighting in estimating the start location
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is not entirely responsible for the intermediate end point loca-
tions observed with visual-proprioceptive mismatch, in line with
the idea that motor planning is not purely MV based. Instead, the
results are due, at least in part, to the weighting of MV-based
versus GL-based motor plans.

A number of previous studies have suggested that motor ad-
aptation may differentially affect postural control and trajectory
planning (Lackner and Dizio, 1994; Dizio and Lackner, 1995;
Kurtzer et al., 2005; Ghez et al., 2007; Scheidt and Ghez, 2007;
Simani et al., 2007). For example, Scheidt and Ghez (2007) dem-
onstrated that trajectory planning and postural control are dif-
ferentially affected by adaptation in fast out and back movements
versus slow end point translations. However, some studies have
demonstrated the recalibration of movement control following
postural adaptation (Simani et al., 2007; Cressman and Hen-
riques, 2010), and others have conversely demonstrated the reca-
libration of postural control following movement adaptation
(Simani et al., 2007; Cressman and Henriques, 2009; Izawa and
Shadmehr, 2011; Salomonczyk et al., 2011), suggesting that pos-
tural control and trajectory planning are not entirely distinct. The
current study provides a quantitative framework through which
these results can be understood, since we show that trajectory
control depends on both the weighting of and remapping of GL-
based and MV-based motor planning. If this is the case, trajectory
adaptation would partially affect location-based postural control
and vice versa, in line with what has previously been observed
experimentally (Ghez et al., 2007; Simani et al., 2007; Cressman
and Henriques, 2009, 2010; Izawa and Shadmehr, 2011; Salo-
monczyk et al,, 2011). Moreover, as Experiment 3 included
movement sequences affected by multiple different combina-
tions of trajectory remapping and postural remapping, the ability
of the CRF model to predict nearly 90% of the variance induced
by motor adaptation indicates the capacity of our framework to
quantitatively predict the effects of and interactions between tra-
jectory control and postural control.

Limitations of the current study

Here we demonstrated the ability of a simple three-parameter
model to characterize the generalization of visuomotor adapta-
tion to a range of individual movements and movement se-
quences. In short, the CRF model posits that movement vectors
and locations are remapped independently during visuomotor
adaptation, predicting that motor commands are based on a
weighted average of GL-based plans and MV-based plans. How-
ever, in applying the CRF model to both individual movements
and movement sequences, we implicitly assumed that they were
planned in a similar fashion. Interestingly, the results of Experi-
ments 1 and 2 indicate that the CRF model explains both the
individual movement and movement sequence data remarkably
well (R* = 0.95 and 0.75; Fig. 6D-F ). However, not only were the
values of the model parameters different, but also the quality fit
was worse for movement sequences with 25% of the variance
unexplained versus just 5%, suggesting that the planning of indi-
vidual movements and movement sequences may differ not only
parametrically but structurally.

However, there were differences in the fidelity of the informa-
tion about the starting point for the test movement in the indi-
vidual movement data and the analogous submovement in the
movement sequence. Thus, it is not entirely clear the extent to
which differences between the planning of individual movements
and sequences per se were responsible for the differences we ob-
served in Experiments 1 and 2. Moreover, the CRF model ac-
counted for nearly 90% of the variance in movement sequence
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data in Experiment 3, suggesting that an averaging of MV-based
and GL-based plans is the primary determinant of both individ-
ual movement and movement sequence planning.
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