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Auditory Cortical Local Subnetworks Are Characterized by
Sharply Synchronous Activity

Craig A. Atencio and Christoph E. Schreiner
Coleman Memorial Laboratory, Department of Otolaryngology-HNS, The UCSF Center for Integrative Neuroscience, University of California, San Francisco,
California 94143-0444

In primary auditory cortex (AI), broadly correlated firing has been commonly observed. In contrast, sharply synchronous firing has
rarely been seen and has not been well characterized. Therefore, we examined cat AI local subnetworks using cross-correlation and
spectrotemporal receptive field (STRF) analysis for neighboring neurons. Sharply synchronous firing responses were observed predom-
inantly for neurons separated by �150 �m. This high synchrony was independent of layers and was present between all distinguishable
cell types. The sharpest synchrony was seen in supragranular layers and between regular spiking units. Synchronous spikes conveyed
more stimulus information than nonsynchronous spikes. Neighboring neurons in all layers had similar best frequencies and similar
STRFs, with the highest similarity in supragranular and granular layers. Spectral tuning selectivity and latency were only moderately
conserved in these local, high-synchrony AI subnetworks. Overall, sharp synchrony is a specific characteristic of fine-scale networks
within the AI and local functional processing is well ordered and similar, but not identical, for neighboring neurons of all cell types.

Introduction
Across fields and layers, auditory cortical neurons exhibit corre-
lated activity of low magnitude (cross-correlation coefficients
�0.1) and low temporal precision (correlation widths �15 ms;
Brosch and Schreiner, 1999; Eggermont, 2000; Atencio and
Schreiner, 2010a). Seldom observed, however, are corticocortical
neuron pairs with high synchrony, characterized by tightly coor-
dinated firing (correlation widths �3 ms; Eggermont, 2000).
This is surprising because high discharge synchrony has been
observed in other sensory cortices and primary auditory cortex
(AI) shares many structural and functional similarities with these
systems (Swadlow et al., 1998; Swadlow, 2003; Douglas and Mar-
tin, 2004).

Synchrony is supported by multiple aspects of cortical cir-
cuitry. Sensory cortices are composed of a dense matrix of inter-
connected excitatory and inhibitory neurons (Fino and Yuste,
2011; Packer and Yuste, 2011). Within the matrix, the connectiv-
ity between neighboring neurons appears to be indiscriminate
(Stepanyants et al., 2008), is greatest at short distances (Hol-
mgren et al., 2003; Boucsein et al., 2011; Packer and Yuste, 2011),
and is independent of species (Bannister and Thomson, 2007).

Further, the many classes of connected excitatory and inhibitory
cells allows for a large diversity of connections within a layer
(Thomson and Lamy, 2007; Otsuka and Kawaguchi, 2009). Au-
ditory cortex also contains these connectivity features and might
exhibit high synchrony between local network elements.

Different mechanisms underlying high synchrony have been
proffered. Thalamocortical networks may provide fast feedfor-
ward excitation to layer 4 (Blomquist et al., 2009) and by thalamic
neurons that directly target inhibitory interneurons such as parv-
albumin (PV) interneurons (Thomson and Lamy, 2007). In turn,
PV cells receive fast input from pyramidal cells within the same
layer (Thomson and Lamy, 2007). Through these reciprocal con-
nections, high synchrony could result. In addition, electrical cou-
pling between PV neurons may contribute to synchronous firing
(Galarreta and Hestrin, 1999; Gibson et al., 1999). Therefore, an
analysis of local synchrony needs to consider layer and cell type
identity.

Because synchrony is largely a consequence of both the con-
nectivity between local cortical neurons and the contribution of
tightly aligned common input, it is important to characterize the
functional processing within these local circuits. Receptive fields
in dense local networks may be diverse (Smith and Häusser,
2010). For example, in visual cortex, spatial frequency is not
clearly clustered within local pools of neurons (Molotchnikoff et
al., 2007) and, at least in upper layers of mouse auditory cortex,
tonotopy is present at the macroscale, but seems diminished at
microscales (Bandyopadhyay et al., 2010; Rothschild et al., 2010).
Therefore, at least in rodents, fine-scale networks may contain a
diverse range of receptive field characteristics.

We characterized functional connectivity and receptive fields
of local neighboring neurons in cat AI columns. Constituent neu-
rons of local subnetworks were isolated from a single contact in a
linear multielectrode array. We related the observed synchrony to
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local receptive field diversity and observed high timing precision
that was limited to neurons in close spatial proximity, suggesting
that synchrony may be a sign for enhanced local integration,
encoding fidelity, and the efficient transfer of auditory informa-
tion to synaptic targets.

Materials and Methods
Surgical procedures, stimulation, and recording. All experimental proce-
dures were approved by the University of California–San Francisco
Committee for Animal Research under protocol AN086113– 01B. The
experimental procedures used in this study have been described previ-
ously (Atencio and Schreiner, 2010a, 2010b). Briefly, young female (n �
8) and male (n � 2) adult cats were given an initial dose of ketamine (22
mg/kg) and acepromazine (0.11 mg/kg) and then anesthetized with pen-
tobarbital sodium (Nembutal, 15–30 mg/kg) during the surgical proce-
dure. The animal’s temperature was maintained with a thermostatic
heating pad. Bupivacaine was applied to incisions and pressure points.
Surgery consisted of a tracheotomy, reflection of the soft tissues of the
scalp, craniotomy over AI, and durotomy. After surgery, to maintain an
areflexive state, the animal received a continuous infusion of ketamine/
diazepam (2–5 mg/kg/h ketamine, 0.2– 0.5 mg/kg/h diazepam in lactated
Ringer’s solution).

With the animal inside a sound-shielded anechoic chamber (IAC),
stimuli were delivered via a closed speaker system to the ear contralateral
to the exposed cortex (electrostatic diaphragms; Stax). Extracellular re-
cordings were made using multichannel silicon recording probes pro-
vided by the University of Michigan Center for Neural Communication
Technology. The probes contained 16 linearly spaced recording chan-
nels, with each channel separated by 150 �m. We only used probes with
channel impedances between 2 and 3 M�, because these impedances
allowed us to resolve single units. Probes were carefully positioned or-
thogonally to the cortical surface and lowered to depths between 2300
and 2400 �m using a microdrive (David Kopf Instruments).

Neural traces were band-pass filtered between 0.6 and 6 kHz and re-
corded to disk with a Neuralynx Cheetah A/D system at sampling rates
between 18 and 27 kHz. After each experiment, the traces were sorted
offline with a Bayesian spike-sorting algorithm (Lewicki, 1994, 1998).
Only those events in the traces that exceeded the DC baseline by five root
mean square noise levels were used in the spike-sorting procedure
(termed spike events). Most channels of the probe yielded 1–2 well iso-
lated single units. Bayesian spike sorting allows the proper classification
of spikes even if they overlap with an action potential of another neuron.
When a spike event cannot be assigned to a single unit, an overlap de-
composition procedure is performed. To resolve a possible overlap, the
algorithm uses the single unit waveforms of the neurons on a channel
(n � 2 for a pair). The two waveforms are summed for different temporal
relationships, resulting in a set of summed waveforms. Each sum in the
set corresponds to one temporal relationship. This set is then compared
with the actual overlap event. If there is a significant fit between one of the
waveform sums and the possible overlap, then the spike times of the two
units are recorded. Detailed mathematical explanations of this procedure
have been described previously (Lewicki, 1994). All recording locations
were in AI, as verified through initial multiunit mapping and determined
by the layout of the tonotopic gradient and bandwidth modules on the
crest of the ectosylvian gyrus (Imaizumi and Schreiner, 2007). After spike
sorting, the action potential waveforms were classified using established
methods (Bruno and Simons, 2002; Atencio and Schreiner, 2008). The
duration of each spike waveform was calculated and neurons with spike
durations �0.6 ms were classified as fast-spiking units (FSUs), whereas
those with durations �0.7 ms were classified as regular spiking units
(RSUs). Pairwise analysis was restricted to neurons that were identified
from a single electrode contact and did not appear on neighboring con-
tacts (spacing of contacts: 150 �m); therefore, their spatial separation
was likely �150 �m.

Stimulus. For each recording site, pure tones were presented in a ran-
dom sequence. The amplitudes and frequencies of the tones spanned
0 –70 dB (5 dB steps) and 2.5– 40 kHz (0.1 octave [oct] steps), respec-
tively. All neurons were also probed with a broadband (0.5 – 40 kHz)

dynamic moving ripple (DMR) stimulus (Escabi and Schreiner, 2002;
Atencio et al., 2008). The maximum spectral modulation frequency of
the DMR was 4 cycles/oct, and the maximum temporal modulation fre-
quency was 40 cycles/s (Escabi and Schreiner, 2002). The maximum
modulation depth of the spectrotemporal envelope was 40 dB. Mean
intensity was set at 30 –50 dB above the average pure tone threshold.

Connectivity. To analyze the functional connectivity between neurons,
we followed standard cross-covariance procedures (Rosenberg et al.,
1989; Halliday and Rosenberg, 1999). First, spike trains were obtained by
binning the spike times with 0.5 ms resolution. For a single spike train, A(n),
n is the bin number and A(n) is either 1 (spike) or 0 (no spike). For two spike
trains, A(n) and B(n), the mean intensities, PA and PB, for a sample of dura-
tion D bins, are estimated as PA � NA/D and PB � NB/D, where NA and
NB are the total number of spikes in trains A and B, respectively. For the spike
trains in this study, the stimulus duration was either 15 or 20 min, giving D�
1,800,000 or 2,400,000 bins.

The cross-correlation function, or correlogram, for spike trains A(n)
and B(n) is then estimated as follows:

CAB�m� � �
n�0

D�m

A�n � m� B�n�

From CAB�m�, an unbiased estimate of the second order cross-product
density, PAB�m�, is calculated as follows:

PAB�m� �
CAB�m�

	 � D

where 	 is the bin size of the spike train in milliseconds. The cross-
covariance function, QAB�m�, is then defined as follows:

QAB�m� � PAB�m� � PA � PB

Therefore, the cross-covariance function is a scaled version of the cross-
correlation function with the mean background activity removed. This
allows excitatory and suppressive interactions to be visualized more eas-
ily. Cross-covariance values that are approximately zero represent
chance coincidences between the two spike trains. Deflections from zero
represent how the activity of one neuron influences the firing of the other
neuron. Note that lim

�m�3

QAB(m) � 0. The cross-covariance function

QAB�m� has an asymptotic distribution from which its variance can be
estimated (Halliday and Rosenberg, 1999). Under the assumption of
independent Poisson spike trains, the variance of QAB�m� may be ap-
proximated as follows:

Var�QAB�m�� �
PA � PB

	 � D

Therefore, for two spike trains, upper and lower 99% confidence limits
(CL) for QAB�m� can be set as follows:

CL � � 3 �PA � PB

	 � D � 1/ 2

Only cross-covariance functions with two consecutive bins satisfying the
99% CLs were analyzed in this study. For some neuron pairs, shift pre-
dictors were also estimated (Fig. 1 D, F, gray curves). As noted previously,
shift predictors did not approach the magnitude of cross-covariance
functions, indicating that the observed functional correlation is not
merely due to stimulus synchronization (Atencio and Schreiner, 2010a).

Two quantities were used to estimate the strength and degree of syn-
chrony. To estimate the strength of functional connections, we calculated
a normalized cross-correlation coefficient (CCC; Agmon, 2012). For
each correlogram, CAB, the CCC was defined as follows:

CCC � �CAB(PD� �
NANB

D
]⁄�min�NA, NB� �

NANB

D �
where the peak delay (PD) is the time at which the peak in the correlo-
gram occurs, CAB(PD), is the number of spikes in the correlogram at the
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peak delay, and min�NA, NB� is the number of spikes in the shorter spike
train. This form of the CCC is impervious to firing rate differences be-
tween the spike trains of the two neurons.

Spectrotemporal receptive fields. Data analysis was performed in
MATLAB (MathWorks). For each neuron, the spike-triggered average was
used to estimate the spectrotemporal receptive field (STRF; Escabi and
Schreiner, 2002). STRFs were thresholded so that only significant features
(p � 0.01) were included in the analysis.

Basic parameters: best frequency, spectral tuning, and latency. The best
frequency (BF) was extracted by summing the STRF across time and then
identifying the frequency corresponding to the maximum value. Latency
was obtained in a similar fashion: the STRF was summed across fre-

quency and then the time at which the maximum occurred was calcu-
lated. The bandwidth (BW) of each STRF was obtained by first setting all
negative values in the STRF to zero. Then, the main excitatory subfield
frequency boundaries were estimated as the frequencies at which the
STRF magnitude decreased to 10% of the peak STRF value. Spectral
tuning was then defined as the quality factor ( Q), and calculated as
follows: Q � BF/BW.

Bicellular information analysis. The information transmitted by syn-
chronous, or bicellular, spikes was estimated using receptive field analy-
sis. Bicellular spikes were obtained from the peak in the cross-covariance
function. To identify the spikes in the peak, the half-width (HW) of the
cross-covariance function was estimated, where HW was the width of the
function at half of the peak amplitude. The window that was used to
obtain bicellular spikes extended from 1 HW below the peak delay to 1
HW above the peak delay value (window � [PD � HW, PD � HW]). We
then estimated the STRF for the bicellular spike train, resulting in three
STRFs, one for each neuron in a pair and one for the bicellular spikes.

We then estimated the information conveyed by each STRF using
previous methodologies (Atencio et al., 2008). First, each stimulus seg-
ment, s, that preceded a spike was correlated with the STRF by projecting
it onto the STRF via the inner product z � s � STRF. These projec-
tions form the probability distribution P�z�spike�. We then formed the
prior probability distribution, P(z), by projecting a large number of ran-
domly selected stimulus segments onto the STRF. We next calculated the
mean and SD of P(z), �, and �. P�z�spike� and P(z) were transformed to
units of SD via x � �z � ��/� to obtain the distributions P�z�spike�
and P(x).

The mutual information between projections onto an STRF, v, and
single spikes was computed according to

I�v� � � dxPv� x � spike� log2�Pv�x � spike�

Pv�x� 	
Information was only estimated if there were at least 200 spikes in the bicel-
lular spike train. For the bicellular spikes, all spikes were used. We corrected
for the number of spikes because there were fewer bicellular spikes than
spikes in either of the original spike trains. For each original spike train, a
subset of spikes equal to the number of spikes in the bicellular spike train was
randomly sampled without replacement. Information was estimated for this
subset of spikes. This resampling process was repeated 50 times to obtain a
mean information value for each original STRF.

Each information value was calculated using different fractions of the
dataset for each spike train. To accomplish this, the information values
were calculated over the first 90, 92.5, 95, 97.5, and 100% of the test
dataset. The information calculated from these data fractions was plotted
against the inverse of the data fraction percentage (1/90, 1/92.5, etc.). We
extrapolated the information values to infinite dataset size by fitting a line
to the data and taking the ordinate intersect as the information value for
unlimited data size. Therefore, this procedure resulted in three informa-
tion values: one for the bicellular spikes, and one each for the original
spike trains.

Comparisons between neurons. Throughout this study, we compared
functional processing for each member in a pair of neurons. To provide
a principled way in which to plot the values for each pair, the neuron with
the shortest spike waveform had its value plotted on the abscissa, whereas
the neuron with the longer waveform had its value plotted on the ordi-
nate. For parameter differences, the absolute value of either the differ-
ence or the oct difference was used. The similarity between STRFs was
measured using the Pearson correlation coefficient. For laminar analyses,
layers were defined as described previously: Supragranular (Supra:
0 – 600 �m), Granular (Gran: 700 –1100 �m), and Infragranular (Infra:
1200 –2000 �m; Atencio and Schreiner, 2010b). Population statistics are
presented as mean  SD unless otherwise noted.

Results
Synchronous activity is characterized by time-locked spiking be-
tween neurons. Tightly locked spiking is present when spikes
from one neuron occur in close temporal relationship with the
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Figure 1. Waveform and connectivity analysis of pairs of neurons. A–C, Each column shows
spike waveforms for a pair of recorded neurons. A, Waveforms for the two pairs. B, The sum of
the two waveforms in A. C, The sum of the waveforms in B superimposed on the recorded neural
trace. The estimated spike times for the pairs are shown below by the blue and red bars. D–G,
Example cross-covariance functions. Waveforms for the two constituent neurons are shown in
the plot. Scale bar, 1 ms. The direction of information flow in the cross-covariance function is
shown by the arrow from one waveform to the other. Dashed lines in D–G, 99% confidence
intervals. Solid lines in D, F, shift predictors.

Atencio and Schreiner • Synchronous Subnetworks in AI J. Neurosci., November 20, 2013 • 33(47):18503–18514 • 18505



spikes from another neuron. Outside of this time window, spikes
from the neurons remain essentially uncoordinated. How can we
detect this synchrony in cortex? We examined functional pro-
cessing within fine-scale networks by recording from pairs of
neurons at the same electrode contact location (N � 670). We
used 16-channel recording probes that spanned all layers of AI.
Neuron pairs provide a window into the function of local subnet-
works within AI due to their close geometric proximity. Neurons
in each pair were differentiated using unique features of their
spike waveforms (Fig. 1A–C).

For each pair of neurons, we estimated the functional connec-
tivity through cross-covariance analysis. Previous recordings
showed that the same neuron was not recorded from adjacent
probe recording channels; therefore, the neurons in a pair were
likely within 150 �m of each other (Atencio and Schreiner,
2010a). Analyses of the spike waveform shape allowed us to iden-
tify functional connectivity between different and identical cell
types, such as neurons with a fast, or thin, spike waveform (FSUs)
or neurons with a longer, or regular, spike waveform (RSUs; Fig.
1D,E; spike duration noted below spike waveform). The recep-
tive field properties of FSUs and RSUs were consistent with those
from earlier studies (Atencio and Schreiner, 2008; Wu et al.,
2008). We also found functional connectivity between pairs of
neurons with the same type of waveform (see Fig. 1F,G for
RSUs). In cross-covariance functions, the delay at which the peak
occurs, the PD, indicates the relative timing difference between
the spiking of neurons. It reflects either relative common-input
timing or the flow of information from one neuron to the other.
PDs centered at 0 ms delay indicate that the two neurons fire
simultaneously. For many pairs, the covariance function had PDs
�4 ms, indicating highly synchronous firing. The HW of the
covariance function (width of the function at half the peak am-
plitude) indicates the precision of the synchrony. Broad covari-
ance functions (HWs �15 ms), such as those that we previously
reported between neurons across different layers (Atencio and
Schreiner, 2010a) or those between different cortical fields (Egg-
ermont, 2000), indicate general synchronization, but not very
precisely coordinated firing. For neuron pairs in close spatial
proximity, we found that the majority had half-widths that were
�3 ms, indicating that the synchrony among colocalized neurons
was consistently sharp (Fig. 2D).

On average, the peak in the cross-covariance function occurred
within only a few milliseconds (1.84  2.63 ms; Fig. 2A), indicating
the close temporal proximity of spiking for the average event. Short
PDs can also be found in broad functional connectivity, so syn-
chrony must be further evaluated with respect to the width of the
cross-covariance function. The HWs of the cross-covariance func-
tions were extremely narrow, usually �2 ms (1.64  1.16; Fig. 2D),
indicating that the occurrence of spikes in the two neurons is not
only at close temporal proximity but also has low variance. This
relative coordinated spiking precision is approximately one order of
magnitude better than the HWs for interlaminar correlations (Aten-
cio and Schreiner, 2010a) and for correlations along horizontal iso-
frequency contours (Brosch and Schreiner, 1999). The strength of
the connection, as estimated from the CCC was on average 0.084 
0.126 (Fig. 2G), indicating that�8% of the spikes occur at the timing
given by the peak delay. These CCCs are higher than mean values
previously found for intracortical or interlaminar correlations
(Atencio and Schreiner, 2010a). Therefore, over the population of
neuron pairs, sharp synchrony is present between nearby auditory
cortical neurons.

Is sharp synchrony dependent on cortical layer? To assess this,
we grouped our data into three layers: Supra (n � 50), Gran (n �

202), and Infra (n � 294) as per Atencio and Schreiner (2010b).
We found sharp synchrony in all layers of auditory cortex. Peak
delays were �2 ms in all layers (Fig. 2B), with no statistical dif-
ference between the layers (Supra PD: 2.29  3.87 ms; Gran:
1.76  2.32 ms; Infra: 1.66  2.28 ms; Supra vs Gran: p � 0.46;
Supra vs Infra: p � 0.34; Gran vs Infra: p � 0.92, rank-sum tests;
Fig. 2C). Half-widths were also narrow in each layer (Fig. 2E),
again, with no significant differences between the layers (Supra
HW: 1.46  0.85 ms; Gran: 1.55  0.92 ms; Infra: 1.74  1.31 ms;
Supra vs Gran: p � 0.51; Supra vs Infra: p � 0.43; Gran vs Infra:
p � 0.79, rank-sum tests; Fig. 2F). In each layer, the average HW
was �2 ms. Because the bin widths in the covariance functions
were 0.5 ms, this indicates that submillisecond firing precision is
present across the cortical thickness. Last, the correlation
strength was relatively conserved across layers, with the highest
strengths in supragranular layers (Supra CCC: 0.097  0.110;
Gran: 0.076  0.122; Infra: 0.088  0.133; Supra vs Gran: p �
0.0098; Supra vs Infra: p � 0.0183; Gran vs Infra: p � 0.69,
rank-sum tests; Fig. 2H, I).

Synchrony between cell types
Cortex is composed of various excitatory and inhibitory cell types
(Markram et al., 2004). Earlier reports found that chemical syn-
apses between fast-spiking inhibitory neurons account for their
high and sharp synchrony, as opposed to common input or gap
junctions (Galarreta and Hestrin, 2002; Hu et al., 2011). Is syn-
chrony in AI networks dependent on the cell types that compose
the local pairs of neurons? To answer this question, we deter-
mined whether the spike waveform of a neuron was either from
an RSU or an FSU (Bruno and Simons, 2002). RSUs have longer
waveforms and are putative excitatory pyramidal neurons. FSUs
have shorter spike waveforms and are putative inhibitory basket
or chandelier cells (Kawaguchi and Kubota, 1993, 1997). We an-
alyzed the spike waveforms of each neuron and classified them as
either RSUs or FSUs. Neurons that did not satisfy the require-
ments of either group were not included in cell-type analyses.

We identified three types of pairs: FSU-RSU (n � 116), RSU-
RSU (n � 376), and FSU-FSU (n � 8) and estimated the func-
tional connectivity between pairs that comprised these cell
classes. All three types of neuron pairs showed similarly narrow
cross-covariance functions, with short peak delays between 1 and
3 ms. Specifically, peak delays for FSU-RSU and RSU-RSU cell-
type pairs appeared slightly shorter, although not significantly,
than those for FSU-FSU pairs (FSU-RSU PD: 1.45  2.30 ms;
RSU-RSU: 1.29  1.34 ms; FSU-FSU: 2.88  3.34 ms; FSU-FSU
vs FSU-RSU: p � 0.24; FSU-FSU vs RSU-RSU: p � 0.29; FSU-
RSU vs RSU-RSU: p � 0.29, rank-sum tests; Fig. 2 J,K).

The half-widths of covariance functions were narrow for all
pair types, with most HWs �2 ms (Fig. 2L,M). Of the three
cell-type pairs, RSU-RSU pairs had the narrowest HWs, which
were slightly but significantly narrower than the HWs for FSU-
RSU pairs (FSU-RSU HW: 1.84  1.27 ms; RSU-RSU: 1.60 
1.23 ms; FSU-FSU: 2.30  1.44 ms; FSU-RSU vs RSU-RSU: p �
0.0003; FSU-RSU vs FSU-FSU: p � 0.40; RSU-RSU vs FSU-FSU:
p � 0.065, rank-sum tests; Fig. 2M, inset).

Last, compared with interlaminar and corticocortical correla-
tion strength, CCCs were relatively high for all three cell-type
pairs (FSU-RSU CCC: 0.082  0.095; RSU-RSU: 0.096  0.146;
FSU-FSU: 0.061  0.053; FSU-RSU vs RSU-RSU: p � 0.96; FSU-
RSU vs FSU-FSU: p � 0.59; RSU-RSU vs FSU-FSU: 0.62, rank-
sum tests; Fig. 2N,O; Eggermont, 1992; Atencio and Schreiner,
2010a). Therefore, relatively high and sharp synchrony is present
between all different cell types in auditory cortex. Further, al-
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though FSU-FSU submillisecond syn-
chrony has been reported previously (Hu
et al., 2011), our results show that putative
excitatory cell pairs also exhibit this
precision.

Cell-type specific synchrony did not
vary strongly between cortical layers. Across
layers, the peak delays for RSU-RSU pairs
were highly conserved (p � 0.1, rank-sum
tests; Fig. 2K). The PDs for FSU-RSU pairs
showed more variability, but even in these
cases, the delays were �4 ms (Fig. 2K). The
HWs of the pairs were also conserved across
layers, with HWs �2.5 ms for each type of
pair in each layer (Fig. 2M). HWs were nar-
rower for RSU-RSU pairs than for FSU-
RSU pairs in the Supra and Infra layers and
narrower than FSU-FSU pairs in Gran lay-
ers (Supra FSU-RSU vs RSU-RSU: p �
0.0005; Infra FSU-RSU vs RSU-RSU: p
0.035; Gran FSU-FSU vs RSU-RSU: p �
0.034; all other comparisons: p � 0.05;
rank-sum tests). Finally, the correlation
strength was strongest for RSU-RSU pairs in
supragranular layers, but the differences
were not significant across layers (p � 0.2,
rank-sum tests; Fig. 2O). Likewise, the CCC
for FSU-RSU was similar across layers. Be-
cause the peak delay, half-width, and CCC
of neighboring neurons were similar across
layer, the different cell-type pairs share sim-
ilar synchrony patterns in different parts of
the cortical microcircuit.

STRF similarity for pairs
Does the high synchrony of neighboring
neurons imply that their receptive fields are
similar? We used spike-triggered STRFs to
assess the functional processing properties
of each neuron. The STRF jointly character-
izes the time and frequency stimulus prefer-
ences of a neuron and therefore describes
processing dynamics that may be missed
with purely spectral or temporal measures.
Because the STRF includes joint processing
aspects, it compactly and systematically
describes stimulus selectivity (Atencio
and Schreiner, 2008; Atencio et al.,
2008, 2009).
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Figure 2. Population, laminar, and cell-type synchrony analysis. A, The time at which the peak occurred in cross-covariance
functions (PD) was usually �4 ms, with the majority of peak delays �2 ms. B, PDs were similar in Supra, Gran, and Infra layers. C,
The mean PDs across layers were �2 ms, with the shortest PDs in the Gran and Infra layers. D, HWs of cross-covariance functions

4

were usually �2 ms. E, HW distributions across layers were
similar. F, Mean HWs were consistent across layers, with the
smallest HWs in Supra layers. G, CCC was broadly distributed.
H, Supra pairs of neurons had the highest CCCs. I, Mean CCCs
were highest in Supra and lowest in granular layers. J, Peak
delays for FSU-RSU and RSU-RSU pairs were similar. K, Mean
peak delays across the population and layer for different pairs
of cell types (F-F: FSU-FSU; F-R: FSU-RSU; R-R: RSU-RSU). L,
HWs of cross-covariance functions were small for FSU-RSU and
RSU-RSU pairs. M, Mean HWs. N, CCCs for FSU-RSU and RSU-
RSU pairs were similar. O, Mean correlation strength for the
different pair types. *p � 0.05; **p � 0.01; ***p � 0.001.
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Local pairs of neurons usually had STRFs with moderate to
high similarity (Fig. 3). The main aspects of excitatory (Fig. 3,
red) and inhibitory (blue) portions of the STRFs were usually
congruent, but not necessarily identical. We observed this trend
regardless of spike shape.

We compared the global stimulus preferences of each pair of
neurons by correlating the STRFs (Fig. 4A,B shows two example
comparisons). Across the population, STRF similarity was mod-
erately high (Fig. 4C, black curve; 0.50  0.17). STRF similarity
was high in Supra layers and highest in Gran layers (Supra: 0.53 
0.16; Gran: 0.56  0.17; Infra: 0.43  0.16; Fig. 4C,D). Infra layers
had STRFs with the most divergent STRFs (Supra vs Gran: p �
0.19; Supra vs Infra: p � 0.0002; Gran vs Infra: p � 0.001, rank-
sum tests). The magnitude of the values, however, indicated that
the excitatory and inhibitory subfield structures were correlated
(cf. Fig. 4C,D and A for a similar correlation value). Therefore, at
the smallest spatial scales, nearby neurons have globally similar
STRFs in all layers, with the most similar STRFs in the Gran and
Supra layers.

We also investigated whether high STRF similarities were seen
for cell-type pairs. We found that FSU-FSU pairs had the most
similar STRFs and that FSU-RSU and RSU-RSU pairs had nearly
equivalent distributions (FSU-RSU: 0.51  0.15; RSU-RSU:
0.49  0.18; FSU-FSU: 0.68  0.11; FSU-RSU vs RSU-RSU: p �
0.20; FSU-RSU vs FSU-FSU: p � 0.018; RSU-RSU vs FSU-FSU:
p � 0.01, rank-sum tests; Fig. 4E,F). When we compared STRF
similarity with correlation strength, we found weak trends. STRF
similarity for FSU-RSU and FSU-FSU pairs was not significantly
correlated with correlation strength (FSU-RSU: r � 0.106, p �
0.33; FSU-FSU: r � �0.064, p � 0.8), but RSU-RSU pairs had
STRFs that were slightly more similar as the correlation strength
increased (RSU-RSU: r � 0.196, p � 0.001). We also estimated
STRF similarity by shifting the STRFs so that the peak latencies
were aligned (Chen et al., 2012). STRF similarities with and with-
out this shift were not statistically different (p � 0.25, rank-sum
test), most likely because pairs of neighboring neurons have la-
tencies that differ by only 1–3 ms. Different cell types throughout
local regions of cortex have similar but not identical STRFs.

BF, spectral tuning, and latency across layers
For nearby neurons, how similar are basic receptive field param-
eters? The microarchitecture of AI provides a substrate that is
used to organize basic receptive field parameters. If the most basic
parameters are disorganized, then, despite synchronous activity,
subnetworks are likely to represent these parameters in a disor-
ganized manner. Three basic processing parameters were ob-
tained from the STRF: BF, spectral tuning (Q), and latency.

The parameters were similar for the neurons in a pair. Across
the population of pairs, BF was highly similar (Fig. 5A) across all
frequency ranges, indicating low BF variance at fine scales
throughout AI. BF differences between neurons were minor and
were almost entirely �0.1 oct (0.044  0.097 oct; median 
median absolute deviation [MAD]: 0.020  0.020 oct; Fig. 5D).
These minor differences were recapitulated across the cortical
layers, with pairs in all layers having similar BFs. We observed the
smallest differences in supragranular layers and slightly larger
differences in infragranular layers, but the laminar distributions
were not significantly different (Fig. 5G).

We then examined the frequency selectivity of each neuron,
which is described by spectral tuning (defined as Q; Schreiner,
1991). Spectral tuning displayed modest agreement, indicating
either nonidentical spectral integration or the effective conver-
gence of neurons with similar frequency selectivity within local
subnetworks (Fig. 5B). The tuning differences were usually
within a factor of 1/3 (0.41  0.39 oct; median  MAD: 0.31 
0.21 oct; Fig. 5E). We observed the largest differences for pairs in
infragranular layers, and smaller differences in granular and su-
pragranular layers (Fig. 5H).

Last, the latency of the response, as determined from the peak
in the STRF, was highly similar for pairs (Fig. 5C). Latency dif-
ferences were usually within a few milliseconds (2.25  2.37 ms;
median  MAD: 1.50  1.00 ms; Fig. 5F), with the smallest
differences in granular layers and the largest in infragranular lay-
ers (Fig. 5I). Therefore, within fine-scale AI networks, in all lay-
ers, BF is highly conserved and spectral tuning and latency are
moderately conserved.

BF, spectral tuning, and latency for cell type pairs
Are basic receptive field parameters similar for cell-type pairs?
Having identified FSUs and RSUs, we then compared receptive
field parameters for the different cell type pairs. BFs were highly
correlated for FSU-RSU pairs, as were the BFs for RSU-RSU and
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FSU-FSU pairs (FSU-RSU r � 0.992; p � 0.001; RSU-RSU r �
0.960, p � 0.001; FSU-FSU r � 0.690, p � 0.058, t tests; Fig.
6A,D,G). Spectral tuning was slightly broader for FSUs com-
pared with their RSU partners, whereas it was equally matched
for RSU-RSU and FSU-FSU pairs (FSU-RSU pairs: FSU Q:
2.81  1.31, RSU Q: 3.21  1.45; p � 0.044, t test; Fig. 6B,E,H).
Last, for FSU-RSU pairs, latency was slightly shorter for FSUs.
For the other pair types, latency was similar (FSU-RSU pairs: FSU
latency: 12.83  2.95 ms, RSU latency: 13.71  3.34 ms; p �
0.043, t test; Fig. 6C,F, I). These results provide an internal con-
trol for our data, because earlier reports also noted that FSUs have
broader receptive fields and shorter latencies (Atencio and
Schreiner, 2008; Wu et al., 2008).

Receptive field parameter differences between neurons within
each cell type pair were generally minor. BF difference was small-
est for FSU-RSU pairs (0.04  0.05 oct), and only FSU-FSU pairs

(0.10  0.27 oct) were significantly differ-
ent from FSU-RSU and RSU-RSU pairs
(0.05  0.12 oct). Spectral tuning differ-
ences were largest for FSU-RSU pairs
(0.46  0.45 oct), which is indicative of
the broader tuning that has been observed
for FSUs. Last, STRF peak latencies were
highly similar between the cell-type pairs,
with the smallest differences between
neighboring FSUs (1.38  0.79 ms). To-
gether, these results show that, within lo-
cal subnetworks, BF is highly conserved
regardless of neuron class and, for FSU-
RSU pairs, FSUs have broader spectral
tuning and shorter latencies.

Information gain in local subnetworks
Neighboring neurons exhibit sharp syn-
chrony in auditory cortex. Do synchronous
spikes signal more information about the
stimulus than nonsynchronous spikes? We
addressed this by estimating the informa-
tion that is conveyed by synchronous spikes.
First, we estimated the information con-
veyed by each of the constituent STRFs. We
next obtained a bicellular spike train, which
consisted of the spikes in the peak of the
cross-covariance function. We estimated an
STRF for these synchronous spikes and cal-
culated the information conveyed by the bi-
cellular STRF, as well as the information for
the original STRFs for each neuron in the
pair. All information values were corrected
for the number of spikes, because there were
fewer spikes in the bicellular spike train than
in either of the two constituent spike trains.
To assess potential synchrony-based infor-
mation gains, we compared the maximum
of the information values of the two individ-
ual neurons in a pair with the information
from the bicellular spikes (Fig. 7). Over the
population, the bicellular information was
significantly higher than for the single neu-
ron information (p � 0.001, signed-rank
test; Fig. 7A). This result was recapitulated
across all layers (Supra: p�0.005; Gran: p�
0.001; Infra: p � 0.001, signed-rank tests;

Fig. 7B–D), indicating that the synchronous spikes carried more
information than the spikes that were not synchronized.

The information gain of the synchronized spikes can be esti-
mated using the ratio of the bicellular information compared with
the maximum single neuron information. The information gain for
bicellular spikes was approximately double that of the nonsynchro-
nized spikes (population: 2.4  0.1 bits/spike, mean  SE; Fig. 7E).
The lowest gain was seen in Supra layers and the highest was seen in
Infra layers (Supra: 1.7  0.3; Gran: 2.1  0.2; Infra: 2.5  0.1
bits/spike, mean  SE; Supra vs Infra: p � 0.029; Gran vs Infra: p �
0.018, rank-sum tests; Fig. 7E). Further, information gains were seen
for different cell types, with the highest gains for RSU-RSU pairs
(FSU-RSU: 1.96  0.19; RSU-RSU: 2.54  0.12; FSU-FSU: 1.41 
0.31 bits/spike, mean  SE; FSU-RSU vs RSU-RSU: p � 0.0084,
rank-sum test; Fig. 7F). These pairs had higher gains than FSU-RSU
pairs, but all pairs had gains �1.
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Our results reveal significant property
differences between columnar networks
that are very local (i.e., mostly intralami-
nar) and more global (i.e., interlaminar).
Local, short-distance functional connectiv-
ity (��150 �m) is characterized by sharp
synchrony, higher correlation strengths,
and high receptive field similarity (Fig. 8B–G).
Longer-distance functional connectivity
(��400 �m), by contrast, is less synchro-
nous, has significantly lower correlation
strength, and is related to receptive fields
that are less similar than those within lami-
nae (see Fig. 8B–G for neuron separations
�150 �m). The nearly linear relationship
between cortical distance and peak delay of
the correlated activity (Fig. 8D,E) suggests
an emphasis on global hierarchical process-
ing. Further, the network activity within lo-
cal circuits appears poised to encode and
deliver stimulus information with high fi-
delity, because synchronous spikes carry
nearly twice the information than the spikes
of constituent neurons. These results sug-
gest a special and distinct nature of local
subnetworks within auditory cortex, with
implications for information encoding and
transmission. Sharp synchrony is a funda-
mental aspect of local auditory cortical pro-
cessing and may allow for high-fidelity
encoding and transmission of stimulus in-
formation to subsequent cortical and sub-
cortical sites.

Our results showed that correlation
strength decreases as the vertical distance
between neurons increases (Fig. 8F). A
similar trend has been observed in studies
of horizontal interactions (Boucsein et al.,
2011). This trend is puzzling, because in-
tralaminar connections within a column
may only account for 25% of a neuron’s
potential synapses (Binzegger et al., 2004;
Boucsein et al., 2011); the other 75% orig-
inate from outside the column. Even if
column widths are considered to be 500
�m, the number of synapses originating
outside the column is still �50% (Stepan-
yants et al., 2009). This trend appears to be a
characteristic feature of cortical connectiv-
ity (Hellwig, 2000; Holmgren et al., 2003).

What accounts for the high correlation
strengths between nearby neurons? Any
account must be reconciled with anatomical
constraints. Remarkably, the anatomical
connection probabilities can be modeled
accurately by making relatively few as-
sumptions (Hellwig, 2000; Stepanyants
and Chklovskii, 2005). The first assump-
tion is that local connections are not spe-
cific, apart from geometrical constraints imposed by axons and
dendrites. Second, when an axon and dendrite are in close prox-
imity, they form a synapse. These two considerations produce
accurate models of anatomical connectivity. However, merely

counting synapses may not give a complete picture of the cortical
features that influence local correlation strengths.

Additional characteristics of cortical processing must be con-
sidered to account for the higher correlation strengths of nearby
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neurons. First, local neurons will have a greater probability of
making multiple synaptic contacts with a nearby cell. Second, for
pyramidal cells, these contacts will have their greatest influence
locally, because basal dendrites sample a spherical volume en-
compassing the cell body and basal dendrites contain more den-
dritic area than apical dendrites (Larkman, 1991). Third, the
timing of synaptic inputs from local neurons will show less tem-
poral jitter, because the latencies of local neurons are similar. In
comparison, the timing of inputs from distant neurons will not
be as well coordinated, leading to decreased correlation strength.
Finally, a consequence of the timing of inputs will be that spike-
timing-dependent plasticity may strengthen inputs from nearby
neurons. Together, these considerations may explain the sharp
decline in correlation strength with increasing neuronal distance
(Fig. 8F).

Discussion
Our investigation of relative response timing and receptive field
properties of neurons with close spatial proximity in cat primary
auditory cortex revealed five main principles of local subnetwork
processing: (1) pairwise correlations of neighboring neurons
show short delays and sharp synchrony, indicative of a function-
ally distinct and highly connective subnetwork; (2) cell-type

composition (RSU, FSU) of the local pairs have no apparent
influence on the local synchrony; (3) receptive field properties of
neurons within synchronous subnetworks are highly similar, but
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Information gain (bicellular information/maximum single neuron information). F, Information
gain for cell-type pairs. *p � 0.05; **p � 0.01; ***p � 0.001.
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relative magnitude of each parameter. Circles of different sizes represent significantly different
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the sharpest synchrony, whereas FSU-RSU pairs have the smallest receptive field differences.
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bubble, data from current study) and interlaminar (light gray bubbles; Atencio and Schreiner,
2010a) data. The title of each scatter plot indicates the parameter represented by the bubble.
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not identical in all aspects, indicating that local neurons can per-
form different processing and that joint signaling may provide a
more specific and powerful local network output; (4) local, cell-
type specific synchrony did not vary from layer to layer, but re-
vealed a slightly higher synchrony in supragranular layers, so
sharp synchrony is a general and defining characteristic of local
cortical subcircuits within layers, in contrast to less synchronous
interlaminar processing; and (5) synchronous spikes carry about
twice the stimulus information of nonsynchronous spikes, indi-
cating enhanced information processing compared with nonsyn-
chronized events.

Previous studies in somatosensory cortex have shown that
pairs of inhibitory neurons exhibit sharp firing synchrony (Swad-
low et al., 1998; Hu et al., 2011). Whether they are electrically or
chemically linked, inhibitory neurons fire in close concert in
many sensory systems (Galarreta and Hestrin, 2002). We have
shown that not only is this a feature of neighboring inhibitory
neurons, but it also occurs for neighboring excitatory neurons
and excitatory/inhibitory pairs in auditory cortex.

Synchrony in auditory cortex was characterized by very tight
covariance functions that had peaks at delays �4 ms indicative of
monosynaptic functional connectivity or tight, concerted, com-
mon input. Although we cannot unambiguously determine ana-
tomical connectivity, our results are consistent with findings that
nearby neurons are highly interconnected (Holmgren et al., 2003;
Fino and Yuste, 2011). This strong nearby connectivity was re-
flected in our data in the correlation strength between neurons
with a cross-correlation coefficient that was on average �0.07.
This intralaminar value is higher than the strengths for interlami-
nar correlation (Atencio and Schreiner, 2010a). Further, the cor-
relation strength estimates are necessarily conservative and
therefore have lower bounds due to the difficulties with unam-
biguously identifying action potentials from multiple neurons on
the same electrode channel. Therefore, nearby AI neurons exhibit
intralaminar functional connectivity that is markedly stronger
than correlations between layers.

The synchrony we observed was present in layers 2 to 6 of
auditory cortex and for all cell-type pairs, indicating preserved
local processing principles. Synchrony and receptive field simi-
larity of neighboring neurons was greatest in supragranular and
granular layers and less so in infragranular layers. Therefore, su-
pragranular layers may be capable of the most precise relative
spike timing, enabling a more faithful projection of stimulus
characteristics through their firing patterns. This may be a func-
tional consequence of corticocortical connectivity patterns,
which are dominated by remarkably precise and topographic su-
pragranular projections (Lee and Winer, 2005). In contrast, in-
fragranular pairs showed greater variability in response timing
and receptive field properties but also conveyed the most infor-
mation per synchronous spike. Layers 5 and 6 have the most
heterogeneous connectivity patterns, projecting to cortical as
well as thalamic, midbrain, and brainstem targets (Prieto and
Winer, 1999; Winer and Prieto, 2001). The more diverse syn-
chrony in infragranular layers may be a consequence of this di-
versity in projection targets (Mitani et al., 1985).

The synchrony for RSU-RSU pairs was higher than for the
other cell-type pairs. Previously, it was noted that both electrical
and chemical synapses lead to cortical synchrony between
inhibitory-inhibitory pairs (Galarreta and Hestrin, 2002; Hu et
al., 2011). Our results generalize these findings to other pairs of
cell types that are connected through chemical synapses. There-
fore, in auditory cortex, proximity is the greatest predictor of
synchrony; cell type does not appear to be the main determining

factor. Further, synchrony appears as a consequence of wiring
patterns, with neighboring neurons more likely to be wired to-
gether, consistent with the view that connectivity is determined
by the structure of local circuits and less so by microinfluences
such as the composition of channels in a neuron (Hill et al.,
2012).

Functional processing
Sharply synchronous firing of neighboring neurons was also in-
dicative of similar receptive field properties. BF of neighboring
neurons was highly conserved (	BF �0.1 oct). The smallest BF
differences were in supragranular layers, but overall the mean
layer differences were small. This indicates that in the cat AI
circuit, wiring is prioritized to conserve tonotopy. Other second-
ary parameters, such as spectral tuning and latency, were similar,
but not to the same extent as BF. Consistent with earlier work in
cats and guinea pigs, spectral tuning became less sharp in deeper
layers, indicating broader frequency integration (Volkov and
Galaziuk, 1989; Wallace and Palmer, 2008).

Extrinsic and intrinsic correlation influences
Synchronous firing may be a consequence of extrinsic and intrin-
sic influences. A possible significant extrinsic factor is stimulus
correlations. When the correlations in the stimulus occur at the
same timescale as those in the covariance function, it is difficult to
discern whether functional connectivity is driven by stimulus or
anatomical considerations. The dynamic ripple stimulus that we
used had a maximum temporal modulation rate of 40 Hz, or a
period of 25 ms. Synchronization of firing to the modulations in
the stimulus would be expected to be maximal at the rising phase
of the stimulus (i.e., �6.25 ms at 40 Hz). Because cross-
covariance functions had widths that were often �2 ms, stimulus
correlations were not the main determinant of functional con-
nectivity. Therefore, modulations in the stimulus are not ex-
pected to be the major determinant of functional connectivity.
Furthermore, in this report and previously, we did not find evi-
dence of significant stimulus synchronization when we estimated
shift predictors. Finally, tightly aligned common input may also
contribute functional connectivity, but this input would have to
be more precise than the temporal features of the stimulus. The
functional connectivity in the present study is unlikely to be dom-
inated by stimulus driven influences (Atencio and Schreiner,
2010a).

Fluctuations in local field potentials (LFPs) may also influence
neural spiking. LFP fluctuations occur over large cortical dis-
tances and may influence the joint firing of neurons through
ephaptic coupling (Anastassiou et al., 2011). In ephaptic cou-
pling, spiking probability occurs at specific phases of the LFP.
However, ephaptic coupling is unlikely to cause the sharp syn-
chrony we report. First, the DMR stimulus that we used desyn-
chronizes the thalamocortical circuit (Miller and Schreiner,
2000). Second, ephaptic coupling acts over larger cortical dis-
tances. However, we found that within the same cortical column,
intralaminar synchrony was markedly different from interlami-
nar functional connectivity. Third, ephaptic coupling acts over
multiple milliseconds. However, the synchrony we observed is
based on a subset of spikes that occur with submillisecond preci-
sion. These considerations make it unlikely that ephaptic cou-
pling was a significant causal factor of the observed sharp
synchrony.

Internal and external controls on our correlation analysis sup-
port the conclusion that the functional connectivity is related to
intrinsic circuit properties. First, in a previous study, we esti-
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mated the relationship of the distance between neurons in a col-
umn and the peak delay in cross-covariance functions. Greater
separations are expected to result in longer peak delays because
an increase in synapse number and conduction distance will cor-
respond to an increase in signal travel time. We found that the
relationship between distance and peak delay corresponded to a
propagation time of 0.22 m/s within a column, which was similar
to the propagation time found in slice (0.26  0.05 m/s; Kubota
et al., 1997; Atencio and Schreiner, 2010a). The similarity be-
tween the value that we obtained and the value from an indepen-
dent and completely different preparation indicate that our
cross-covariance functions are capable of capturing significant
aspects of cortical anatomical connectivity. Second, our data and
anatomical considerations reveal similar connection probabili-
ties. We found that 535 of 670 pairs had significant functional
connectivity (connection probability of 0.843). This compares
favorably to estimates of connection probability from anatomical
considerations (0.864; Braitenberg and Schüz, 1998). Therefore,
the functional connectivity that we measured may be a reasonable
reflection of the anatomical connectivity within local AI circuits.

In total, our results show that intralaminar local subnetworks
contain neurons that fire synchronously and these synchronous
spikes convey, on average, significantly more information about
the stimulus than nonsynchronous spikes, which is indicative of
their higher encoding fidelity.
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