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Systems/Circuits

Roles of ON Cone Bipolar Cell Subtypes in Temporal Coding
in the Mouse Retina

Tomomi Ichinose,>* Bozena Fyk-Kolodziej,? and Jesse Cohn!
'Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, and Departments of 2Anatomy
and Cell Biology, and *Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan 48201

In the visual system, diverse image processing starts with bipolar cells, which are the second-order neurons of the retina. Thirteen
subtypes of bipolar cells have been identified, which are thought to encode different features of image signaling and to initiate distinct
signal-processing streams. Although morphologically identified, the functional roles of each bipolar cell subtype in visual signal encoding
are not fully understood. Here, we investigated how ON cone bipolar cells of the mouse retina encode diverse temporal image signaling.
We recorded bipolar cell voltage changes in response to two different input functions: sinusoidal light and step light stimuli. Temporal
tuning in ON cone bipolar cells was diverse and occurred in a subtype-dependent manner. Subtypes 5s and 8 exhibited low-pass filtering
property in response to a sinusoidal light stimulus, and responded with sustained fashion to step-light stimulation. Conversely, subtypes
5f, 6, 7, and XBC exhibited bandpass filtering property in response to sinusoidal light stimuli, and responded transiently to step-light
stimuli. In particular, subtypes 7 and XBC were high-temporal tuning cells. We recorded responses in different ways to further examine
the underlying mechanisms of temporal tuning. Current injection evoked low-pass filtering, whereas light responses in voltage-clamp
mode produced bandpass filtering in all ON bipolar cells. These findings suggest that cone photoreceptor inputs shape bandpass filtering
in bipolar cells, whereas intrinsic properties of bipolar cells shape low-pass filtering. Together, our results demonstrate that ON bipolar
cells encode diverse temporal image signaling in a subtype-dependent manner to initiate temporal visual information-processing

pathways.
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Introduction

The retina is the gateway to the visual system. Images are captured
by photoreceptors, and then bipolar and ganglion cells encode
distinct features of image signaling by forming selective neural
streams. Retinal neurons in many species comprise numerous
subtypes: >10 subtypes of bipolar cells (Boycott and Wissle,
1991; Euler and Wiissle, 1995; Wu et al., 2000; Ghosh et al., 2004;
MacNeil et al., 2004; Pignatelli and Strettoi, 2004); 15 subtypes of
ganglion cells (Sun et al., 2002a,b; Dacey et al., 2003); and numer-
ous subtypes of amacrine cells (Masland, 2001). Multiple sub-
types of retinal neurons are thought to encode distinct features of
visual signaling, such as motion and color, and these subtypes
form multiple neural pathways (Masland, 2001; Wiissle, 2004).
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Visual signaling pathways have been studied for decades. X
and Y ganglion cells were characterized as the origins of two
separate visual signaling pathways; they respond linearly and
nonlinearly to sinusoidal light stimuli and in a sustained and
transient fashion to step-pulse light stimuli, respectively (Enroth-
Cugell and Robson, 1966; Cleland et al., 1971). This transient and
sustained dichotomy is observed throughout the visual system,
from retinal bipolar cells to striate cortical cells (Cleland et al.,
1971; Tkeda and Wright, 1974; Awatramani and Slaughter, 2000).
Psychophysical experiments further characterized the functions
of the two distinct neural pathways: parvocellular (sustained)
pathways for encoding color and shape, and magnocellular (tran-
sient) pathways for encoding motion (Livingstone and Hubel,
1987, 1988). These two visual pathways are representative of par-
allel processing pathways; however, it is not fully understood how
this dichotomy corresponds to multiple retinal neuron subtypes.

Technical difficulties have prevented the investigation of bi-
polar cell physiological functions in the mammalian retina be-
cause bipolar cells are small and are not easily accessible (Sterling
and Smith, 2004). We have overcome these difficulties by using
improved techniques and methods, so as to maintain cells in
excellent condition. The retinal preparation was maintained in a
cold and oxygenated solution throughout the dissection, and
Ames’s medium was used during recordings. Also, relatively
small-tip pipettes (~10 M{()) were used to stabilize optimal re-
cording conditions. Furthermore, we used neurobiotin injection
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and calretinin [or choline acetyltransferase (ChAT)] immuno-
staining to verify the subtype of each recorded bipolar cell.

We characterized temporal aspects of visual signaling in six
subtypes of ON cone bipolar cells in the mouse retina using two
input functions: step-light and sinusoidal light stimuli. We found
that different subtypes of ON cone bipolar cells tune to distinct
temporal visual inputs. Subtypes 7, 5f, and XBC ON bipolar cells
were sensitive to changing stimuli, whereas subtypes 5s and 8 ON
bipolar cells were sensitive to static objects. Subtype 6 was in
between these two groups. We also recorded sinusoidal responses
with distinct methods to elucidate possible underlying mecha-
nisms for these differences. Collectively, our results indicate that
temporal processing begins in ON bipolar cells in a subtype-
dependent manner.

Materials and Methods

Retinal preparation. Animal protocols were approved by the Washington
University School of Medicine Animal Studies Committee and the Insti-
tutional Animal Care and Use Committee of Wayne State University.
The experimental techniques were similar to those described previously
(Ichinose and Lukasiewicz, 2012). Mice (28—60 d old; male, C57BL/6]
strain; The Jackson Laboratory) were dark adapted overnight, and were
killed using carbon dioxide and pneumothorax. An eye was placed in the
cooled, oxygenated dissecting solution (see Solution and drugs, below) in
a 10 cm plastic dish. Using a dissecting microscope, the cornea and the
lens were quickly removed to make the eye cup, which was incubated
with hyaluronidase (0.5 mg/ml; Sigma) for 15 min to digest vitreous
matter. The vitreous was also gently removed with an extra-fine forceps
after enzyme application. Then, the retina was isolated, placed on a piece
of filter membrane (HABGO01300, Millipore), and cut into slice prepara-
tions (250 wm thickness) using a hand-made chopper. Slices used for
recording were from the dorsal part of the retina. Retinal dissection and
physiological recording procedures were performed in dark-adapted
conditions under infrared illumination. The dissection medium was
cooled and continuously oxygenated. The retinal preparations were
stored in an oxygenated dark box at room temperature until physiolog-
ical recordings were performed.

Patch-clamp recording. Whole-cell patch recordings and perforated
patch-clamp with amphotericin B (0.3 mg/ml, Sigma) were made from
bipolar cell somas in retinal slices by viewing them with an upright mi-
croscope (Slicescope Pro 2000) equipped with a CCD camera (Retiga-
2000R, Q Imaging). Light-evoked EPSPs (L-EPSPs) or light-evoked
EPSCs (L-EPSCs) were recorded at the resting membrane potential and
at —60 mV, respectively. If the resting potential was above —40 mV, the
cell was not used for further analysis. All recordings were made at 30°C
except for a few bipolar cells used in temperature effect experiments.
Liquid junction potentials were corrected after each recording. Elec-
trodes were pulled from borosilicate glass (1B150F-4, World Precision
Instruments) with a P1000 Micropipette Puller (Sutter Instruments) and
had resistances of 7-11 M{). Clampex and Multi Clamp 700B (Molecular
Devices) were used to generate waveforms, acquire data, and control
LED light stimuli (CoolLED). The data were digitized and stored with a
personal computer using Axon Digidata 1440A (Molecular Devices).
Responses were filtered at 2 kHz with the four-pole Bessel filter on the
Multiclamp 700B (Molecular Devices) and were sampled at 2—5 kHz.

Solution and drugs. Retinal dissections were performed in HEPES-
buffered extracellular Ringer’s solution containing the following (in
mM): 137 NaCl, 2.5KCl, 2.5 CaCl,, 1.0 MgCl,, 10 HEPES, and 28 glucose,
adjusted to pH 7.4 with NaOH. Physiological recordings were performed
in Ames’ medium buffered with NaHCO; (294 mOsm; Sigma). Ames’
medium was continuously bubbled with 95% O, and 5% CO,, and the
pH was 7.4 at 30°C. The intracellular solution contained the following (in
mMm): 111 K-gluconate, 1.0 CaCl,, 10 HEPES, 1.1 EGTA, 10 NaCl, 1.0
MgCl,, 5 ATP-Mg, and 1.0 GTP-Na, adjusted to pH 7.2 with KOH (269
mOsm). Sulforhodamine B (0.005%; Sigma) and neurobiotin (0.5%;
Vector Laboratories) were also added for visualizing bipolar cell axon
terminals (Fig. 1; see details below).
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Figure 1. ON cone bipolar cell subtypes were identified by immunohistochemistry after
physiological recordings. The IPLs were marked using immunolabeling with calretinin or ChAT
antibody. 4, Subtype 5s ON bipolar cells (neurobiotin, green) identified with ChAT (blue) im-
munolabeling. B, Subtype 5f ON bipolar cell. The axon terminal was significantly wider than
those of subtype 5s (p << 0.01,n = 7 for subtype 5s, n = 9 for subtype 5f). C, An XBC cell with
significantly wider axon terminals was noted next to the inner ChAT band (blue). D, Subtype 6
ON bipolar cell. E, Subtype 6 cells (green) were colabeled with Syt2 (red); ChAT bands (blue). F,
Subtype 7 ON bipolar cell. G, Subtype 8 cell labeled with sulforhodamine B, which was identified
immediately after physiological recordings. Scale bars, 10 m.

A mixture of inhibitory receptor antagonists including the glycine
receptor antagonist strychnine (1 uMm, Sigma), the GABA, receptor an-
tagonist (-)-bicuculline methobromide (50 um; Axxora), and the GABA
receptor antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic
acid hydrate (TPMPA, 50 um) were continuously bath applied during all
whole-cell recordings.

Light stimulation. Light stimuli were generated using a CoolLED pE-2
system that was controlled with Clampex software. Either 500 or 360 nm
LED light was projected to the slice preparation through a 60X objective
lens. The diameter of the light was adjusted to 100 wm, which is slightly
larger than the size of the receptive field center of a bipolar cell (Berntson
and Taylor, 2000; Borghuis et al., 2013). The spot light illuminated pho-
toreceptors in the vicinity of recording bipolar cells. L-EPSPs and
L-EPSCs were evoked in bipolar cells. Initially, step L-EPSPs were re-
corded in the dark-adapted conditions. If sizable L-EPSPs were observed,
the preparations were adapted to continuous background light at the rod
photoreceptor saturated level of 4.35 X 10* photons/um /s for at least 5
min until the amplitude of light-adapted L-EPSPs stabilized. A step light
(30% Weber contrast, 1 s) and a sinusoidal light composed of various
frequencies (0.3—20 Hz, 30% Weber contrast) were projected sequen-
tially on top of the background illumination (Fig. 2). L-EPSPs in rod
bipolar cells were evoked in response to a step light of 10* photons/
wm?/s for 1 s in dark-adapted conditions. Sinusoidal patterns were cre-
ated and customized using MatLab (MathWorks). For some ON bipolar
cells, all frequencies of sinusoidal patterns were combined and applied at
the same time (Fig. 2E). This pattern was made by adding eight sinusoidal
waves of 0.15, 0.6, 1, 2.5, 6,9, 15, and 21 Hz.
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Figure 2.  Experimental protocol for step-pulse stimulation and sinusoidal light stimuli. 4, The retinal preparation was light
adapted at the level of rod saturation (Materials and Methods). A step-pulse light stimulation at 30% contrast was applied every
60s. Time course of a step-pulse (bottom) and sample L-EPSP trace (top). B, At the same adaptation level, sinusoidal light stimuli
0f 0.3, 1,3, 6,10,and 20 Hz were presented sequentially. C, A sample trace of 6 Hz light stimuli. D, A sample trace of 20 Hz light
stimuli. E, A combination of sinusoidal light stimuli (0.15, 0.6, 1,2.5, 6,9, 15, and 21 Hz; bottom trace) and the response in an ON
bipolar cell (top). FFT analysis revealed the temporal frequencies of sinusoidal stimuli (bottom) and voltage responses (top). The
voltage responses evoked in this method were similar to the responses elicited by individual sinusoidal light stimuli.
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on the IPL/ganglion cell layer. Axon terminal
ramification width was measured, and the ratio
against the IPL thickness was calculated.

Data analysis. For step-pulse light-evoked
L-EPSPs, the amplitudes (in millivolts) of the
transient and sustained components at 0.8—1.0
s were measured using Clampfit software (Mo-
lecular Devices). The transient-sustained ratio
was calculated as 1 — (sustained amplitude)/
(transient amplitude). The ratio is close to 1.0
for a transient response, and 0.0 for a sus-
tained cell. The offset response was also mea-
sured at the negative peak after step-pulse
stimulation relative to the sustained compo-
nent of L-EPSPs.

For sinusoidal responses, Clampfit and Mat-
Lab were used to measure amplitude (in milli-
volts) by FFT analysis. Fundamental and
multiple harmonics amplitudes were added to
achieve accurate amplitude measurements. Si-
nusoidal responses were analyzed when re-
sponses were stabilized for each frequency,
usually after a few cycles (Fig. 2). The trough-
to-trough amplitudes of L-EPSPs and L-EPSCs
were normalized to the maximum responses in
each cell, and converted to the decibel scale.
For each cell, the response was plotted as a
function of sinusoidal frequency (0.3-20 Hz).
Cutoff responses were —3 dB of the maximal
response, where the energy has fallen to half of
its peak. If the L-EPSP amplitude attenuated
>3 dB only at higher frequencies, it was cate-
gorized as a low-pass filter. If the L-EPSP am-
plitude attenuated >3 dB both at lower and
higher frequencies from its peak, it was cate-
gorized as a bandpass filter. The filter prop-
erty was determined only at measured
sinusoidal frequencies from 0.3 to 20 Hz.
The bandwidth was measured as the fre-
quency 3 dB down points. For cells that ex-
hibited properties near to low-pass filtering,
the cutoff frequency was measured by ex-
trapolating the frequency-response curves.
The unit of bandwidth (BW) is an octave,

Morphological identification. A fluorescent dye, sulforhodamine B
(0.005%; Sigma), was included in the pipette solution for all recordings
to identify bipolar cell subtypes. Neurobiotin (0.5%; Vector Laborato-
ries) was also included in the pipette to allow the detailed analysis of
bipolar cell axon terminals. Immediately after electrophysiological re-
cordings, sulforhodamine B images were captured using the CCD cam-
era in the live retinal preparation. Then, the slice preparation was fixed
with 4% paraformaldehyde for 30 min, incubated with streptavidin-
conjugated Alexa Fluor 488 (1:200; Life Technologies) and anti-
calretinin antibody (1:2000; EMD Millipore) overnight at 4°C, and then
incubated with the secondary antibody for calretinin staining (anti-
mouse Alexa Fluor 568, Life Technologies) for 2 h at room temperature.
The slice preparation was carefully placed on a slide glass, which was
sealed with an anti-fade reagent (ProLong Gold, Life Technologies) and
a coverslip. The preparation was viewed with a confocal microscope
(FV-1000, Olympus; or TCS SP2 or SP8, Leica). The bipolar cell subtype
was determined by characterization of axon terminal ramification pat-
terns in the inner plexiform layer (IPL; Ghosh et al., 2004; Wissle et al.,
2009). For some slices, we used anti-ChAT (1:200; Millipore) in place of
calretinin. Also, for some cells, synaptotagmin 2B (Syt2B; 1:200; Zirc)
was used to identify subtype 6 ON bipolar cells (Wissle et al., 2009).

The IPL depth was the ratio of the distances from the inner nuclear
layer (INL)/IPL border to the object and to the IPL thickness. The IPL
depth was 0% if the object was on the INL/IPL border, and 100% if it was

which is calculated as BW = Log, (f/f,),

where f; is the lower cutoff and f, is the higher
cutoff. The bandpass-filtering nature was determined by bandwidth and
the “peak frequency” of sinusoidal stimuli, which evokes the maximum
amplitude of L-EPSPs for an ON bipolar cell. Values are presented as the
mean = SEM, and differences were considered significant at p < 0.05.
Two-tailed, Student’s t tests were used to determine whether L-EPSPs
were significant between ON bipolar cell subtypes.

Results

ON bipolar subtype determination

Around 13 subtypes of bipolar cells in the mouse retina have been
characterized by morphological studies (Ghosh et al., 2004; Pig-
natelli and Strettoi, 2004; Helmstaedter et al., 2013). However, it
is not well understood to what extent each subtype plays a specific
role in encoding distinct images. Before characterizing the tem-
poral tuning of each ON bipolar cell subtype, we carefully cate-
gorized the subtypes of the recorded bipolar cells by referring to
the study by Wissle et al. (2009). ON bipolar cell subtypes in the
mouse retina have been characterized mainly by their axon ter-
minal ramification patterns in the IPL (Ghosh et al., 2004; Pig-
natelli and Strettoi, 2004). We blindly performed patch-clamp
recordings from ON bipolar cells in C57BL/6] mouse retinal slice
preparations, injected sulforhodamine B and neurobiotin through
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the pipettes during physiological recordings, fixed the retinal prep-
aration after recordings, and determined subtypes using an immu-
nohistochemical method (Ghosh et al., 2004).

Bipolar cell axon terminals were clearly visualized by sul-
forhodamine B and neurobiotin injections (Fig. 1). We con-
firmed that neither sulforhodamine B nor neurobiotin injection
during the physiological experiments affected the light responses.
We recorded step light-evoked L-EPSPs in rod bipolar cells in
dark-adapted retinas in the following three conditions: perfo-
rated patch-clamp; whole-cell recordings with sulforhodamine;
and whole-cell recordings with both sulforhodamine and neuro-
biotin. L-EPSPs in response to step-pulse were 6.95 = 1.7 mV
(n = 4, perforated patch), 8.75 = 2.7 mV (n = 3, sulforhod-
amine), and 8.3 = 1.0 mV (n = 5, sulforhodamine and neuro-
biotin); and no differences were found among the groups (p >
0.1 in any combination, unpaired t test). Together, these data
indicate that neither sulforhodamine nor neurobiotin affected
light responses in bipolar cells.

Calretinin labels three discrete bands in the IPL. The outer and
inner bands colocalize with ChAT and the mid-band divides sub-
laminae a and b (OFF and ON, respectively) IPLs in the mouse
retina (Haverkamp and Wissle, 2000). In our data, the IPL
depths of the calretinin bands were 23.9 = 0.8%, 40.1 % 0.7%,
and 56.1 £ 1% (n = 19; Fig. 1), which are consistent with previ-
ous reports (Ghosh et al., 2004). We also confirmed that the
upper and the lower calretinin bands colocalized with ChAT
bands (data not shown). Neurobiotin labeling was not always
successfully attributable to weak staining or slice-handling failure
after fixation. When neurobiotin labeling was unsuccessful, we
determined the ON bipolar cell subtype by analyzing sulfor-
hodamine-labeled terminal images in comparison with other bi-
polar cells labeled both with sulforhodamine and neurobiotin
(Fig. 1G). Sulforhodamine staining was 100% successful, while
neurobiotin labeling was successful 56% of the time (24 0of 43 ON
cone bipolar cells with successful light response recordings). The
IPL depth and axon terminal pattern were consistent in each
subtype. All ON bipolar cells that depolarized at the onset of light
stimuli ramified in the inner IPL (40-100%). No bipolar cells
ramified in both the ON and OFF sublaminae.

Axon terminals of subtype 5 cells ramified between mid-
calretinin band and inner calretinin band (ChAT band; n = 19;
Fig. 1A—C). Some branches extended on top of the ChAT band
(Fig. 1A); however, they never reached out to the inner IPL. The
axon terminal widths varied from narrow field (0.19) to wide
field (1.07), with an average IPL thickness 0f 0.59 = 0.07. A recent
article from Helmstaedter et al. (2013) reported XBC as a separate
subset from subtype 5 cells. We found similar cells with wide-
field axon terminals immediately next to the outer side of the
ChAT band (n = 5; Fig. 1C). We analyzed XBCs separately
throughout this study. All other subtype 5 cells ramified in the
two calretinin bands, and the overall shape of the axon terminals
was umbrella or triangular (Fig. 1A, B). After we analyzed phys-
iological results, we found that two groups of subtype 5 cells with
either narrow-field (Fig. 1A) or wider-field axon terminals (Fig.
1B) responded to sinusoidal light differently (described in detail
below).

The ramification pattern of subtype 6 ON bipolar cells was
easily distinguished from the other subtypes. The axon terminal
structure was triangle shaped, and ramified on the both outer and
inner sides of the ChAT band from sublaminae 3-5, which was
consistent with Syt2 immunolabeling (Fig. 1D, E; Wissle et al.,
2009). The axon terminals were narrow field in the IPL with a
width of 0.44 = 0.1 of IPL thickness (n = 6). Axon terminals
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reached the ganglion cell layer in some cases (Fig. 1D), whereas
the terminals of other cells ramified near the ChAT band (Fig. 1E).

Subtype 7 axon terminals ramified in parallel to the ChAT
band, which was similar to the subtype 5 terminal ramification
pattern. Subtype 5 cells ramified in the outer part of the ChAT
band (S3). In contrast, all subtype 7 terminals started branching
out after they crossed the ChAT band (n = 8; Fig. 1F). The
majority of terminal branches stayed close to the ChAT band.
Subtype 7 axon terminals were medium sized (0.44 = 0.06 of the
IPL thickness).

Finally, axon terminals of subtype 8 cells were easily distin-
guished from other subtypes. They ramified the innermost part
of the IPL and were wide field (0.87 * 0.2 of IPL thickness, n = 5;
Fig. 1G). We could not identify any differences between subtypes
8 and 9 cells. Subtype 9 cells are blue cone bipolar cells
(Haverkamp et al., 2005); however, all of the innermost ramify-
ing cells we recorded responded both to green and UV light stim-
uli, and thus we identified them as subtype 8 cells.

Temporal tuning is ON bipolar cell subtype dependent

We investigated how each ON bipolar cell encoded distinct tem-
poral visual inputs. We examined temporal encoding with the
following two distinct input functions: sinusoidal light and step-
pulse stimuli. Sinusoidal light stimuli directly measured the tem-
poral sensitivity of the cell from slow (0.3 Hz) to fast (20 Hz; Fig.
2). Step-pulse stimuli evoked transient and/or sustained EPSPs.
Both popular methods are useful tools to characterize the tem-
poral profile of a cell (Cruse, 2008).

We used both green (500 nm) and UV (360 nm) light to
examine chromatic sensitivity in ON bipolar cells (Breuninger et
al., 2011). In the present study, all recorded bipolar cells re-
sponded to both wavelengths similarly; thus, we analyzed only
the green light-evoked responses.

Our goal was to determine how cone bipolar cells responded
to cone photoreceptor inputs. To achieve this goal, we isolated
the transmissions between cones and bipolar cells by blocking the
lateral inhibitory inputs. We used a small spot of illumination
(diameter, 100 wm), which limited the activation of both the
horizontal and amacrine cells. We also included inhibitory recep-
tor antagonists in the bath solution to block amacrine cell inputs.
The cocktail of the inhibitory receptor blockers eliminated light-
evoked IPSCs recorded at 0 mV (data not shown, n = 3). We also
tested the effect of inhibitory receptor blockers on L-EPSPs in
these conditions. Unlike previous results (Molnar and Werblin,
2007; Eggers and Lukasiewicz, 2010), these blockers did not in-
crease the amplitude of L-EPSPs (123 = 19%; p = 0.6; 1 = 9) or
change the temporal properties (peak frequency: no change;
bandwidth: 115 £ 10% of control solution; p = 0.2, n = 9; ON
bipolar cell subtypes: n = 3 for subtype 5; n = 3 for XBC; n = 1
each for subtypes 6, 7, and 8), which was most likely attributable
to our light stimulus conditions. We also applied background
illumination at a rod-saturated level to suppress rod-signaling
pathways. In this condition, both step light and sinusoidal light
stimuli barely evoked light responses in rod bipolar cells (n = 23).
Together, our recording conditions effectively isolated cone pho-
toreceptor—cone bipolar cell transmission.

We recorded L-EPSPs to avoid disturbing any active conduc-
tance, such as voltage-gated channel activity. Whole series of si-
nusoidal light stimuli and step-pulse light stimuli were repeated
at least three times for each cone bipolar cell, and the average
responses were analyzed. L-EPSPs in response to each frequency
of sinusoidal stimulation were consistent for most bipolar cell
recordings. L-EPSPs were also consistent when we changed the
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plitude only fell >3 dB at the higher fre-
quency within a range we recorded from
0.3 to 20 Hz. The other was bandpass fil-
tering, where L-EPSP amplitude increased
from 0.3 Hz to a peak frequency and then
decreased at even higher frequencies. The
L-EPSP amplitude of the second group
fell >3 dB at both the lower and higher
frequencies. We did not observe high-pass

B filtering in any of the bipolar cells.
& 1.0 . 1.0 : Type-5, low-pass Both patterns were observed in sub-
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Figure 3.

light-evoked L-EPSPs were increased when contrast was increased in this range.

order of the sinusoidal frequencies (n = 4), suggesting that the 10 s
interval between distinct frequencies was sufficient to recover from
adaptation to previous sinusoidal stimulation paradigms (Fig. 2).

To compare the temporal properties in different subtypes of
ON bipolar cells, we needed to select an appropriate stimulus
contrast level. The stimulus should evoke stable L-EPSPs without
saturation because a high-contrast stimulus might cause re-
sponse distortion or rundown (Burkhardt et al., 2004). We tested
different contrast levels using a combination of sinusoidal stim-
uli, which enabled us to record temporal tuning in different con-
ditions (Fig. 2E). We found that this stimulus protocol evoked
L-EPSPs similar to the ones evoked by sequential sinusoidal stim-
ulation [Fig. 2B; peak frequency 2.6 * 0.4 (combination proto-
col) vs 2.8 = 0.2 (sequential protocol): bandwidths 1.96 * 0.3
(combination) vs 2.59 = 0.6 (sequential), p = 0.3, paired ¢ test;
n = 3 ganglion cells and n = 2 bipolar cells].

We examined the different contrast levels from 10 to 60%
(Fig. 3). The L-EPSP amplitude was continuously increased both
for a bandpass-filtering bipolar cell (Fig. 34, left) and for a low-
pass-filtering bipolar cell (Fig. 3A, right). The amplitude at the
peak frequency continuously increased in seven ON bipolar cells
(Fig. 3B). However, temporal properties were consistent at these
contrast levels (peak frequency and bandwidth, p > 0.1 between
different contrast levels; n = 6 including subtypes 5, 6, and 7
cells). We chose a 30% contrast level to investigate temporal
properties in ON bipolar cells because it evoked stable and sub-
saturated L-EPSPs. The peak amplitude of the step light-evoked
L-EPSPs also increased similarly at this range of contrast changes
(Fig. 3C). However, the sustained/transient ratio did not change
[transient bipolar cells: 25 * 4% (20% contrast), 17 * 2% (30%
contrast), and 22 = 1% (60% contrast), n = 3; sustained bipolar
cells: 80 = 8% (20% contrast), 69 = 13% (30% contrast), and
62 * 9% (60% contrast), n = 2]. Together, the data indicate that
30% contrast light stimuli are suitable to test temporal properties
in ON bipolar cells.

Sinusoidal light stimuli evoked two different patterns in ON
bipolar cells. One was low-pass filtering, where the L-EPSP am-

L-EPSPs were increased when stimulus contrast was increased; however, the temporal features did not change. A,
When stimulus contrast was increased, L-EPSPs were increased at most of the stimulus frequencies in a transient ON bipolar cell
(left) and in a sustained ON bipolar cell (right). B, The L-EPSP amplitude at a peak frequency was plotted as a function of the
stimulus contrast levels. €, Higher-contrast sinusoidal stimuli evoked higher L-EPSPs in 7 ON bipolar cells. The amplitude of step

pass filtering to sinusoidal light stimuli
(Fig. 4A, right, black curves). Various
temporal tuning patterns might be attrib-
utable to multiple subsets in subtype 5 ON
bipolar cells as reported previously (Fyk-
Kolodziej and Pourcho, 2007; Wissle et
al., 2009). We analyzed these cells to de-
termine whether the filtering property
corresponded with the morphology of the cells. The axon termi-
nals of all subtype 5 cells ramified between the middle and inner
calretinin bands; however, the extent of their terminals was di-
verse. Some terminals were compact (n = 8; Fig. 1A), and others
were wider field (n = 7; Fig. 1B; axon terminal length, 0.40 = 0.1
vs 0.73 = 0.1 of IPL thickness, p = 0.009, unpaired two-tailed ¢
test). The compact terminals were not created by retinal tissue
slicing because we captured the images of all the processes deep
in the tissue using confocal microscopy. Cells with compact
terminal exhibited low-pass filtering, whereas cells with wider
terminals exhibited bandpass filtering. The bandwidth was
significantly wider in the former group than in the latter group
(p = 0.017, unpaired two-tailed ¢ test; Table 1). We named
these subtypes 5s (slow) and 5f (fast) for compact and wider
cells, respectively.

XBCs were bandpass filtering to sinusoidal light stimuli (n =
5; Fig. 4B). Also, subtypes 6 and 7 ON bipolar cells were bandpass
filtering (Fig. 4C,D). However, their bandpass filtering natures
were different from each other. Subtype 7 cells had the narrowest
bandwidth and the highest low cutoff, indicating that they were
the highest tuned cells (Table 1). XBCs were similar to subtype 7
(for bandwidth, p = 0.3, unpaired two-tailed ¢ test), indicating
that both cell types are the highest tuned ON bipolar cells. Sub-
type 5f cells were similar to XBCs; however, their bandwidth and
low cutoff were slightly different from those in subtype 7 cells
(bandwidth, p = 0.05; low cutoff, p = 0.038; unpaired two-tailed
t tests). Subtype 6 cells were less tuned cells compared with other
bandpass cells (bandwidth: p = 0.036 vs subtype 5f; p = 0.003 vs
XBC; p = 10° vs subtype 7; unpaired two-tailed f test). Overall,
the order of the temporal tuning from high to low is subtype 7 =
XBCs > subtype 5f > subtype 6 cells. Subtype 8 ON bipolar cells
were low-pass filtering (Fig. 4E).

The resting membrane potential in ON bipolar cells in dark-
adapted conditions was —59.3 £ 1.3 mV (n = 36) with no sig-
nificant differences among subtypes. Temporal features might be
affected by different temperature settings. Most of our recordings
were performed at 30°C. We examined whether sinusoidal light-
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Figure4. EPSPselicited by sinusoidal light stimuli were ON bipolar cell subtype specific. A, Subtype 5s ON bipolar cells were near-low-pass filtering (n = 8, blue curves), whereas subtype 5f cells
were bandpass filtering (n = 7, black curves). B, XBCs were bandpass filtering (n = 6). €, Subtype 6 cells were bandpass filtering (n = 7). D, Subtype 7 cells were bandpass filtering with narrow
bandwidths. A group of cells exhibited particularly narrow bandwidths compared with another subset of subtype 7 cells (p << 0.05); however, no differences were found between these groups in

terms of transient/sustained ratio, high cutoff, or offshoot amplitude. The former group of cells is plotted in red (n = 4), whereas the latter group of cells is shown in black (n = 4). E, Subtype 8 cells
were low-pass filtering (n = 5).

Table 1. ON bipolar cell L-EPSPs in response to sinusoidal and step light stimuli

Type 55 Type 5f XBC Type 6 Type7 Type 8
Subtypes (n=18) (n=7) (n=15) (n=16) (n=18) (n=15)
Filtering Low-pass to bandpass Bandpass Bandpass Bandpass Bandpass Low-pass
Low cutoff (Hz) 0.19 + 0.05 0.56 + 0.1 0.83 £ 0.1 0.34 +0.02 163+ 04 0.01%
High cutoff (Hz) 521+05 488 £05 579 £0.7 70206 6.34 =08 378 =15
Bandwidth (Hz) 529+ 06 333204 284+ 04 457 +0.2 2.23+03 8.98 + 0.5
Transient/sustained ratio 0.53 = 0.06 0.69 + 0.03 0.68 + 0.02 0.61 + 0.04 0.77 = 0.03 0.36 =+ 0.07
OFF overshoot (mV) 0.84 0.1 23205 223 %05 2.66 = 0.2 298 +0.7 0.94+0.2

Data are presented as the mean = SEM.
*All type-8 cells were low-pass filtering feature. Low cut-off was determined as the lowest frequency among all other bipolar cells.
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evoked L-EPSPs changed when the recordings were performed at
35-37°C, which is near the mouse body temperature (~37°C;
Habicht, 1981). We recorded the temporal frequency at 30°C
before the bath temperature was increased to a new target tem-
perature. When the temperature was increased, higher-frequency
L-EPSPs were also increased (261 * 105% at 6 Hz, range 121—
889%, n = 7, p = 0.02, paired t test). However, the peak fre-
quency (92 * 8%) and bandwidth (104 * 7%) did not change
(n=7,p > 0.1, paired f test). Therefore, our temporal property
data determined at 30°C are likely relevant to the data obtained at
physiological temperatures.

Step pulse-evoked L-EPSPs were also tuned in a
subtype-dependent manner

We next tested temporal encoding using step-pulse light stimuli.
The transient and sustained response dichotomy has been known
for many decades; it can be observed in different temporal visual
processing cells (Enroth-Cugell and Robson, 1966; Cleland et al.,
1971) and is thought to be the hallmark of temporal visual sig-
naling. A transient and sustained response dichotomy also exists
in retinal bipolar cells and is thought to be the origin of parallel-
processing pathways (Awatramani and Slaughter, 2000; DeVries,
2000; Euler and Masland, 2000). However, it is not known how it
relates to bipolar cell subtypes. To address this, we used 1 s step-

Tr-sus. ratio

Transient and sustained responses to step-pulse light stimuli were also ON bipolar cell subtype specific. A-F, Step-
pulse light stimuli of 30% contrast evoked L-EPSPs in subtype 5s (A), subtype 5f (B), XBC (C), subtype 6 (D), subtype 7 (E), and
subtype 8 ON bipolar cells (F). Three to six traces were overlaid from a representative cell in each subtype. G, A summary plot shows
three temporal analysis parameters for 6 ON bipolar cell subtypes. For all parameters, temporal tuning is higher from the rear to the
front of each axis. Subtypes in a circle were not significantly different from each other. All parameters in subtype 7 cells were the
highest, indicating that these cells were highly tuned to a temporal frequency. Conversely, subtype 8 cells were the most sustained cells.
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pulse light stimuli to evoke transient
and/or sustained L-EPSPs in ON cone bi-
polar cells.

Step light-evoked EPSPs were also ON
bipolar cell subtype specific. L-EPSPs in
subtypes 5s and 8 were sustained, whereas
subtypes 5f, 6, 7, and XBC were transient
(Fig. 5A-F). We analyzed their transient—
sustained features by measuring their
peaks and plateau amplitudes (at 0.8 s; Ta-
ble 1). The transient/sustained ratio was
the highest in subtype 7 cells, which was
similar to the ratios in subtypes 5f and
XBC cells (p > 0.1, unpaired two-tailed ¢
test). The ratio was significantly lower in
subtype 6 cells (p = 0.008 vs subtype 7,
unpaired two-tailed ¢ test). The transient/
sustained ratio in subtypes 8 and 5s was
lower than that in other transient cells
(p < 0.01 vs subtypes 5f, 6, 7, and XBC;
p = 0.08 between subtypes 5s and 8, un-
paired two-tailed ¢ test).

In some cells, the offset light re-
sponse was prominent, which might be
attributable to “OFF overshoot” from
cone terminals (Jackman et al., 2009).
We measured the offset amplitude and
found that it was also ON bipolar cell
subtype dependent (Table 1). In sub-
types 5f, 6, 7, and XBC ON bipolar cells,
the OFF overshoot clearly existed,
whereas it was barely observed in sub-
types 5s and 8 (p < 0.01, between two
groups, unpaired two-tailed ¢ test).

Finally, we compared the results of the
two input functions in each ON bipolar
cell subtype. We plotted the transient/sus-
tained ratio, bandwidth, and OFF over-
shoot amplitude for each subtype along
three axes (Fig. 5G). The transient/sustained ratio is lower toward
the center and higher toward the outer edge of the plot. The
degree of bandwidth is lower toward the center and higher to-
ward the edge of the plot, showing narrower bandpass feature
toward the edge of the axis. The OFF overshoot amplitude is
lower toward the center and higher toward the edge of the plot.
For each ON bipolar cell subtype, the mean value was plotted and
connected among three parameters (Table 1). For each parame-
ter, subtypes are circled if they were not statistically different
from each other (p > 0.1). For all parameters, subtype 7 was the
most transient cell type, whereas subtype 8 was the most sus-
tained cell type. XBC and subtype 5f cells were similar to subtype
7 cells (for the ratio and OFF overshoot, p > 0.1 among three
subtypes; for bandwidth: p = 0.3 for subtype 7 vs XBC; p = 0.05
for subtype 7 vs subtype 5f; p = 0.4 for XBC vs subtype 5f; un-
paired t test). Subtype 5s cells were similar to subtype 8 cells (for
the ratio and the OFF overshoot, p = 0.7; for bandwidth, p =
0.05; unpaired ¢ test). Subtype 6 cells were between these groups
(for the ratio: p = 0.008 vs subtype 7; p = 0.006 vs subtype 8; for
bandwidth: p = 0.03 vs subtype 5f; p < 0.01 vs XBC and subtype
7, p = 10 7> vs subtype 8; for OFF overshoot: p < 0.001 vs sub-
types 5s and 8; unpaired ¢ test).

Based on this analysis, we conclude that subtype 7 cells are the
most change-sensitive cells along with XBCs. Subtype 5f cells are
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similar to XBCs. On the contrary, subtype A
8 cells are the most sustained cells, fol-
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lowed by subtype 5s cells, which might be
responsible for detecting static objects.
Subtype 6 cells exhibit properties that are
between these two groups. Therefore, our
results confirm that ON cone bipolar cells
encode distinct temporal visual inputsin a
subtype-dependent manner.

Search for underlying mechanisms of
ON bipolar cell response diversity

20 pA

AW

D XBC

Our results indicated that temporal en-
coding in ON cone bipolar cells was sub- — ‘B
type specific. Because we isolated the g -2
transmission between photoreceptors and S 4]
ON bipolar cells, the response diversity =
most likely occurs by signal modulation 2 61
within ON bipolar cells. Heterogeneous £ g )
expression of voltage-gated channels has <
been reported (Connaughton and Maguire, -10 T
1998; Pan and Hu, 2000; Pan, 2000; Ichinose 1
etal., 2005; Cangiano et al., 2007) and might E T6
contribute to subtype-dependent temporal 0
tuning in ON bipolar cells. o

We first examined photoreceptor in- B 24
puts without activating voltage-gated & -4
channels in bipolar cells. We recorded §
L-EPSCs in response to the sinusoidal g 6
light stimuli using the voltage-clamp E -8
mode (Fig. 6). L-EPSCs in response to si-
nusoidal light stimuli were bandpass fil- -10- 1
tering for all subtypes of ON bipolar cells.
Even for cells with low-pass-filtering
L-EPSPs, L-EPSCs were bandpass filtering  Figure 6.

(Fig. 6B, subtype 5s, G, subtype 8). This
indicates that the photoreceptor inputs in
ON bipolar cells are bandpass filtering in
nature, which is consistent with previous
findings in the rod pathway (Armstrong-Gold and Rieke, 2003).

We then investigated the role of voltage-gated channels by
recording voltage changes in response to sinusoidal current in-
jection. We used the same stimulus protocol as that used for
sinusoidal light stimulation (Fig. 2). We injected current at 1-2
pA, which evoked amplitudes of sinusoidal responses similar to
L-EPSPs at 0.3 Hz (compare Figs. 7A, 4A). Responses to sinusoi-
dal current injection were low-pass filtering in all tested ON bi-
polar cells (Fig. 7B). This was also the case in cells that responded
to light stimuli in a bandpass fashion; responses to current injec-
tion were low-pass filtering in nature (Fig. 7C, subtype 6, D,
subtype 7). These results indicate that bipolar cells are intrinsi-
cally low-pass filtering, and that photoreceptor inputs are band-
pass filtering in nature.

Together, our results indicate that ON bipolar cells can be
divided into three groups. The first is subtype 6, which are passive
ON bipolar cells. L-EPSCs and L-EPSPs were similar in these cells
(bandwidth, 4.93; p = 0.3 vs L-EPSP in subtype 6, unpaired ¢ test;
Fig. 6E), suggesting that visual signaling from photoreceptors is
passively encoded. In the second group, subtypes 5s and 8 are
sustained cells with low-pass filtering properties. Because sinu-
soidal current evoked low-pass filtering responses (Fig. 7) and
L-EPSCs were still of a bandpass filtering nature in these cells,
voltage-gated channels might robustly contribute to the sus-
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L-EPSCs were bandpass filtering in ON bipolar cells. A, An example of sinusoidal light stimuli-evoked EPSCs. Voltage-
clamp mode recordings reflected photoreceptor inputs without voltage-gated channel activation in recorded cells. The L-EPSC
amplitude peaked at 3 Hz. B—G, L-EPSCs recorded in individual ON bipolar cell are shown in dark green. The average plots of
L-EPSPs for each subtype are overlaid (dashed light green).

tained responses. The third group, which is composed of sub-
types 7, 5f, and XBC ON bipolar cells, is transient. Although
current-evoked responses were low-pass filtering (Fig. 7D),
L-EPSCs were not overlaid with L-EPSPs (Fig. 6C, D, F), suggest-
ing that multiple mechanisms including voltage-gated channels
contribute to shape their bandpass-filtering nature.

Discussion

Diverse visual signal-processing pathways start at the retinal bi-
polar cell level (Awatramani and Slaughter, 2000; DeVries, 20005
Wissle, 2004). Several subtypes of ON cone bipolar cells have
been identified by morphological studies in the mouse retina
(Ghosh et al., 2004; Wiissle et al., 2009); however, except for blue
cone bipolar cells (Haverkamp et al., 2005), the functions of ON
bipolar cells remain poorly understood. In the present study, we
characterized the visually evoked temporal properties along with
the morphology of six subtypes of ON bipolar cells for the first
time in the mouse retina.

Bipolar cell subtypes and functions

Morphological studies have revealed >10 subtypes of bipolar
cells in the mouse retina (Ghosh et al., 2004; Pignatelli and Stret-
toi, 2004), rat retina (Euler and Wissle, 1995), primate retina
(Boycott and Wiissle, 1991), rabbit retina (MacNeil et al., 2004),
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Figure7.  Responses to current injection were low-pass filtering in ON bipolar cells. 4, Sinu-
soidal current injection evoked responses, which were reduced as the frequency increased. B,
Sinusoidal current-evoked responses were always low-pass filtering (n = 7). C, Subtype 6 ON
bipolar cells. L-EPSPs were bandpass filtering (green), whereas current responses were low-
pass filtering (black) in the same cells. D, Subtype 7 ON bipolar cells. Similarly, L-EPSPs (green)
were handpass filtering, whereas responses to current injection (black) were low-pass filtering
in the same cells.

Subtypes

5s 5f

XBC 6 7 8

INL

Calretinin

COes

E High temporal tuning

Middle temporal tuning
I:l Low temporal tuning

Figure8.  Summary diagram of the ON cone bipolar cell contribution to temporal processing.
ON cone bipolar cells encode distinct temporal visual signaling in a subtype-dependent manner.
In most of the IPL sublamina b, both high and low temporal bipolar cells provide synaptic
outputs. Subtypes 7 and XBC are especially highly tuned to particular frequencies that provide
synaptic outputs near the ChAT band.

and salamander retina (Wu et al., 2000). Wiissle et al. (2009) used
subtype-specific markers and concluded that there are 11 sub-
types of cone bipolar cells in the mouse retina (types 1 through 9
with two subsets of types 3 and 5). Multiple subsets of subtype 5
cells have been described (Ghosh et al., 2004; Fyk-Kolodziej and
Pourcho, 2007). Recently, Helmstaedter et al. (2013) used con-
nectomic reconstruction analysis to identify the XBC subtype in
sublamina 3 of the IPL, which is distinct from the other kinds of
subtype 5 cells. Similarly, our morphological and physiological
analyses also revealed three subsets of ON bipolar cells in sub-
lamina 3: subtypes 5s, 5f, and XBC. Therefore, a total of 13 sub-
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types of bipolar cells, including rod bipolar cells, have been
identified in the mouse retina. Each subtype of bipolar cell is
thought to contribute to visual signaling in a distinct way.

Functions of each bipolar cell subtype have been studied.
Light sensitivity varies among subsets of ON cone bipolar cells,
which is attributable to the mixed inputs from rods and cones
(Pang et al., 2004, 2010). The effect of surround inhibition on
visual signaling is diverse among bipolar cell subsets (Molnar and
Werblin, 2007; Zhang and Wu, 2009). Chromatic responses have
been shown to be bipolar cell subtype dependent (Haverkamp et
al., 2005; Breuninger et al., 2011).

The diversity of temporal tuning has also been investigated.
Transient and sustained light responses were found in distinct
subsets of ON bipolar cells in salamander and rat retinas (Awa-
tramani and Slaughter, 2000; Euler and Masland, 2000). Three
subtypes of OFF cone bipolar cells in the ground squirrel retina
tune distinctively (DeVries, 2000; DeVries et al., 2006). Recently,
bipolar cell temporal processing has been characterized with im-
aging studies. Calcium signals at bipolar axon terminals (Baden et
al., 2013) and glutamate sensor imaging (iFluSnFR) throughout
the IPL (Borghuis et al., 2013) revealed the detailed transient/
sustained features in the IPL. In the present study, we performed
whole-cell recordings from individual bipolar cells and found
that temporal processing occurs in these cells in a subtype-
dependent manner. Specifically, we found that XBCs are highly
tuned cells along with subtype 7 and 5f ON bipolar cells. In con-
trast, subtype 8 and 5s cells exhibit a low-pass-filtering feature.
Subtype 6 cells show properties of both groups.

Distinct temporal filtering mechanisms

In the present study, we isolated photoreceptor—-ON bipolar cell
transmission from the rest of the retinal network; thus, the ob-
served diversity in responses is likely attributable to signal mod-
ulation within ON bipolar cells. Diverse temporal encoding in
OFF bipolar cells occurs by distinct ionotropic glutamate recep-
tors in their dendrites (DeVries, 2000). ON bipolar cells receive
synaptic inputs from photoreceptors via the metabotropic gluta-
mate receptor 6 (mGluR6). mGluR6-linked cation channels were
recently identified (Morgans et al., 2009; Shen et al., 2009; Koike
et al., 2010). The diversity of mGIuR6 has been suggested by
Awatramani and Slaughter (2000); however, molecular biologi-
cal evidence has not been provided. Preliminary work with low-
pass-filtering ON bipolar cells (n = 2) converted to bandpass
filtering in the presence of alow dose of mGluR6 agonist (L-AP4,
1.6 uM) suggests that the state of mGluR6 is critical to the filtering
process (data not shown). Further experimental studies are re-
quired to expand this preliminary work on the mechanisms of
distinct filtering in ON bipolar cells.

Voltage-gated channels represent another key candidate
modulator for signaling diversity in ON bipolar cells. In the pres-
ent study, all photoreceptor inputs (L-EPSCs) were bandpass fil-
tering; however, L-EPSPs were diverse (Fig. 6). Because current
injection sinusoidal responses were low-pass filtering (Fig. 7),
voltage-gated channels might play a key role. For example, HCN
channels suppressed lower-frequency responses to shape band-
pass filtering in rod bipolar cells (Cangiano et al., 2007). HCN
channels are expressed in cone bipolar cells (Ma et al., 2003;
Puthussery et al., 2013) and might contribute to shaping sus-
tained responses in some bipolar cells.

In contrast, the voltage responses (L-EPSPs) of subtype 7 and
XBC bipolar cells exhibited slightly narrower bandpass features
than L-EPSCs (Fig. 6). These cells might be tuned by excitatory
modulation via Ca** channels and/or Na™ channels because
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voltage-gated Na ™ channels enhance temporal filtering in fish
sensory neurons (Fortune and Rose, 1997, 2003) and are hetero-
geneously expressed among bipolar cells (Pan and Hu, 2000; Pan,
2000; Pan et al., 2001; Zenisek et al., 2001; Ichinose et al., 2005;
Saszik and DeVries, 2012; Puthussery et al., 2013). Especially,
spiking activity in some bipolar cells might be a key mechanism
for fast temporal tuning (Cui and Pan, 2008; Saszik and DeVries,
2012; Puthussery et al., 2013), although we did not find spiking
activity probably because our pipette solution did not contain
creatine phosphate (Baden et al., 2011).

Roles of retinal ON bipolar cells in visual signal processing
Bipolar cells are called “relay cells” because they pass on visual
signals from photoreceptors to the retinal output neurons, gan-
glion cells. Our results indicate that they dynamically relay visual
signaling. Cone photoreceptors in the mouse retina are low-pass
filtering with a peak of 5-6 Hz and a cutoff frequency of ~10 Hz
(Burkhardtetal., 2007; Qian et al., 2008). In the present study, we
found that cone inputs in bipolar cells are bandpass filtering with
a peak of 3—6 Hz (Fig. 6B), suggesting that there is a mechanism
modulating the signal between photoreceptor output and bipolar
cell encoding. “OFF overshoot” is the light offset response at the
cone photoreceptor terminals, which enables phasic transmitter
release by tonic-responding photoreceptors (Jackman et al.,
2009). Because of its regenerative nature (Wu, 1988), the OFF
overshoot might be responsible for this conversion from low-
pass filtering in cones to bandpass filtering in bipolar cells. Con-
sistent with this notion, OFF overshoot was clearly detected in
bandpass-filtering bipolar cells (Fig. 5).

How do bipolar cells contribute to temporal processing in
ganglion cells and at higher levels? It is assumed that low-pass-
filtering bipolar cells contribute to linear ganglion cells, whereas
bandpass-filtering bipolar cells contribute to nonlinear and dy-
namic ganglion cells. Detailed subtyping of ganglion cells has
been revealed only recently (Volgyi et al., 2009; Stimbiil et al.,
2014), and the elucidation of synaptic architecture between bipo-
lar and ganglion cells awaits future experiments. Several mecha-
nisms functioning between bipolar and ganglion cells have been
suggested. One is the amacrine cell feedback, which shapes visual
signaling in bipolar cells (Dong and Hare, 2002; Eggers and Lu-
kasiewicz, 2006). Another mechanism is the frequency-doubled
response, which occurs at the synapses between bipolar and gan-
glion cells (Demb et al., 1999; Borghuis et al., 2013).

Figure 8 summarizes how ON bipolar cells might contribute
to temporal processing. Interestingly, because of their terminal
ramification patterns, both high and low temporal tuned signal-
ing can be transferred to ganglion cells in most of the ON sub-
laminae in the IPL. This is consistent with the ganglion cell
ramification patterns, which ramify in most layers of the IPL
(Stmbiil et al., 2014). Subtype 7 and XBC ON bipolar cells dem-
onstrated the highest temporal profiles (Fig. 5, Table 1) and axons
from these cells ramify very close to the ChAT band, suggesting
that these cells provide fast visual signaling to the direction-
selective (DS) cells and thus contribute to motion detection. Such
a hypothesis is consistent with an article by Yonehara et al.
(2013), which identified subtype 5- and also 7-like ON bipolar
cells, providing synaptic inputs to DS ganglion cells. Subtype 6
cells demonstrated a passive feature that might be similar to midget
bipolar cells in the primate retina (Puthussery et al., 2013).

In conclusion, we investigated temporal encoding in six sub-
types of ON cone bipolar cells in the mouse retina. For the first
time, we were able to analyze temporal frequency and transient-
sustained light responses, occurring at the dendrites to the soma,
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in a subtype-specific manner. We believe that our results will
contribute to the elucidation of parallel processing in the visual
system.
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