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On High-Frequency Field Oscillations (�100 Hz) and the
Spectral Leakage of Spiking Activity
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Recent reports converge to the idea that high-frequency oscillations in local field potentials (LFPs) represent multiunit activity. In
particular, the amplitude of LFP activity above 100 Hz— commonly referred to as “high-gamma” or “epsilon” band—was found to
correlate with firing rate. However, other studies suggest the existence of true LFP oscillations at this frequency range that are different
from the well established ripple oscillations. Using multisite recordings of the hippocampus of freely moving rats, we show here that
high-frequency LFP oscillations can represent either the spectral leakage of spiking activity or a genuine rhythm, depending on recording
location. Both spike-leaked, spurious activity and true fast oscillations couple to theta phase; however, the two phenomena can be clearly
distinguished by other key features, such as preferred coupling phase and spectral signatures. Our results argue against the idea that all
high-frequency LFP activity stems from spike contamination and suggest avoiding defining brain rhythms solely based on frequency
range.

Introduction
Over the last 5 years, a growing consensus has emerged that high-
frequency activity (�100 Hz) in local field potentials (LFPs) es-
sentially reflects spiking activity (Ray et al., 2008b; Ray et al.,
2008c; Jia and Kohn, 2011; Ray and Maunsell, 2011; Belluscio et
al., 2012; Buzsáki and Wang, 2012; Buzsáki et al., 2012; see also
Manning et al., 2009). This upper part of the LFP spectrum has
been called “high-gamma” (Canolty et al., 2006; Ray et al.,
2008a; Ray and Maunsell, 2011) or “epsilon” band (Freeman,
2007; Belluscio et al., 2012). Some researchers have stressed
the broadband nature of the power changes associated with
spiking activity (Manning et al., 2009) and advocated avoiding
the term “oscillations” when referring to these phenomena
(Jacobs et al., 2010). The evidence that high-frequency LFP
activity stems from extracellular spikes is several fold: (1) the
power of broadband high-gamma activity correlates well with
firing rate (Ray et al., 2008c; Ray and Maunsell, 2011); (2) local
increases of high-frequency LFP activity are restricted to cor-
tical regions expected to present increased spiking activity
(Miller et al., 2009; Miller, 2010); (3) manually removing ex-
tracellular spikes reduces LFP power in high-frequency bands

(Belluscio et al., 2012); and (4) there are typically prominent
increases of high-frequency band power in time–frequency
decompositions of spike-triggered averages of LFPs (Ray et al.,
2008b; Belluscio et al., 2012; see also supporting figures in
Colgin et al., 2009; Peyrache et al., 2011).

The notion that the upper LFP spectrum may reflect multiunit
activity implies that examining broadband changes in LFP power
could be a proxy for tracking neuronal activity (Manning et al.,
2009; Buzsáki and Wang, 2012; Buzsáki et al., 2012); this is par-
ticularly good news to those interested in brain–machine inter-
faces (Crone et al., 2006; Miller et al., 2009). The purpose of the
present work, however, is to challenge the emerging view of high-
frequency LFP activity as essentially denoting spiking activity.
Recent work of ours has provided evidence for genuine LFP os-
cillations above 100 Hz in the hippocampus and neocortex of
rodents (Tort et al., 2008; Scheffzük et al., 2011; Scheffer-Teixeira
et al., 2012), which we refer to as high-frequency oscillations
(HFO). We have previously shown that HFOs differ from sharp
wave-associated ripple oscillations (Scheffer-Teixeira et al.,
2012), which is to date one of the few well accepted, true oscilla-
tory activities above 100 Hz. Here we use a cross-frequency cou-
pling (CFC) approach (Tort et al., 2010b) to demonstrate that
HFOs can be clearly distinguished from contamination of the
LFP by multiunit activity. Nevertheless, we also show that extra-
cellular spikes can lead to broadband high-frequency LFP activity
as assessed by the same CFC framework. We conclude that LFP
activity above 100 Hz can either denote true neuronal oscillations
or spike “contamination” (or “leakage”). These results argue
against the generalization of fast field activity as mainly reflecting
extracellular action potentials.

Materials and Methods
Data analysis. We analyzed three datasets recorded from the CA1 region
of freely moving rats (see below, Dataset 1, Dataset 2, Dataset 3). All
analyses were performed in MATLAB (MathWorks).
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Phase-amplitude coupling. To estimate phase-
amplitude CFC between two ranges of frequen-
cies of interest, we employed the modulation
index (MI) described in detail elsewhere (Tort
et al., 2008; Tort et al., 2010b). To obtain the
comodulation map, the MI is computed for
multiple frequency band pairs ( fp, fA), and
the values are expressed in a bidimensional
pseudocolor plot in which warm colors denote
the presence of CFC between the phase and the
amplitude of the frequencies depicted in the
x-axis and y-axis, respectively.

Power spectral analyses, filter settings, and in-
stantaneous phase and amplitude. Power spec-
tra were estimated by means of the Welch
method (50% overlapping Hamming windows
with a length of 4 s). LFP signals were filtered
with a least square linear-phase finite impulse
response (FIR) filter using the eegfilt function
from the EEGLAB Toolbox (Delorme and
Makeig, 2004). The Hilbert transform was used
to obtain the instantaneous amplitude and
phase time series.

Triggered LFP averages. LFP averages were
computed using two types of trigger: (1) spike
times of multiunit activity; and (2) the peaks of
high-frequency oscillations. The first one con-
stitutes the standard spike-triggered average,
which was obtained by averaging 500 ms LFP
epochs centered on spike times. The second
approach involves filtering the LFP signal at the
frequency range under study to obtain the
timestamps of peak amplitude within theta cycles. The triggered trace is
obtained by averaging 500 ms LFP epochs centered at these timestamps.

Dataset 1. We analyzed a dataset from György Buzsáki’s Laboratory,
which was downloaded from the Collaborative Research in Computa-
tional Neuroscience data sharing website (http://crcns.org/). The dataset
consisted of recordings from the right dorsal CA1 region of the hip-
pocampus using four- or eight-shank multisite probes (200 �m separa-
tion) implanted in three male Long Evans rats. Each shank had eight
recording sites (160 �m 2 each site; impedance of 1–3 M�; 20 �m sepa-
ration) that spanned the pyramidal layer (Mizuseki et al., 2009). Record-
ings were made while rats explored an open field; signals were amplified
(1000�), bandpass filtered (1 Hz – 5 kHz), and digitized at 20 kHz
(DataMax System, RC Electronics); LFPs were obtained by down-
sampling to 1250 Hz; spike times were obtained semiautomatically after
high-pass filtering wideband signals at 800 Hz (Mizuseki et al., 2009).
Detailed methods are available online at http://crcns.org/.

Dataset 2. We also analyzed CA1 recordings obtained from electrodes
located at multiple CA1 sites, including sites above the pyramidal layer
(Scheffer-Teixeira et al., 2012), in four male Wistar rats freely moving in
an open field. Methodological details were previously described in
Scheffer-Teixeira et al. (2012). Briefly, rats were chronically implanted
with 4 � 8 multielectrode arrays (Teflon-coated tungsten microwires;
diameter, 50 �m; inter-electrode spacing, 300 �m; impedance, 0.3 M�)
targeting the right dorsal hippocampus (centered at: anteroposterior
(AP), � 3.6 mm from bregma; mediolateral (ML), �1.6 mm; dorsoven-
tral (DV), 2.4 mm from the pial surface). Recordings were performed
using a multichannel acquisition processor (Plexon). LFPs were ampli-
fied (1000�), filtered (0.7–300 Hz), and digitized at 1000 Hz. Spikes were
amplified (1000�), filtered (300 – 8000 Hz), and digitized at 40 kHz.
Spike sorting was performed offline using a principal component-based
algorithm (Offline Sorter, Plexon).

Dataset 3. We recorded from a freely moving male Wistar rat im-
planted with a 16-site probe across the left CA1 region (NeuroNexus
Technologies; site area, 703 �m 2; separation, 100 �m; impedance, 1–1.5
M�; location, �3.6 mm AP; �2.5 mm ML). Signals were amplified
(200�), filtered (1–7.5 kHz), and digitized at 25 kHz (RHA2116, Intan
Technologies). LFPs were obtained by downsampling to 2500 Hz. Site

location in the CA1-DG axis was assessed by standard electrophysiolog-
ical signatures (Fig. 3D, left). Current source density (CSD) was obtained
by �A�2B�C for adjacent sites.

We focused our analysis on periods of high theta activity (5–10 Hz) as
identified by inspection of time–frequency analysis of LFP power.

Results
Comodulation maps computed for LFPs recorded from the CA1
pyramidal layer typically exhibited coupling between theta phase
and the amplitude of broadband high-frequency activity above
100 Hz (Fig. 1A). Based on results we show below, we refer to this
type of high-frequency LFP activity as spike-leaked high-frequency
oscillations (SLHFO). The power spectral density (PSD) of LFP re-
cordings exhibiting prominent theta-SLHFO coupling (inferred by
visual inspection of comodulation maps) typically exhibited peaks in
theta and its first harmonic, but no power peaks above 100 Hz (Fig.
1B). Notice therefore that CFC analyses can reveal LFP activity that is
not apparent in standard Fourier-based tools (Tort et al., 2008).
Further analyses showed that SLHFO phase strongly modulates
spike times (Fig. 1C). The unusual high levels of spike-field coupling,
along with the absence of a true oscillatory activity in the PSD level,
suggested to us that SLHFOs may be the remnants of extracellular
action potentials in the LFP. If this is the case, we reasoned that the
theta phase of maximal spiking activity and that of maximal SLHFO
amplitude should match. This is precisely what we found for LFP
recordings exhibiting prominent theta-SLHFO coupling in which
SLHFO amplitude was maximal near the trough of theta wave, co-
inciding with the preferred theta phase of maximal multiunit activity
(Fig. 1D). This result was further confirmed by analyzing LFP aver-
ages triggered by either spike times or the peaks of SLHFO, two
approaches that typically provided quite similar results (a “spikelet”
near the trough of the theta wave; Fig. 1E). Altogether, the results
indicate that the coupling of theta phase and SLHFO amplitude
apparent in the comodulation maps represents coupling between
theta and spiking activity. These observations are consistent with

0 50 100 150 200 250 300−60

−50

−40

−30

−20

−10

P
ow

er
 (d

B
)

Frequency (Hz)

100 150 2000

1

2 x 10−5

P
ow

er

Frequency (Hz)

A
m

pl
itu

de
 F

re
qu

en
cy

 (H
z)

Phase Frequency (Hz)
 

 

5 10 15 20100

150

200

250

300

0

1.2
x 10−3

0

0.07

SL
HF

O 
Am

pli
tud

e

0 360 7200

0.07

Theta Phase (Deg)

Mu
ltiu

nit
 A

cti
vit

y (
%

)

0 90 180 270 360 450 540 630 720
0

1

N
or

m
al

iz
ed

 A
ct

iv
ity

Theta Phase (Deg)

 

SLHFO
Multiunit

50 ms

SLHFO-Triggered Average

Spike-Triggered Average

0 180 360 540 720
0

0.02

0.04

0.06

0.08

0.1

0.12

SLHFO Phase (Deg)

M
ul

tiu
ni

t A
ct

iv
ity

 (%
)

A B C

D E

Mo
du

lat
ion

 In
de

x

Figure 1. Theta phase modulates broadband high-frequency oscillations �100 Hz in the hippocampus, which correspond to
spiking activity. A, Comodulation map. Warm colors denote presence of phase–amplitude coupling (see Materials and Methods
and Tort et al., 2010b for details). B, Power spectral density in dB scale. Notice theta peak and absence of power peaks above 100
Hz. Inset shows power of fast oscillations in absolute scale (mV 2/Hz). C, Multiunit activity as a function of SLHFO phase. D, Left,
mean SLHFO amplitude (top) and multiunit activity (bottom) as a function of theta phase. Right, Normalized SLHFO and multiunit
activity versus theta phase (0, minimal activity; 1, maximal activity). E, LFP averages triggered by SLHFO peaks (top) and spike
times (bottom). Dashed line represents trigger time. The results shown in this figure were obtained from a representative LFP
recorded from CA1 stratum pyramidale in a freely behaving rat during active waking.
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recent findings suggesting that high-frequency LFP activity repre-
sents spike contamination into lower frequencies (see Introduction).

However, we saw a different picture when applying the same
CFC framework to electrodes located above the pyramidal layer,
in CA1 stratum oriens-alveus. The comodulation maps in these
cases revealed coupling between theta and the amplitude of a
different type of high-frequency LFP activity, which was rather
circumscribed between 110 and 160 Hz (Fig. 2A). We refer to this
type of LFP activity as HFO. The PSD of LFPs exhibiting promi-
nent theta–HFO coupling displayed a power peak around 140 Hz
(Fig. 2B); contrary to SLHFO, therefore, this analysis shows that
HFOs are genuine LFP oscillations. HFO phase modulated mul-
tiunit activity, but to a much lower extent than what was found
for SLHFO (compare Fig. 1C and Fig. 2C). To demonstrate that
HFOs are not a byproduct of spectral contamination from spik-
ing activity, it would be sufficient to show that the theta phase of
maximal HFO amplitude differs from that of spikes. Accordingly,
HFO amplitude was maximal at the descending phase of the theta
cycle, considerably preceding the preferred phase of spikes (Fig.
2D). LFP averages confirmed the different phases between max-
imal HFO and spike activity (Fig. 2E). Of note, HFO-triggered
averages exhibited fast oscillations riding on the descending
phase of slower theta oscillations and not a spikelet as in the case
of SLHFO (see Kramer et al., 2008). In all, these observations
show that theta phase modulates genuine LFP oscillations above
100 Hz, which are not artifacts of spike contamination.

HFO and SLHFO are maximally coupled to theta above and at
the pyramidal cell layer, respectively. Interestingly, comodula-
tion maps of LFPs recorded just above the pyramidal layer exhib-
ited both theta-SLHFO and theta-HFO coupling, along with an
HFO peak in the PSD (Fig. 3A). These recordings directly con-
firmed the different theta phases of maximal HFO and SLHFO
amplitude, with the latter coinciding with the units (Fig. 3B,C).
Thus, both genuine and spurious high-frequency LFP activity
above 100 Hz can occur in a same brain region. LFP recordings
from a 16-site probe spanning the CA1-DG axis further con-

firmed HFO and SLHFO peak activity at
the descending theta phase and at the
theta trough, respectively (pyramidal
layer reference; Fig. 3D). SLHFO did not
exhibit any phase reversal across hip-
pocampal layers, and CSD analysis re-
vealed prominent SLHFO sink-source
pairs at stratum pyramidale (Belluscio et
al., 2012). Surprisingly, although HFO
characteristically appear modulated by
theta above the pyramidal layer (Scheffer-
Teixeira et al., 2012), HFO phase reversed
in DG, where CSD indicated the presence
of sink-source pairs (Fig. 3D).

Finally, in Figure 4 we present group
data of the theta phase distribution of SL-
HFO, HFO, and CA1 multiunit activity
(Fig. 4A) and of the preferred theta phase
of peak activity (Fig. 4B). Mean theta
phase of peak activity was statistically dif-
ferent between HFO and both SLHFO and
multiunit activity (*p � 0.0001; Watson–
Williams test, F(2,492) � 523.14), but not
between SLHFO and multiunit activity
(p � 0.49, F(1,363) � 0.48).

Discussion
Here we have used a CFC approach to demonstrate that LFP
activity above 100 Hz can denote either the spectral leakage from
extracellular spikes or the presence of genuine network oscilla-
tions, or even both phenomena simultaneously. In particular,
CFC analyses revealed that the theta phase of maximal multiunit
activity may or may not coincide with that of maximal high-
frequency LFP activity.

Consistent with previous reports (Ray et al., 2008c; Manning
et al., 2009; Jia and Kohn, 2011), we showed that broadband
increases in high-frequency LFP activity, usually called high-
gamma in the human and monkey literature (Canolty et al., 2006;
Ray et al., 2008a; Ray et al., 2008b), can be related to multiunit
activity. In fact, we concluded that coupling between theta phase
and the amplitude of SLHFO that appears in some comodulation
maps essentially reflects coupling between theta oscillations and
spike times. In accordance with this conclusion, using the hip-
pocampal pyramidal layer as reference, peak spiking activity at
the population level occurs near the theta trough (Buzsáki et al.,
1983; Csicsvari et al., 1999), which is the same phase of maximal
SLHFO amplitude (Fig. 1 and Fig. 3). In addition, the comodu-
lation map further corroborated the broadband nature of spike-
leaked activity in the LFP (Fig. 1A), a conclusion previously
reached by standard power spectral analyses (Manning et al.,
2009; Miller, 2010; Ray and Maunsell, 2011). It should be stressed
that we regard as spurious the very high modulation of spiking
activity by SLHFO phase shown in Figure 1C; notice that this
spike–phase coupling is even higher than that found for theta
phase. We interpret SLHFO as “leftovers” (or “scars”) of action
potentials in the field potential; in this sense, as remnants of local
spikes, it is expected that the spike waveforms strongly modulate
their associated spike times.

Apart from the well accepted hippocampal ripple oscillations
(Ylinen et al., 1995), it is currently believed that broadband high-
frequency LFP activity essentially denotes spiking activity (see
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Figure 2. Theta phase modulates genuine high-frequency oscillations �100 Hz in the hippocampus. A, Comodulation map. B,
Power spectral density in dB scale. Notice theta peak and a power peak �140 Hz. Inset shows power of fast oscillations in absolute
scale (mV 2/Hz). C, Multiunit activity as a function of HFO phase. D, Left, Mean HFO amplitude (top) and multiunit activity (bottom)
as a function of theta phase. Right, Normalized HFO and multiunit activity vs theta phase. E, LFP averages triggered by HFO peaks
(top) and spike times (bottom). The results shown in this figure were obtained from a representative LFP recorded from CA1
stratum oriens-alveus in a freely behaving rat during active waking.
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Introduction). Here we challenge this interpretation by showing
another type of genuine high-frequency activity above 100 Hz.
Similar high-frequency oscillations of �140 Hz appear in several
regions of motor circuits under systemic NMDA receptor block-

ade (Hunt et al., 2006; Nicolás et al., 2011), but whether they
correspond to the same HFOs as the ones observed here is un-
clear. The biophysical mechanisms underlying physiological
theta-associated HFO remain to be established (for a review, see
Tort et al., 2013).

The main findings distinguishing genuine LFP oscillations
above 100 Hz (HFO) from spike-leaked activity (SLHFO) were:
(1) the circumscribed nature of HFO in the comodulation maps
as opposed to the broadband activity of SLHFO; (2) the presence
of a clear power peak above 100 Hz in the PSD of LFPs exhibiting
prominent theta-HFO coupling; in contrast, there was no power
peak above 100 Hz in LFP traces exhibiting only theta-SLHFO
coupling; (3) the different theta phases of peak activity, with HFO
and SLHFO having maximal amplitude at the descending phase
and near the theta trough, respectively; (4) the presence of genu-
ine oscillations in the LFP averages triggered by HFO amplitude
peaks, but not when SLHFO activity is used as the trigger; (5)
finally, in contrast to SLHFO, HFO modulation of spiking activ-
ity is considerably smaller (Fig. 2C) and comparable in strength
to that found for other LFP rhythms such as gamma oscillations
(Colgin et al., 2009). Overall, we conclude that theta-associated
HFOs are not caused by contamination of the LFP signal by ex-
tracellular action potentials.

Belluscio et al. (2012) have recently defined “fast gamma”—or
epsilon (�) band—as LFP activity between 90–140 Hz, an overlap-
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ping frequency range with the HFOs studied here. Nevertheless, the
fast gamma oscillations investigated in Belluscio et al. (2012) peaked
near the trough of the theta wave during active waking. Moreover,
they also found a shift in the preferred theta phase of maximal activ-
ity from the awake state to REM sleep, which occurred for both fast
gamma and spiking activity (Belluscio et al., 2012). This contrasts to
the stability of the preferred HFO coupling phase across vigilance
states (after the theta peak in both active waking and REM sleep;
Scheffzük et al., 2011). Finally, Belluscio et al. (2012) found maximal
theta-fast gamma coupling in stratum pyramidale, while hippocam-
pal theta-HFO coupling is maximal in stratum oriens-alveus
(Scheffer-Teixeira et al., 2012). We thus speculate that the fast
gamma oscillations studied in Belluscio et al. (2012) originated from
spike contamination, i.e., they would correspond to SLHFO and not
be a genuine rhythm. Notice therefore that although SLHFO activity
is most prominent at frequencies higher than 150 Hz, it is important
to realize that in the absence of genuine fast oscillations, such as
gamma and HFO, the remnants of spiking activity can leak into
much lower frequencies (down to 50 Hz according to some authors;
Ray and Maunsell, 2011). For example, the HFO-filtered signal of
the LFP examined in Figure 1 also has maximal amplitude at the
same theta phase as the multiunit activity (data not shown). This is
because there is no genuine oscillatory activity in the HFO range in
this case; filtering the LFP at the HFO band (110–160 Hz) still largely
reflects the spectral leakage of spiking activity. Therefore, we con-
clude that there is no exact definition for a frequency range that can
separate genuine from spurious high-frequency LFP oscillations per
se. These observations suggest that whether high-gamma activity in
field potentials reflects a true rhythm or spike contamination should
be examined on a case-by-case basis.

In summary, our results as well as results from other groups
indicate that special attention should be given to possible influences
of extracellular spikes when studying fast oscillations in field poten-
tial. Conversely, recent work conveyed the idea that high-frequency
LFP activity is essentially due to spiking activity (Ray et al., 2008b; Jia
and Kohn, 2011; Ray and Maunsell, 2011; Buzsáki et al., 2012), but
the HFOs constitute a compelling counterexample to this general-
ization. In all, these findings add to others (Kopell et al., 2010; Tort et
al., 2010a) that recommend avoiding defining brain rhythms solely
based on frequency ranges.

Notes
Supplemental material for this article is available at http://www.neuro.
ufrn.br/incerebro/softwares-en.php featuring a MATLAB toolbox for
computing phase–amplitude coupling. This material has not been peer
reviewed.
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Sharp wave-associated high-frequency oscillation (200 Hz) in the in-
tact hippocampus: network and intracellular mechanisms. J Neurosci
15:30 – 46. Medline

1539a • J. Neurosci., January 23, 2013 • 33(4):1535–1539 Scheffer-Teixeira et al. • Genuine versus Spurious HFOs

http://dx.doi.org/10.1523/JNEUROSCI.6051-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20335467
http://dx.doi.org/10.1152/jn.00106.2010
http://www.ncbi.nlm.nih.gov/pubmed/20463205
http://dx.doi.org/10.1016/j.pneurobio.2012.09.002
http://www.ncbi.nlm.nih.gov/pubmed/23022096
http://www.ncbi.nlm.nih.gov/pubmed/7823136

	On High-Frequency Field Oscillations (>100 Hz) and the Spectral Leakage of Spiking Activity
	Introduction
	Materials and Methods
	Results
	Discussion
	Notes
	References


