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Can Simple Rules Control Development of a Pioneer
Vertebrate Neuronal Network Generating Behavior?
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How do the pioneer networks in the axial core of the vertebrate nervous system first develop? Fundamental to understanding any
full-scale neuronal network is knowledge of the constituent neurons, their properties, synaptic interconnections, and normal activity.
Our novel strategy uses basic developmental rules to generate model networks that retain individual neuron and synapse resolution and
are capable of reproducing correct, whole animal responses. We apply our developmental strategy to young Xenopus tadpoles, whose
brainstem and spinal cord share a core vertebrate plan, but at a tractable complexity. Following detailed anatomical and physiological
measurements to complete a descriptive library of each type of spinal neuron, we build models of their axon growth controlled by simple
chemical gradients and physical barriers. By adding dendrites and allowing probabilistic formation of synaptic connections, we recon-
struct network connectivity among up to 2000 neurons. When the resulting “network” is populated by model neurons and synapses, with
properties based on physiology, it can respond to sensory stimulation by mimicking tadpole swimming behavior. This functioning model
represents the most complete reconstruction of a vertebrate neuronal network that can reproduce the complex, rhythmic behavior of a
whole animal. The findings validate our novel developmental strategy for generating realistic networks with individual neuron- and
synapse-level resolution. We use it to demonstrate how early functional neuronal connectivity and behavior may in life result from simple
developmental “rules,” which lay out a scaffold for the vertebrate CNS without specific neuron-to-neuron recognition.
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Introduction
In vertebrates, molecular mechanisms, like gradients of morpho-
gens, organize dorsoventral (DV) rows of neurons along the de-
veloping nervous system (Helms and Johnson, 2003; Goulding
and Pfaff, 2005; Lewis, 2006). The neurons then grow axons, and
knowledge of the mechanisms allowing axons to navigate is con-
stantly increasing (Dickson, 2002; Chilton, 2006; Zou and Ly-
uksyutova, 2007). However, it is still unclear how neurons build
networks by making synaptic connections (Sperry, 1963; Zipur-

sky and Sanes, 2010). Our aim is to “grow” realistic model net-
works to test whether early network assembly could be controlled
by a basic set of rules. Critically, to validate model networks we
need to show they have the same responses to input as living
networks. This raises a big problem for exploring networks in
higher brain regions because precise inputs and outputs are not
known. In newly hatched larval fish and amphibians, pioneer
networks allow them to respond predictably to touch by swim-
ming (McLean and Fetcho, 2009; Roberts et al., 2010). The pre-
cise input and output are therefore defined and can be used to
validate model networks.

We use hatchling Xenopus tadpoles to explore the first forma-
tion of a working network (Fig. 1A–C; Roberts et al., 2010).
Paired whole-cell recordings have provided detailed evidence on
the different spinal neurons and synaptic interactions in the net-
work generating swimming in response to touch stimuli. This
evidence provides the foundation for using a developmental
model to generate a full-scale functioning locomotor network.
The recordings and previous anatomical network modeling sug-
gested a lack of specificity in synaptic connections (Li et al., 2007).
Connection probability appeared to reflect the dorsoventral dis-
tributions of axons and dendrites (Borisyuk et al., 2008, 2011):
dorsal sensory axons contact dorsal sensory pathway neuron den-
drites, but not ventral motoneuron dendrites. Our hypothesis is
that early axon growth is controlled by simple responses to ba-
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sic features like physical barriers and chemical gradient cues
(Sperry, 1963; Shimozono et al., 2013); axons synapse probabi-
listically with any dendrites they contact without specific neuron
recognition; this is sufficient for networks to form that are able to
function without further refinement.

If the factors controlling network assembly in the early verte-
brate brain are simple, a developmental model using basic rules
should be sufficient to generate the full-scale synaptic connectiv-
ity of the functional network controlling swimming in Xenopus
tadpoles. We therefore use existing (for review, see Roberts et al.,
2010) and new whole-cell recordings to define neuron activity
and obtain anatomical data on the seven neuron types involved.
We then build an axon growth model to reconstruct the swim-
ming network of �1400 neurons in the tadpole hindbrain and
rostral spinal cord. Crucially, we know exactly what sensory ac-
tivity induces tadpole swimming as well as the resulting motor
output. This means we can test the operation of networks gener-
ated by our developmental model by asking if they produce
swimming activity in response to sensory stimuli. We conclude
that simple mechanisms may lay out the first functioning neuro-
nal networks in the vertebrate nervous system.

Materials and Methods
Animals, behavior, physiology and anatomy
Procedures for obtaining hatchling Xenopus laevis (Daudin) tadpoles of
either sex from a captive breeding colony comply with UK Home Office
regulations. All experiments and analysis were approved by the local

ethical committee and were performed on tad-
poles at developmental stage 37/38 (Nieuwk-
oop and Faber, 1956) at 18 –22°C.

Videos of 40 tadpoles were recorded at 300
fps with a Casio Exilim ExF1 camera. Methods
for extracellular skin stimulation, motor nerve
recording, whole-cell electrophysiology, and
dye filling with neurobiotin have been de-
scribed recently (Buhl et al., 2012). Stable
whole-cell recordings were made in 74 animals:
77 descending interneurons (dINs; including
six pairs simultaneously on opposite sides), 22
dorsolateral commissural interneurons (dlcs;
including 11 simultaneously with a dIN), and 3
dorsolateral ascending interneurons (dlas).
Following experiments, neuron anatomy was
revealed using DAB as chromogen and ob-
served using a 100� oil-immersion lens (for
review, see Li et al., 2001). The recorded dlc,
dla, and dIN neurons were identified by com-
parison to published data on their responses to
skin stimulation, activity during swimming,
and anatomy after dye-filling (Li et al., 2003,
2004a, 2006). Chemicals were from Sigma.

To measure the three-dimensional mor-
phology of neurons, neurobiotin-filled neu-
rons in CNS whole mounts (Fig. 1F ) were
viewed at 20� or 40� using a modified Nikon
Optiphot microscope with cool LED illumina-
tion (Cairn) using a DeltaPix DP 200 camera.
Specimens were positioned in three dimen-
sions using a computer-controlled Scientifica
Patchstar manipulator in place of the micro-
scope stage. Using the Patchstar Gridstore soft-
ware, neuron structures were lined up against
cross-hairs and pairs of 3D coordinates were
recorded (resolution 1 �m) defining the diam-
eter of neuron segments, perpendicular to their
long axis. The cross-hairs were also used to de-
fine the positions of the vertical hindbrain–
midbrain border and the horizontal CNS

ventral midline. These “axes” and their intersection provided datum
lines and a CNS framework in which to map neuron positions and fea-
tures. The type of structures and their 3D coordinates were saved to a text
file by Gridstore software. The saved 3D x, y, z coordinate pairs were then
corrected for z-axis distortion by light refraction in glass (1.35�), shrink-
age (1.28�), and straightening of curvature of the ventral midline “axis.”
The x, y, z coordinate pairs were converted to .swc format with a single
coordinate at the midpoint of the pair plus a radius. Transformations
were performed using custom Python and MatLab tools (available on
request). Swc files list x, y, z midpoints and their radii along with connec-
tivity and type, and allow 3D visualization of neurons based on a series of
connected cylindrical segments using Neuromantic (Myatt et al., 2012).
This also allowed the export of images (Fig. 2D–F ). For use in the growth
model (see below), swc coordinate data were converted to 2D as if viewed
laterally, and the dorsoventral projection patterns of dendrites and axons
were defined for each neuron type relative to the ventral midline axis
(Fig. 2 F, G). The new swc neuron mapping data (79 neurons; including 8
dIN fills from recordings made during this study) were combined with
new measurements made from existing drawing tube tracings of individ-
ual neurobiotin or HRP-filled neurons (205 neurons). These new mea-
sures extended and improved the accuracy and detail of our anatomical
library. We measured soma and axon branching positions, axon initial
outgrowth angle and tortuosities, dorsoventral dendrite extents, and
complete primary and secondary axon trajectories and lengths. Calcula-
tions and descriptive statistics were performed in Microsoft Excel and
Minitab. All means are given with their SD.

To define CNS anatomy and the axon growth environment, tadpoles
were anesthetized in 0.1% MS222, fixed in 2.5% glutaraldehyde in 0.1 M

Figure 1. Tadpole behavior, swimming network, and responses to skin stimulation. A, Hatchling tadpole. B, Frames at 13.3 ms
intervals from a 300 fps video show a tadpole viewed from above bending first to the left, then swimming forward when touched
with a hair on the right side (at arrow). C, Simplified swimming network. Circles represent columns of 30 –150 neurons. Synapses
are made onto all neuron types inside each box, including neurons of the same type as the presynaptic neuron (Roberts et al., 2010).
The skin is innervated by touch-sensitive RB neurons which excite sensory pathway dla and dlc neurons. The symmetrical half-
centers of the rhythm generator network have: motoneurons (mn), recurrent inhibitory aINs (Li et al., 2004b), reciprocal inhibitory
cINs, and electrically coupled excitatory dINs. The activation of dIN NMDARs transforms the dINs into pacemakers. D, Diagram
showing the CNS and electrodes (hb, hindbrain; mb, midbrain). E, Right skin stimulus (1) leads to spike in a sensory pathway dlc,
then excitation and firing in a dIN on the left, then firing in motor nerve on the right (mn R). Swimming started on the left. F, Similar
stimulus leads to excitation of dINs on both sides, but the right side dIN and motor nerve fire first as swimming starts. Records in E
and F are to the same scale. a, Ascending; c, commissural; d, descending; dl, dorsolateral; IN, interneuron; L, left; mn, motoneuron;
R, right; RB, Rohon-Beard.
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cacodylate buffer, pH 7.4, at 4°C for 90 min, and transferred to buffer to
make direct measurements of whole-mount CNS dimensions before de-
hydration (n � 4). Three specimens were postfixed in 2% osmium te-
troxide, dehydrated, embedded in Epon 812, sectioned at 2 �m, and
stained with 1% methylene blue. Photographs of sections (Fig. 2A) were
used to measure CNS features using NIH ImageJ software.

Axon growth and synapse formation model
On the basis of our measurements, we open the CNS along its dorsal
midline like a book to produce a two-dimensional growth environment
representing the outer part of the tadpole CNS where the axons grow
(Borisyuk et al., 2011). The axon growth model is described by the fol-
lowing system of three difference equations:

xn�1 � xn � � cos��n�

yn�1 � yn � � sin��n�

�n�1 � �n � gRhR�xn� sin��n� � gVhV�yn� cos��n�

� gDhD�yn� cos��n� � �n, (1)

where (xn, yn) are the variables defining the coordinates of the axon tip
(growth cone) in a two-dimensional field (with a longitudinal x-axis and
the y-axis representing the DV axis on both sides of the CNS) and where
the variable �n is the growth angle. Parameters are as follows: � is the
growth step (1 �m); 	n is a random variable in the range [	
, 
]; gR, gV,
gD are sensitivities to rostral, ventral, and dorsal guidance cues. Guidance
cues hR, hV, hD are given by their “diffusive” rostral, ventral, and dorsal
gradients:

hR�x� � exp���Rx�,

hV�y� � exp���Vy�,

hD�y� � exp���D�y � 100��, (2)

where �R, �V, �D are slopes. All parameters are universal for all neuron
types except for the three gradient sensitivities and random angle fluctu-
ations: ( gR, gV, gD, 
). Values of these four parameters were selected for
each axon type using a stochastic optimization algorithm (“pattern-
search” routine from the Global Optimization Toolbox of MATLAB) to
minimize a cost function. This cost function was given by the weighted
sum of two components: (1) the sum of squared differences of the aver-
aged tortuosities (arc-chord ratios) calculated for the generated and mea-
sured axons, and (2) the dissimilarity (“distance”) between the
dorsoventral distributions of measured and modeled axon projections
(histograms). The distance between histograms of measured and mod-
eled axons is the normalized sum of squared differences between counts
in corresponding bins of the histogram, and this quadratic form is iden-
tical to that used in the � 2 statistic for testing the homogeneity of two
distributions.

The optimization procedure results in parameter estimates that ensure
the value of the cost function is suitably small: in the majority of cases, the

value after optimization is in the range (2–16). To judge the quality of
optimization, we applied two sample t tests to show that differences
between mean tortuosities for real and modeled axons were not signifi-
cant ( p 
 0.05 in all cases). Although the standard statistical tests are not
applicable for estimating the similarity between modeled and experi-
mental histograms of dorsoventral axon distributions (data are not inde-
pendent, being close successive points on the same axon), in the majority
of cases, the values of the � 2-based component of the cost-function lay
below the appropriate critical value for the � 2 statistic (16.92 for 9 df at a
significance level of p � 0.05).

Modeled dendrites were specified by their dorsal and ventral extents,
by adding two-dimensional Gaussian noise (equal SDs of 15 and corre-
lation of 0.8) to pairs of measured values. Dorsoventral projections of
modeled dendrites were binned (10 �m bins) to produce a histogram.
These binned distributions matched those of measured dendrites for
each neuron type (� 2 test: p 
 0.05). Methods have been described
previously for distributing populations of somata for each different neu-
ron type along the CNS, and for allowing the stochastic formation of
en-passant axon-to-dendrite synaptic connections to generate a network
(Li et al., 2007; Borisyuk et al., 2011). The axon growth and synapse
formation model was implemented using custom-written MatLab code.

Conductance-based neuronal network model
To assess each network, we mapped it onto a physiological, conductance-
based, neuronal network model to test whether the connections gener-
ated by the growth model could produce swimming-like motoneuron
activity in response to brief “sensory” stimuli.

Active channels in model dIN neurons. Hindbrain and spinal cord dINs
are central to the Xenopus tadpole swim Central Pattern Generator (Li et
al., 2010; Li, 2011). To construct model dINs with appropriate physio-
logical firing properties, we used NEURON (controlled by a Python
script; Carnevale and Hines, 2006) to build networks with 30 multicom-
partment dINs electrically coupled by gap junctions on their axons.
Membrane potential ( V) evolves according to Equation 3. Channel ki-
netics were based on voltage-clamp data for the currents (Dale, 1995;
Winlove and Roberts, 2012). The sodium (iNa) and potassium currents
(iKf, iKs) were modeled using a Hodgkin–Huxley-type formulation and
the calcium current (iCa) was modeled using the Goldman–Hodgkin–
Katz formulation. The ilk current is due to passive membrane leak con-
ductance and iext is an externally applied current that is only used for
testing the response of neurons to current injections.

Each channel is gated by one or more gating variables. Equation 4
describes the dynamics of an arbitrary gating variable X, where the func-
tions X� ( V) and � ( V) give its steady-state value and characteristic time
constant, respectively (Eq. 5). These functions are dependent on func-
tions 
X ( V) and �V (V), which control the opening and closing of gates
and are written in the form of Equation 6. The values for parameters A, B,
C, D, and E are given in Table 1. [Note that the �-rate equation for
calcium takes one of two sets of parameters depending on the membrane
potential (Dale, 1995).]

Table 1. Channel rate functions for model dIN neurons

Channel Rate function A (ms 	1) B (ms 	1mV 	1) C D (mV) E (mV)

Ca 
m 4.05 0 1.0 	15.32 	13.57
�m (V � 	25 mV) 1.24 0.093 	1.0 10.63 1.0
�m (V 
 	25 mV) 1.28 0 1.0 5.39 12.11

K fast 
n 5.06 0.0666 5.12 	18.396 	25.42
�n 0.505 0 0 28.7 34.6

K slow 
n 0.462 8.204 � 10 	3 4.59 	4.21 	11.97
�n 0.0924 	1.353 � 10 	3 1.615 2.1 � 10 5 3.33 � 10 5

Na 
m 8.67 0 1.0 	1.01 	12.56
�m 3.82 0 1.0 9.01 9.69

h 0.08 0 0.0 38.88 26.0
�h 4.08 0 1.0 	5.09 	10.21

The time constants and steady-state values of each channel’s gates are dependent on membrane potential, according to functions 
(V) and �(V) (see Eqs. 4 and 5). These functions are sigmoidal and their shape is determined by parameters
A, B, C, D, and E.
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C
dV

dt
� i lk � iNa � iKf � iKs � iCa � iext (3)

dX

dt
� �X��V� � X�/X�V� (4)

X��V� � 
X (
X � �X)	1, X�V� � �
X � �X�	1 (5)


X�V�, �X�V� �
A � BV

C � exp�D � V

E � (6)

Parameter sweeps over the channel densities (of lk, Na, Kf, Ks, Ca) were
used to match the responses of the electrically coupled, multicompart-
mental model dINs to those of experimentally recorded dINs. The re-
sponses matched were as follows: single action potential to depolarizing
current; rebound firing after hyperpolarization during depolarization;
rhythmic firing during NMDAR activation (Soffe et al., 2009; Li et al.,
2010). Since variability is introduced into model parameters (see below),
10 neurons were evaluated at each point.

Physiological simulation of the full network. For efficient computational
simulations of the entire network with �1400 neurons, the multicom-
partmental dIN model was simplified to a single compartment. The
forms of the equations remained the same and values for density param-
eters were converted into whole-cell values by assuming a surface area of
1000 �m 2. (This is a round number lying within the range of summed
soma and dendrite surface areas measured for filled neurons: 754 –1594
�m 2; n � 5.) The network model included electrical coupling with a
conductance of 0.2 nS between pairs of dINs within 100 �m of each
other. This gave coupling coefficients of 5–10% that decreased with dis-
tance as in previous experiments (Li et al., 2009). The additional conduc-
tance introduced through gap junctions was compensated for by
reducing the leak conductance to 1.4 nS so dIN input resistance was in
line with experimentally measured values (Sautois et al., 2007). An elec-
trically coupled population of single compartmental model dINs exhib-
ited the same characteristic responses to current injection and simulated
NMDA perfusion as the multicompartmental model dINs.

The other, non-dIN, swim neurons in the tadpole do not have the
specialized firing properties seen in the dINs. Their “typical” repetitively
firing properties were modeled using the equations and parameters of the
model motoneuron described by Sautois et al. (2007). For both the dINs
and non-dINs, a capacitance of 10 pF was used, corresponding to a
density of 1.0 �F/cm 2 on a neuron with a surface area of 1000 �m 2. The
membrane properties for dIN and non-dIN neurons are given in Table 2.

The synapses in the model were implemented as described previously
(Sautois et al., 2007). Glutamatergic synapses were modeled as separate
conductances activated by AMPAR or NMDAR (with voltage depen-
dency), but only dIN-to-dIN synapses activated both these conduc-
tances. Inhibitory glycinergic synapses were given a reversal potential of
	75 mV (Dale, 1995). Following a presynaptic spike, the synaptic open-
ing and closing variables were increased by a step value of 1.25 for gluta-
matergic synapses and 3.0 for glycinergic (changed from Sautois et al.,
2007 to better match physiology). The model also includes two compo-
nents of delay: a fixed synaptic delay (1 ms) and an axonal conduction

delay that depends upon the longitudinal distance between the presyn-
aptic and postsynaptic neurons (0.0035 ms/�m).

Synaptic conductances had values based on paired recordings (Sautois
et al., 2007) with the following exceptions: sensory RB neuron AMPAR
excitation was made stronger (0.6 – 8.0 nS) onto sensory pathway neu-
rons to compensate for their reduced input resistance in our simplified
model; the AMPA conductance of dIN synapses onto inhibitory ascend-
ing interneurons (aINs) was reduced (0.6 – 0.1 nS) so aIN firing during
swimming was restricted to a short period following sensory stimulation
in agreement with experimental data (Li et al., 2004b); the NMDA con-
ductance of dIN-to-dIN synapses was reduced (0.3– 0.15 nS) so the level
of steady depolarization in dINs during swimming matched experimen-
tal measurements more closely (Li et al., 2006).

Our neuron network model was implemented with custom-written C
code. All numerical simulations were performed using the Runge–Kut-
ta–Felberg method from the GNU Scientific Library (version 1.15) with
an adaptive step size (absolute and relative tolerance 10 	5). The maxi-
mum step size was 0.1 ms and spikes were detected after every step by
membrane potential zero crossing. Gaussian noise with a SD equal to a
percentage of the mean value was applied to the capacitance and leak/
channel conductances of all neurons (at 2% of the mean), as well as the
conductances of every individual synapse (at 5% of the mean). This noise
represents the nonhomogeneity of soma sizes and synapse strengths,
respectively. Higher noise levels were tested and found to make no major
qualitative difference to the results of simulations.

The code for all our anatomical and physiological modeling is available
on request from R.Borisyuk@plymouth.ac.uk

Results
The foundations for this study lie in extensive previous work,
first, on the neurons controlling tadpole swimming (Roberts et
al., 2010; Li, 2011) and, second, on modeling of the operation of
the swimming network (Sautois et al., 2007) and its development
(Li et al., 2007; Borisyuk et al., 2008, 2011). Our previous axon
growth model was not based closely on biology but provided a
mathematically simple way to generate the longitudinal compo-
nent of axon trajectories and reproduce the synaptic contact
probabilities found in experiments (Li et al., 2007). We then used
this axon growth model to generate model tadpole networks
which we analyzed anatomically but not physiologically (Bori-
syuk et al., 2008, 2011). The present modeling is based on more
detailed anatomical analysis of a larger set of filled neurons, new
insights into the channel properties of spinal neurons (Winlove
and Roberts, 2012), and the properties and roles of excitatory
reticulospinal dIN neurons (Moult et al., 2013). It also uses a new,
biologically realistic, gradient field-dependent model of axon
growth.

Recordings from tadpole neurons define their properties
and connections
Motor nerve recordings in immobilized tadpoles (Fig. 1D–F)
show that a skin stimulus can initiate motor nerve activity
(43.6  11.5 ms after the stimulus: 155 trials in 31 tadpoles)
matching real swimming behavior in frequency (10 –25 Hz) and
progressing from head to tail (Kahn et al., 1982).

Whole-cell recordings have been used to trace the chain of
events from a skin stimulus to swimming. Overall, the accumu-
lated recordings from 
1500 pairs of dye-filled neurons define
the properties and synaptic connections of seven neuron types
forming a network that allows the tadpole to swim when touched
(Fig. 1C; Soffe et al., 2009; Roberts et al., 2010; Li, 2011; Buhl et al.,
2012). Crucial components of the swim network are the excit-
atory pacemaker dINs, which drive swimming activity. We knew
that these were excited when a few sensory RB neurons were
excited to spike 4.5– 8 ms after local trunk skin stimulation (Soffe,

Table 2. Membrane properties of model neurons

Current dINs Other Neurons

Leak conductance (nS) 1.4 2.47
Leak reversal potential (mV) 	52 	61
Sodium conductance (nS) 240.5 110
Sodium reversal potential (mV) 50 50
Fast potassium conductance (nS) 12 8
Fast potassium reversal potential (mV) 	81.5 	80
Slow potassium conductance (nS) 9.6 1
Slow potassium reversal potential (mV) 	81.5 	80
Calcium permeability (cm 3/s) 0.014 N/A

N/A, Not applicable.
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1991), but the detailed timeline for activation of the dINs by
trunk stimulation was unclear. We therefore made single or
paired whole-cell recordings to define the delays in sensory path-
way and dIN neuron responses following trunk skin stimulation
above the threshold for evoking swimming monitored by motor
nerve recordings (74 tadpoles, with 17 neuron pairs). Sensory
pathway neurons on the stimulated side (dlc and dla; Fig. 1C) fire
shortly after the sensory RB neurons (7.6  1.8 ms after skin
stimulation; 16 neurons). The dINs on each side of the body then
receive excitation (13.6  8.1 ms, 58 neurons). This excitation
leads to dIN firing on one side or the other after 36.5  23.1 ms
(48 neurons), and when this occurs, rhythmic swimming starts
(Fig. 1E,F). In this way we have defined the input and output of
the whole swim network as well as the precise patterns of neuron
activity during swimming (Roberts et al., 2010).

Anatomy of seven brainstem and spinal cord neuron types in
the swim network
Detailed anatomical analysis is required to allow us to model the
growth of each neuron type, the crux of our developmental strat-
egy, and the formation of the swim network in the young tadpole.
The spinal cord has a simple tube-like architecture with a ventral
“floor plate” formed of cuboidal cells and a dorsal “roof plate”
formed by sensory RB neuron somata (Fig. 2A,B). As in all ver-
tebrates, sensory neurons and functions are located dorsally,
while motoneurons and motor functions are more ventral. At
least seven types of spinal and hindbrain neuron are active during
swimming (Li et al., 2001; Roberts et al., 2010). Using 276 single
neuron dye fills from previous and 8 from current whole-cell
recordings, details of their soma positions, dendrite dorsal and
ventral extents, complete axonal trajectories, and branch points
were defined by measuring a sample of each neuron type (Fig.
2C–H; Table 3). Axons were considered to be filled to their ends if
they had a well labeled end-bulb. The characteristics of each neu-
ron type were analyzed to define common patterns and generate
a library of quantitative anatomical measurements. Most neuron
somata lie medial to the marginal zone (MZ) where longitudinal
axons make en-passant synapses with mainly radial dendrites.
Most axons grow ventrally into the MZ before turning to grow
longitudinally on the same side or growing though the floor plate
to reach the opposite side before turning longitudinally (Fig. 2B).

The present data on the DV distribution of axons and den-
drites extends our previous measurements (Li et al., 2007) in both
number and details of measures. These distributions determine
where synapses can form and the broad differences between dif-
ferent neuron types are illustrated here by their median DV po-
sitions (in micrometers relative to the ventral edge of the MZ;
Figs. 2H, 3B,C). Sensory neuron axons lie in the dorsal tract,
which is separated from the MZ by a barrier formed by a super-
ficial row of dorsolateral neuron somata belonging to sensory
pathway dla and dlc neurons (cf. adult dorsal column and dorsal
horn; dl in Fig. 2A,B; Clarke and Roberts, 1984). Sensory path-
way neurons have dendrites distributed in the dorsal MZ and the
dorsal tract (median DV positions: dla, 109.9; dlc, 106.7) where
they can contact sensory axons (Fig. 3C; Li et al., 2003, 2004a).
The axons of all but the sensory neurons lie in the MZ (Fig.
2A,B), and their DV distributions peak in a mid-DV position
(median DV positions: aIN, 45.9; dla, 45.4; dIN, 35.3; dlc, 32.6);
in commissural interneurons (cINs) and motoneurons the peak
is more ventral [median DV positions: cIN, 23.5; mn (motoneu-
ron), 13.3; Fig. 3B]. The dendrites of the nonsensory pathway
neurons have distributions extending through the MZ rather like
the axons, but with aIN and motoneuron dendrites having a

more ventral bias (median DV positions: dIN, 44.8; cIN, 42.7;
mn, 34.8; aIN 31.0; Fig. 3C).

Modeling axon growth for each type of neuron
New anatomical data and their analysis provided the essential
underpinning of an axon growth model. The first requirement
was a two-dimensional growth environment. This consisted of a
rectangular field. It was based on measures from sections of the
hindbrain and rostral spinal cord (Fig. 2A) and was made by
opening the CNS like a book along its dorsal midline for 2000 �m
from the midbrain (Figs. 2B,H, and 3; Li et al., 2007; Borisyuk et
al., 2011). Regions 
2000 �m caudal to the midbrain were not
considered because the narrowing of the spinal cord becomes
significant and we have insufficient data on caudal neuron anat-
omy and physiology. Barriers to axon growth are formed by the
edges of the whole CNS, the floor plate ventrally, a dorsolateral
row of neuronal somata separating the marginal zone from the
sensory dorsal tract (dl in Fig. 2A,B), and the roof plate of sensory
RB somata dorsally. The floor plate is the only barrier routinely
crossed by commissural axons. In addition to the barriers, the
model growth environment was given three axon growth cues: a
rostral-caudal polarity cue, and dorsal and ventral cues repre-
senting diffusive chemical gradients (Sanes et al., 2006), each with
the same exponential form and slope (Fig. 3A). These DV gradi-
ents originate at the dorsal edge of the cord and within the floor
plate, 5 �m from the ventral midline. The barriers, rostrocaudal
(RC) polarity, DV gradients, and overall dimensions define the
growth environment.

The axon growth model uses surprisingly few and simple rules
to match the trajectories of the real axons of each neuron type. In
essence, they are as follows. (1) Axons were assigned an initial
axon position (same as soma position), an outgrowth angle, a
branch distance and a branch angle, and a final length, all based
on generalization from measurements (Table 3; see Materials and
Methods). (2) Axons then extend in 1 �m steps, turn after each
step in response to the three guidance cues (the angle depending
on the modeled sensitivities of the growth cone to each gradient)
with a small random element, and some branch to grow a second
axon once the first has grown. An optimization process was used
to find parameters for guidance cue sensitivities and the degree of
random turning for axons of each neuron type giving the best
match to real axon trajectories. We found that axons of each
neuron type also needed a sequence of different parameter sets at
successive stages of their growth. All axons have an initial orien-
tation to longitudinal growth stage, and a main growth stage;
commissural axons also have a change in their response to gradi-
ents after growing through the floor plate (Moon and Gomez,
2005). After the parameter optimization for each stage, the model
generated sets of realistic axonal trajectories and distributions for
each neuron type, either to the same or the opposite side of the
CNS (Fig. 3B,D).

Modeling the formation of synaptic connections and the
swim network
The axon growth model was then used to produce a map of
connections from axons onto dendrites in the whole swim net-
work. Defined populations of each neuron type (�30 –200) were
distributed along each side of the 2D growth environment based
on available evidence, for example from transcription factor im-
munocytochemistry (Li et al., 2001, 2004b). The axon growth
model then generated the axons of the �1400 neurons in our
2000-�m-long model based on the simple gradients and barriers.
Since understanding of spinal neuron dendrite growth is lacking
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(Cline and Haas, 2008; Katsuki et al., 2011), we assigned a single
straight “dendrite” to each neuron at its soma position with dor-
sal and ventral limits generalized from measurements (Figs. 2B,
3A,C, 4B; Table 3; Li et al., 2007). Where an axon crossed a
dendrite, a synapse was made with a probability of 0.46 in the
marginal zone and 0.63 for sensory connections in the dorsal
tract based on evidence from paired whole-cell recordings (Li et
al., 2007). Each run of this process generated a unique network: a
map and list of all the synapses (range: 81,822–91,045; mean

number 86,655  1412 SD) between all the neurons in the model
network (Fig. 4A; Table 4).

Each network generated by the growth model (we will use this
term as a shorthand for: axon growth and connection probability
model) reflects the particular distribution of neurons, axons, and
dendrites (Fig. 4). Thus, as in life, sensory RB axons in the dorsal
tracts synapse with sensory pathway dlc and dla neurons, the only
neurons with dendrites lying in this tract (Fig. 4C). These sensory
pathway neurons in turn synapse onto the swim neurons like

Figure 2. Xenopus tadpole CNS and neurons in the swim network. A, Transverse section of spinal cord with neuron somata (i.e., white arrow) around the central canal (yellow arrowhead) forming
longitudinal columns (colored spheres on the left). Most axons and dendrites are in the marginal zone (MZ; yellow outline), but dorsolateral (dl) somata at the cord surface separate the MZ from
sensory axons in the dorsal tract (DT). Dorsally, sensory RB neuron somata (e.g., yellow) form the roof plate (green outline). B, Simplified diagram of the spinal cord opened dorsally with caricatures
of each neuron type to show their locations, dendrites (thick lines), and axons (thin lines). Lower side indicates neuron populations and thick lines show how dendrites are simplified for modeling
(Borisyuk at al., 2011). C, Lateral view of a neurobiotin-filled hindbrain dIN with descending (d) and ascending (a) axons. Dashed line is ventral midline. D–F, Lateral views of 3 dINs reconstructed
from 3D swc data files to show the somata, dendrites (red), and first part of axons. D, The position of the most dorsal (dd) and most ventral (vd) dendrite are marked. E, F, The position of the neurons
relative to the ventral midline is shown. G, Axon trajectory of the dIN in F in lateral view with the head to the left. The position of the soma, most dorsal and most ventral dendrite (small arrows), and
points defining the whole axon trajectory (marked here by short vertical lines) were measured relative to a datum line (e.g., black horizontal line). H, Open book 2D diagram of hindbrain-spinal cord
(extending 2000 �m from the midbrain) with plots of soma locations and axon trajectories, for example, dINs (some with ascending axons, *) and dlas, based on measurements of individual filled
neurons. In B–F the head is to the left.
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dINs. Since their long ascending axons accumulate rostrally,
they make more synapses here and fewer caudally (Fig. 4C, dla
and dlc; Wolf et al., 2009). The excitatory dINs (�120 per
side), which drive swimming, make synapses with each other,

with inhibitory cIN and aIN neurons, and with motoneurons.
The reciprocal inhibitory cIN neurons make synapses with all
except sensory RB neurons on the opposite side (for summary
see Fig. 1C; Table 4)

Table 3. Neuron anatomy parameters for axon growth model

Neurons

RB dlc dla aIN cIN HdIN RdIN CdIN mn

Soma
Number per side 68 55 33 60 198 33 43 37 176
DV (�m) 135 123 123 85 (12) 87 (17) 56.2 (16) 70 (17) 71 (15) 11.8 (5.7)

Axons
Prim length (�m) 905 (326) 1071 (434) 2018 (409) 1002 (376) 707 (319) 893 (322) 999 (298) 821 (339) 93 (79)
Sec length (�m) 1227 (568) 525 (344) 487 (396) 563 (400) 464 (159) 189 (98)
Initial angle (°) 180 	81 (23) 	143 (29) 	93 (31) 	86 (23) 	69 (11) 	69 (11) 	69 (11) 	45
Prim tortuosity 1.008 (0.006) 1.017 (0.010) 1.016 (0.017) 1.019 (0.008) 1.009 (0.013) 1.015 (0.008) 1.009 (0.008)
Sec tortuosity 1.015 (0.011) 1.021 (0.017) 1.014 (0.016) 1.056 (0.017) 1.022 (0.014)

Branch
Angle (°) 0 20 (23) 39 (42) 14 (17) 180 180
dist (�m) 1 11 (8) 70 (23) 11 (14) 1 100 (99)

Dendrites
Dorsal extent 120 120 54.1 (11.8) 56.5 (17.8) 70.7 (22.5) 59.0 (12.0) 60.7 (18.8) 56.7 (6.4)
Ventral extent 100 (8.9) 104.8 (8.5) 6.9 (9.3) 26.4 (11.2) 19.0 (17.1) 21.2 (18.2) 31.1 (17.3) 13.3 (3.5)

Measured values are expressed as means (SD). Values in italics were fixed in the model as follows: dorsoventral positions of somata of sensory RB neurons, and sensory pathway dla and dlc neurons so they lay in the strict longitudinal columns
that they form in vivo; some initial and/or branch angles because there is negligible variation in vivo; axon branch positions of RB and HdIN (hindbrain descending interneuron) because all occur at the soma; soma numbers because all are
based on current best estimates (Borisyuk et al., 2011). Prim and Sec are primary and secondary axons. Branch dist is the distance of an axon branch from the soma. Excitatory dINs were subdivided into three populations (Hindbrain, Rostral,
and Caudal) because some features like initial axon outgrowth angle and possession of a secondary ascending axon change with longitudinal position.

Figure 3. The 2D CNS growth environment with modeled axons and match to real axons. A, 2D plan with examples of real measured axons for each neuron type. Circles show positions of somata
and vertical bars show simplified dendrites for 4 neurons (*). The form of the exponential DV gradients is shown at right (dorsal gradient is green, ventral, blue). B, C, Histograms comparing DV
distributions of real (measured, open bars) and model (solid bars) axons and dendrites (10 �m bins show proportions) for aINs, cINs, dINs, and dlas. Note that sensory pathway dla dendrites extend
into dorsal tract. D, Examples of modeled axon trajectories of dINs and dlas (cf. Fig. 2H).
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Can modeled networks produce realistic, whole
animal behavior?
Crucially, we can validate and test the adequacy of each “grown”
network because we know the real network response to skin stim-
ulation is sustained, coordinated swimming. The generated swim
networks were therefore mapped onto a physiological model to
ask if a brief stimulus to some of the sensory neurons innervating
the skin triggers sustained swimming. Neurons in the physiolog-
ical model were single-compartment and, for simplicity, most of
them had the same, typical, Hodgkin–Huxley-type membrane

channels as motoneurons in our previous study (Dale, 1995; Sau-
tois et al., 2007). The model dIN neurons alone were given special
properties based on recent experimental evidence from whole-
cell paired and voltage-clamp recordings and modeling using a
population of electrically coupled multicompartment dINs
(Roberts et al., 2010; Li, 2011; Winlove and Roberts, 2012). The
majority of voltage-gated current is carried through one type of
sodium channel (Na), fast and slow potassium channels (Kf, Ks),
and a high-voltage-activated calcium channel (Ca). After tests in
the multicompartment model, the channel properties and weak

Figure 4. Features of a network generated by the growth model. A, Fragment of the growth environment with longitudinal axons and some commissural axons crossing the floor plate (thin lines
with ends at *), dendrites at the longitudinal position of the neuron soma (thick vertical bars), and circular synapses. The location of the fragment is shown by the black rectangle in the inset of the
growth environment. B, Map of cIN dendrites (blue) in part of one side showing dIN synapses (dots). C, Longitudinal distribution of synapse numbers (per 100 �m of CNS) for major connections from
sensory RB neurons, via interneurons to motoneurons (Fig. 1C).

Table 4. Average number of synaptic connections between model neurons of different types

Presynaptic neuron

Postsynaptic neuron

RB dla dlc aIN cIN dIN mn

RB 0 1968 (53) 3386 (75) 0 0 43 (22) 0
dla 0 1 (1) 6 (3) 1017 (40) 1861 (65) 1467 (57) 1650 (83)
dlc 0 0 0 1783 (86) 2555 (147) 1886 (122) 4268 (159)
aIN 0 5 (4) 19 (8) 2264 (90) 3911 (179) 2887 (128) 4319 (179)
cIN 0 0 3 (3) 5007 (153) 6894 (334) 5084 (281) 12197 (337)
dIN 0 1 (2) 22 (8) 3491 (99) 6040 (232) 4093 (179) 7334 (211)
mn 0 0 0 218 (26) 219 (29) 169 (25) 586 (50)

The first row shows the numbers of connections from RB sensory neurons to neurons of all types (RB, dla, dlc, etc.). Averages and SDs (in parentheses) are calculated using 500 connection architectures generated by the growth model.
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electrical coupling were mapped onto single-compartment dINs
in a network model. Injecting current into a single dIN showed
that the new model neurons responded with single spikes but
could show postinhibitory rebound firing as seen in experiments
(Fig. 5A,B; Li et al., 2006). However, we could also show that the
electrically coupled population of dINs would show rhythmic
pacemaker-like firing in the swimming frequency range during
the slow activation of an NMDA conductance (Fig. 5C; Li et al.,
2010). In the swimming networks we build, rhythmic firing is
based on feedback glutamate excitation activating NMDA and
AMPA receptors. It depends on voltage-gated Na�, Ca 2�, and
fast and slow K� channels and postinhibitory rebound firing. We
used three types of conductance-based synapses: glutamatergic
AMPA and NMDA, and glycinergic. Synaptic time course and
strengths were based on evidence from paired recordings (Dale,
1995; Sautois et al., 2007) with only minor adjustments to con-
nections strengths which are defined in Materials and Methods.

When a network was mapped onto a physiological model in-
corporating the special dIN properties, a single spike in two sen-
sory RB neurons (modeling touch to the skin) initiated the
alternating motoneuron firing we define as “swimming” (Fig.
6A–C). Stimulation made sensory neurons (yellow/black) fire
and recruited sensory pathway neurons (pink and red). These
amplified the sensory excitation and distributed it to both sides.
Swimming started first reliably on the nonstimulated side, pro-
vided that sensory pathway neuron synapses were asymmetric
and dlc neurons made stronger synapses on that side (Zhao et al.,
1998). Alternating swimming activity occurred reliably in most
networks tested (99 of 100 tests), often preceded by several cycles
of synchronous left-right firing at double the swimming fre-
quency (82 of 99 tests; range 1–7 cycles, the mode is 1 cycle). The
swimming frequency (17.8  0.55 Hz) was within the normal
range (10 –25 Hz) and left/right motoneuron activity was strictly
alternating (phase 0.5  0.01, n � 99) as in the immobilized
tadpole (Kahn et al., 1982). If sensory pathway dla neurons pro-
jecting to the stimulated side made stronger synapses, motoneu-
ron activity started on the stimulated side (Fig. 6D; 12 of 12), but

there was little effect on average swimming frequency (18.2  0.4
Hz). Without such asymmetry the network still swam reliably (11
of 12 tests) with an average frequency 18.1  0.5 Hz, but swim-
ming was preceded by more synchronous motoneuron activity
on both sides of the body after stimulation (11 of 12 tests; range
2–7 cycles, the mode is 7 cycles). Head-to-tail progression of
motoneuron activity was not clear in the model. However, it was
also not found in the rostral 2 mm in vivo and only becomes clear
over longer regions of the spinal cord (Tunstall and Roberts,
1991). The importance of the pacemaker properties of dINs was
emphasized by the observation that if dINs were given the same
properties as other neurons, a reflex occurred, but rhythmic
swimming failed (0 of 12; Fig. 6E). In vivo, the initiation pathway
is probably more complex because the delay to the first motoneu-
ron spike is longer (43.6  11.5 ms vs 19.6  0.5 ms in the model)
and can be on either side (50:50 in 155 trials in 31 tadpoles).
Synchrony following stimulation is rare in vivo. However, these
results show that complex model networks built by generalizing
from small biological datasets and assembled following remark-
ably simple rules can produce reliable coordinated motor activity
like swimming. The patterns of activity shown by each type of
neuron are also similar to those seen in whole-cell recordings
(Figs. 1E,F, 6B).

Experiments to find the essential features of model
network assembly
The physiological model was then used to test the effect of easing
anatomical constraints on network self-assembly. Swimming re-
mained reliable but became faster (23.2 Hz  0.6, n � 12) when
synapse formation probability was increased to 1 from 0.46 and
0.63. Swimming was still reliable when synapse probability was
reduced by 12% (12 of 12). After a 25% reduction, most networks
swam (9 of 12), whereas the rest showed rhythmic activity on one
side of the body only. Scaling the probability down by 25% again
(yielding a 44% reduction from the original value) eliminated
swimming in all networks (0 of 12). We then tested whether the
details of the axon or dendrite distributions of the neurons active
during swimming (dIN, cIN, aIN, mn) in the marginal zone were
significant for swimming. Swimming was still reliable when these
neurons were all given the same axon DV distributions as sensory
pathway dlas (at 16.2  0.5 Hz; 12 of 12), or the dendrite DV
distributions of inhibitory cINs (at 17.9  1.0 Hz; 12 of 12; Fig.
7A). The next test was to make all CPG neuron dendrites span the
whole dorsoventral extent of the marginal zone so they could be
contacted by all axons except those of sensory neurons. This test
effectively discards all the details of the axon trajectories and
dendritic arborizations of each neuron type. Remarkably, these
networks produced reliable swimming provided that synapse for-
mation probability for CPG neurons was reduced (to 0.25) so
that total synapse number was conserved (swimming at 13.9 
0.3 Hz; 12 of 12; Fig. 7B,C).

If the detailed DV positions of axons and dendrites are not
critical to swimming network function, we can extend our model
to more caudal regions of the spinal cord where anatomical data
are scant. We therefore extended the model from 2000 to 3500
�m so it had 1980 neurons. Stimulation produced swimming as
previously shown (at 17.5  0.4 Hz; 12 of 12; Fig. 7D,E) but a
head-to-tail delay of 4.4 ms mm	1 was now clear between the
earliest motoneuron spikes (at �1000 �m) and the latest (at
�2500 �m). This is within the range of 2–5 ms mm	1 found
experimentally (Tunstall and Roberts, 1991).

The final test was to make the dendrites of all CPG neurons in
the 2000 �m network reach into the dorsal tract so they could be

Figure 5. Responses to current injection and NMDAR activation in an electrically coupled
population of 30 single-compartment model dINs. A, Injection of depolarizing current into one
dIN leads to a single spike and spread of current to depolarize nearby neurons. B, If negative
current is injected during the same depolarization shown in A (to imitate reciprocal inhibitory
IPSPs), the dIN fires a single spike on rebound (Soffe et al., 2009). C, Maintained activation of
sufficient NMDARs in all dINs leads to depolarization and rhythmic pacemaker-like firing like
that in dINs perfused with NMDA (Li et al., 2010). The paler traces show responses in 9 neigh-
boring coupled neurons which are displaced vertically so they can be seen.
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contacted and excited by sensory RB axons. Sensory stimulation
now led to short-latency firing in all types of neurons on the
stimulated side, which was never seen in recordings. Swimming
always followed (at 19.1  0.5 Hz; 12 of 12) but was preceded by
more synchrony (mean 3.8 cycles) than in the control case.

Discussion
We show that it is possible to use a model of neuronal develop-
ment to generate the large-scale anatomical pattern of neurons,
axons, and synaptic connections forming the core of the verte-

brate nervous system. This also leads to the conclusion that the
first functional networks in the vertebrate brainstem and spinal
cord may develop using surprisingly simple rules. This suggests
that complex and large networks can assemble where connec-
tions are made without recognition of “correct” target neurons.
Axons may only need to distinguish dendrites from glia and ax-
ons. They can then synapse with any dendrite they contact (with
a certain probability) so long as they grow into an appropriate
region and in a broad direction along the nervous system (toward
the head or tail; on the same or the opposite side). This important

Figure 6. Responses of the network model. Two sensory RB neurons on the right are stimulated (2) to fire a single action potential. Color codes are shown in inset in B. Each panel shows the
activity generated by a single-network model. Sensory and sensory pathway neurons fire first on the right side, then activity of other neurons alternates on left and right. A, Dots show RC position
and spike times of all active neurons in the network versus time. B, Voltage traces from selected neurons in A, with a simple diagram of the swim network. C, Example in which 3 cycles of synchronous
motoneuron activity (shaded) precede swimming. D, When sensory pathway dla synapses are stronger, motoneuron swimming starts on the right side. E, When all neurons (including dINs) have
the properties of motoneurons, voltage traces show there is reflex firing on the left side but no swimming. In A, C, and D, the vertical axis shows longitudinal RC position of neurons in micrometers
from the midbrain.

Roberts et al. • Building a Pioneer Neuronal Network J. Neurosci., January 8, 2014 • 34(2):608 – 621 • 617



finding has implications for the longstanding debate on how neu-
ronal connections are made (Sperry, 1963; Zipursky and Sanes,
2010). First, the circuits in developing larval vertebrates are not
simply the precursors of more complex networks that only be-
come effective once their connectivity has been refined by addi-

tional developmental processes like detailed recognition. They
have to function immediately in their own right. As soon as they
hatch, fish and frog larvae need to swim to avoid predation, so the
networks controlling their first behavior have to work properly.
Second, if the formation of spinal circuits relies on simple pro-

Figure 7. Experiments on the network model. Following a stimulus (2), swimming occurs (A) if all marginal zone axons have the same dorsoventral distributions as sensory pathway dlas, (B,
C) CPG neuron dendrites are extended so they are contacted by all marginal zone axons, but synapse formation probability is reduced to 0.25. C shows spike times in all neurons and voltage traces
from a subset. D, Longer model (as in B) shows clear head-to-tail delay in motoneuron spike firing (red lines). Earliest spikes are at �1100 �m (dotted line). E, Head-to-tail delay in motoneuron
spikes (E right andF left sides; error bars are SDs). Regression line from 1100 �m gives a mean delay of 4.4 ms mm 	1; from 6 swimming cycles in 12 networks.
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cesses, then there is hope for regeneration of spinal circuitry after
injury if injected precursor cells only require some simple guid-
ance to navigate the injured environment and integrate into ex-
isting circuitry (Bonner et al., 2011; Tuszynski and Steward,
2012).

Simple structural features may be critical for network forma-
tion. In the adult spinal cord, sensory axons enter the dorsal horn
and dorsal column and are separated from more ventral neurons
organizing action. This fundamental segregation of sensory and
motor functions is also a feature of the developing frog spinal
cord but has received little previous attention. The superficial
somata of sensory pathway neurons (in a position corresponding
to the adult dorsal horn) separate skin sensory axons in the dorsal
tract (Nordlander, 1984, 1987; in a position corresponding to the
spinal dorsal column) from the more ventral axons and dendrites
of the other neurons. The consequence of this barrier is that
sensory axons only make synapses with sensory pathway neu-
rons, because these are the only neurons with dendrites in the
dorsal tract. While this segregation of sensory functions is impor-
tant, our manipulations of model dendrite lengths show that de-
tailed specification of the dorsoventral distribution of axons and
dendrite lengths in our models may actually not be necessary for
swimming (Fig. 7B,C). However, the broad pattern of longitudi-
nal neuron distributions, axon projections (ipsilateral or con-
tralateral, ascending and/or descending), and axon lengths are
important because they determine the distribution of synapses
along the body (Wolf et al., 2009). Our modeling points to these
basic features and transmitter phenotypes controlled by tran-
scription factor expression (Lewis, 2006) being necessary in the
neuron specification process which can lead to early network
formation.

Our study establishes that simple axon guidance mechanisms
may be sufficient for the assembly of networks producing the first
behavior of developing vertebrates. In fact, the real mechanisms
directing axon growth may not be the ones we have used to gen-
erate our functional networks (Forbes et al., 2012). In a number
of systems there is detailed information on the mechanisms guid-
ing growing axons to their target areas (Dickson, 2002; Chilton,
2006; Zou and Lyuksyutova, 2007; Kastanenka and Landmesser,
2010) and the role of morphogen gradients in this process (Arber,
2012). To allow highly specific synaptic connections, the initial
broad mapping of axons is often refined by other mechanisms,
sometimes dependent on the timing of neuron spiking activity
(Kastanenka and Landmesser, 2010). These processes lead to re-
markable examples of precision axon-mapping like retinal gan-
glion cell projections to the brain (McLaughlin and O’Leary,
2005), motoneurons to specific limb muscles, and muscle stretch
receptor afferents to motoneurons (Pecho-Vrieseling et al.,
2009). For simplicity, we chose chemical gradients as classic de-
velopmental cues (Sperry, 1963) and allowed each neuron to
grow its axons independently. This is not what happens in life,
where neurons differentiate in a defined dorsoventral and head-
to-tail sequence (Lewis, 2006; Chédotal and Richards, 2010). As a
result, the axons of more precocious neurons can be followed by
fasciculation of those that develop later. The lack of precision in
axon trajectories implied by our modeling still leaves many de-
tails to be explained, as is apparent from the list of parameters we
needed to assign: initial outgrowth angle, orientation to longitu-
dinal growth, distance to axon branching and its angle, axon
length (Table 1). With the exception of axon length, control of all
these variables occurs physically quite close to the soma. Does this
suggest that later control of axon growth is minimal? Is dendrite
growth controlled precisely or could it be a simple response to the

presence of axons ready to make synapses (Cline and Haas, 2008;
Arikkath, 2012)? Details of the real processes now need to be
investigated experimentally in the light of our results.

Is there a role for subtlety and complexity when the first func-
tioning networks develop in the vertebrate brain? Even in early
larval swimming networks there is evidence that homeostatic
mechanisms regulate synaptic strengths (Borodinsky et al.,
2004), switches occur in the mechanisms controlling axon
growth (Moon and Gomez, 2005), the order of neuron differen-
tiation may affect recruitment during swimming (Koyama et al.,
2011), and detailed physiological properties of neurons are
critical for swimming (Li, 2011). It is highly likely that refine-
ment of connections occurs later in development, as in most
systems studied (Sanes et al., 2006), but our results suggest
that it is not required for early network function. Specific
target recognition may not be necessary until limbs and eyes
develop. If simple rules lay out the first scaffold of axons and
connections in the vertebrate hindbrain and spinal cord, then
the first steps in the construction of networks in other brain
regions, even the cerebral cortex (Hill et al., 2012), could be
based on similar principles.

What is the significance of this study for understanding of
neuronal rhythm generation networks? When the tadpole CNS
network was mapped onto a physiological network model where
the main excitatory neurons have pacemaker properties, swim-
ming motor output was a remarkably stable response to sensory
stimulation. This is what a very young animal may need to survive
(at this stage of development, the hatchling tadpole does not
appear to have a fast C-start response). The stability almost cer-
tainly results from the incorporation of recently described
switchable pacemaker properties into models of the dINs which
drive swimming (Li et al., 2010). The dINs in the hindbrain may
be homologues of reticulospinal neurons in adults. Neurons with
related pacemaker properties have been found in many central
pattern generators underlying rhythmic activity, where they act
in concert with network-based rhythm generation mechanisms
(Marder et al., 2005; Huss et al., 2008; Feldman et al., 2013; Moult
et al., 2013). In the tadpole, many issues still remain. What is the
cellular basis of dIN pacemaker properties? Why does network
activity start at shorter latencies in the model networks than in the
tadpole? Is there any biological sense in the periods of synchro-
nous activity on both sides of the body (Fig. 6C,D) which are also
seen in physiological recordings and other models of reciprocally
inhibitory networks (Wang and Rinzel, 1992)?

In conclusion, this study has used novel methods to recreate a
significant part of the connectivity of the brainstem and spinal
cord of a whole vertebrate by generalization from relatively small
anatomical datasets defining the features of the main constituent
neuron types. Such data, critically including axon trajectories, are
far from ideal or complete but are just not available for other
animals beyond Caenorhabditis elegans (White et al., 1986), and
even here, gaps need to be filled by extrapolation (Haspel and
O’Donovan, 2011). Using a simple growth model, we have been
able to exploit limited data to generate a biologically realistic
baseline network for a significant part of the newly hatched Xe-
nopus tadpole CNS. The details of the distribution of the �90,000
synapses between �1400 neurons (Table 3; Fig. 4) are now avail-
able for experimental and anatomical testing, and we have al-
ready begun to ask what is necessary to ensure proper network
function (Fig. 7). In the tadpole we have been able to combine
generated networks with detailed physiological data to define the
structure and function of a network driving behavior. This pro-
cess gives insights into the formation as well as the tolerance to
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variability and operation principles of such networks. It is only
possible because we have detailed information on the neuron
types, their anatomy, properties, and synaptic connections. Such
details are gradually emerging for the related networks in other
vertebrates (Fetcho and McLean, 2010) including mammals
(Goulding and Pfaff, 2005; Grillner and Jessell, 2009).
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