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Back to the Future: Preserved Hippocampal Network Activity
during Reverse Ambulation
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During movement, there is a transition of activity across the population, such that place-field centers ahead of the rat are sequentially
activated in the order that they will be encountered. Although the mechanisms responsible for this sequence updating are unknown, two
classes of models can be considered. The first class involves head-direction information for activating neurons in the order that their place
fields will be traversed. An alternative model contends that motion and turn-related information from the posterior parietal cortex shift
the subset of active hippocampal cells across the population. To explicitly test these two models, rodents were trained to run backward on
a linear track, placing movement in opposition with head orientation. Although head-direction did not change between running condi-
tions, place-field activity remapped and there was an increase in place-field size during backward running compared with forward. The
population activity, however, could still be used to reconstruct the location of the rat accurately. Moreover, theta phase precession was
maintained in both running conditions, indicating preservation of place-field sequences on short-time scales. The observation that
sequence encoding persists even when the animal is orientated away from the direction of movement favors the concept that posterior

parietal cortical mechanisms may be partially responsible for updating hippocampal activity patterns.
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Introduction

During movement through an environment, principal cells of the
hippocampus express a firing pattern tuned to spatial location,
referred to as the neuron’s place field (O’Keefe and Dostrovsky,
1971). This is accompanied by a prominent 4—12 Hz oscillation
in the local field potential, termed the theta rhythm (Vanderwolf,
1969; Buzsaki and Eidelberg, 1983). Importantly, within each
theta cycle, the active population of neurons with common place
fields dynamically changes (O’Keefe and Recce, 1993; Harris,
2005). This propagation of activity is sequentially organized, such
that neurons with maximum firing behind the rat fire before
neurons with place fields ahead of the rat, providing a “look-
ahead” of upcoming spatial locations (Burgess et al., 1994; Skaggs
et al., 1996; Tsodyks et al., 1996; Maurer et al., 2012). Further-
more, between adjacent theta cycles, as neurons with receptive
field locations behind the rat become inactive, cells with fields
representing locations ahead of the animal begin to fire. The
consequence of the sequential updating of active cell assemblies
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are that neurons will exhibit a progressive shifting of spikes rela-
tive to the hippocampal theta rhythm (Dragoi and Buzsaki, 2006;
Foster and Wilson, 2007; Geisler et al., 2010; Maurer et al., 2012).
This phenomenon, termed theta phase precession (O’Keefe and
Recce, 1993), is thought to be a fundamental mechanism of spa-
tial ensemble sequence encoding (Lisman and Idiart, 1995; Jen-
sen and Lisman, 1996; Skaggs et al., 1996; Lisman and Buzsaki,
2008), as well as nonspatial information (Harris et al., 2002; Har-
ris, 2005), such as episodic recall and action planning (Pastalkova
et al., 2008). The afferent drive responsible for updating hip-
pocampal representations, and thus phase precession, however,
are unknown.

During a random foraging task, it has been shown that the
look-ahead is selectively oriented toward the rodent’s upcoming
movement direction, suggesting that head-direction is a primary
mechanism for updating network activity (Huxter et al., 2008).
Moreover, attractor models of hippocampal activity dynamics
traditionally use a combination of head-direction (Taube et al.,
1990) and self-motion information to move the distribution of
activity in the network (Redish and Touretzky, 1997; Samsonov-
ich and McNaughton, 1997; McNaughton et al., 2006). These
models place a significant dependence on the egocentric head-
direction signal, necessitating that the movement trajectory is
aligned with head orientation to appropriately move the “bump”
of activity. Alternatively, velocity and motion information from
the parietal cortex could be responsible for appropriately updat-
ing the hippocampal network (Conklin and Eliasmith, 2005). As
the activity of neurons in the posterior parietal cortex are sensi-
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tive to simple motion states (McNaughton et al., 1994; Burke et
al., 2005) that precede the actual onset of movement up to 500 ms
(Whitlock et al., 2012). Thus, anticipatory motor planning could
be responsible for the hippocampal “look ahead” phenomenon
(Maurer and McNaughton, 2007). By training rats to run for-
ward, as well as backward, on a linear track, the present study
sought to test the dissociating predictions of the two models
when a rodent’s movement trajectory is decoupled from the di-
rection that it was currently facing (Conklin and Eliasmith,
2005).

Materials and Methods

Animals and surgical procedures. Four Fischer-344 male rats (8- to 12-
months-old, RRID: F344/DuCrl Rat) were used in this study. Rats were
housed individually and maintained on a 12 h light/dark cycle. Record-
ings took place during the dark phase. Surgery was conducted according
to NIH guidelines for rodents and approved Institutional Animal Care
and Use Committee protocols. The rats were implanted, under isoflu-
rane anesthesia, with a “hyperdrive” array of 12 separately moveable
tetrodes. Two additional tetrodes, with wires shorted together, served as
references. For all rats, hippocampal recordings were made from CAl
(3.0 mm posterior to bregma, 1.4 mm lateral to the midline).

Electrophysiological recording. After surgery, tetrodes were lowered and
allowed to stabilize for several days above CAl, and then gradually ad-
vanced into the stratum pyramidale. A reference electrode was placed in
or near the corpus callosum. Each tetrode was attached to four separate
channels of a 50-channel unity-gain head stage (Neuralynx). A multiwire
cable connected the head stage to digitally programmable amplifiers
(Neuralynx). The spike signals were amplified (gain of 1000-5000),
bandpass filtered between 600 Hz and 6 kHz, and transmitted to the
Cheetah Data Acquisition system (Neuralynx). Signals were digitized at
32 kHz, and events that reached a predetermined threshold were re-
corded for 1 ms. Spikes were sorted offline by means of the semiauto-
matic clustering algorithm KlustaKwik (K. D. Harris, University College,
London, RRID: nif-0000-10182). The resulting classification was refined
manually with custom-written software (MClust; A. D. Redish, Univer-
sity of Minnesota), resulting in spike-train time series for each of the well
isolated cells.

Pyramidal neurons were identified using the standard parameters of
firing rate, burstiness, spike waveform characteristics (Ranck, 1973), and
the first moment of the autocorrelation (Csicsvari et al., 1998). EEG
signals were bandpass filtered between 1 and 300 Hz, sampled at 2.4 kHz,
and amplified on the head stage with unity gain, and then again with
variable gain amplifiers (up to 5000). Several light-emitting diodes were
mounted on the head stage to allow position tracking. The position of the
diode array was detected by a television camera placed above the exper-
imental apparatus, recorded with a sampling frequency of 60 Hz, and a
spatial resolution was 0.2 cm/pixel.

Behavior. The animals were food deprived to 85% of ad libitum weight.
During this time, rats were shaped to walk forward and backward on a
narrow linear track. The rat was placed on the track and allowed to run
forward to obtain food reward. After eating, without letting the rats turn
around, the trainer would gently place a plastic spoon against their nose.
If the rat stepped back, a small food-reward was immediately presented.
This shaping continued until the rats were fully trained to cover the entire
track for reward. Recording began after surgery recovery. Each running
session was bookended by a rest epoch of at least 20 min to assess baseline
firing and stability.

Analyses. Instantaneous velocity was determined by convolving the
position data over multiple frames and then calculating the absolute
value of the difference in position. Track locations where occupancy
exceeded 10% of the total time were removed, which was always associ-
ated with reward. The position data were then “unwrapped” to examine
forward and reverse directions separately. Lap duration was calculated as
the time from leaving one reward location and entering the other re-
warded area.

Place-field diagrams and phase-precession diagrams (Fig. 1) were con-
structed as described by Maurer et al. (2006a,b). Briefly, each running

J. Neurosci., November 5, 2014 - 34(45):15022-15031 « 15023

h Forward ‘mc-wvd i Forward ‘Bolnud

=

o
o
-

-150 0 150
Position (cm)

-150 0 150
Position (cm)

Figure1. Representative place-field activity during different running behaviors. Exam-
ples of 10 pyramidal neurons during forward (running from — 150 to 0 cm) and backward
(0 to +150 ¢cm) conditions. For example, —100 and + 100 cm correspond to the same
location on the track, but reflect when the rat is locomoting forward (—) versus backward
(+), respectively. The top panels show occupancy normalized firing rate by position. The
middle shows spike rasters by position, and the bottom shows traditional occupancy-
normalized spike-phase density plots showing theta phase by location on the track (theta
phase is plotted twice to account for circularity). Note that areas on the track with higher
firing rates are not symmetrically aligned around the 0 location, which corresponds to the
point in which the movement trajectory changed from forward to backward running
(%150 cm is the location in which running changes from backward to forward). This
qualitatively illustrates the lack of bidirectional activity between different running condi-
tions. Furthermore, these plots show the tendency for place-field spiking during backward
running to shift location across subsequent laps, despite the larger field size (right col-
umn, bottom two examples). The inconsistency of firing during backward locomotion
renders the use of traditional phase-location measures of precession inappropriate.
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trajectory, forwards versus backward ambulation were plotted separately
to control for the unidirectional nature of place fields during track run-
ning (McNaughton et al., 1983). Spikes were binned by location on the
track into 2.5 cm bin widths, and rates were normalized by bin occupancy
time (Maurer etal., 2006a,b). To construct the theta phase of firing versus
position plots, each spike was assigned a phase relative to the hippocam-
pal theta rhythm using methods similar to those of Belluscio et al. (2012;
described below). The spikes were binned into a two dimensional matrix,
convolved, and normalized by occupancy to provide an occupancy nor-
malized phase-position density plot. To display the position of each
spike, lap-by-lap spike rasters were created by linearly interpolating the
spike times of a neuron onto the rodents position-and-time matrix.

Spatial population vectors were constructed in the same manner as by
Maurer et al. (2012) with the exception that spatial bins were reduced to
0.33 cm (compared with 0.7 cm) and were generated on a lap-by-lap
basis. The rationale for constructing lap-by-lap population vectors, as
opposed to collapsing across all laps, was to attempt to control for the
higher variability in the mean position of spikes across laps in backwards
running. Briefly, to generate the population vector matrix, the spatial
firing rate distributions of all recorded pyramidal neurons in a given
condition were combined into a single, two-dimensional array: cell num-
ber in rows and linearized location in the columns. Each column there-
fore represented an estimate of the composite population vector for the
corresponding location. The vectors for the forward and reverse running
directions were computed separately. To reconstruct the position of the
rat, one spatial population vector matrix was selected as the reference and
was then correlated against every other spatial population vector for the
other laps. This process was repeated until each lap was correlated against
all other laps, excluding the autocorrelation of the reference lap with
itself, providing a reconstructed position for each lap-combination.

Inspection of our data using the lap-by-lap rastergrams and phase by
position density plots (Fig. 1), suggests that during backward running,
place fields may undergo a mild drift or dispersion. This observation is
similar to findings from experiments in which rodents forage in dark
arenas (Markus et al., 1994; Hafting et al., 2005) or when landmarks are
perceived to be unstable (Knierim et al., 1995). To measure the consis-
tency of place-field location on a lap-to-lap basis, we applied firing rate
boundaries to the spatial firing rate distributions (Muller et al., 1987;
Thompson and Best, 1990; cf. Maurer et al., 2006b). Spikes across all laps
were binned (2.5 cm bin size) and occupancy normalized. To be included
in the analysis, the firing rate of the neuron needed to exceed 10% of the
mean firing rate for 11 or more contiguous bins (for a minimum place-
field size of 27.5 cm, which was below the size of place fields observed in
forward running conditions estimated from the population vector cor-
relation). Using the boundaries of the regions that passed the firing rate
criteria, the lap-by-lap center of mass of firing in the field was calculated
(Mehta et al., 1997; Shen et al., 1997; Ekstrom et al., 2001; Lee et al., 2004;
Burke et al., 2008). To measure whether place-field centers varied from
lap-to-lap, we calculated the SD of the center-of-mass across all laps. In
the backward condition, the SD of the center-of-mass was significantly
larger (3.34 cm, SEM = 0.16) relative to the forward running condition
(2.69 cm, SEM * 0.17; 5, = 3.05, p < 0.05). This quantitatively supports
our qualitative impression that the place field-location undergoes a mod-
est jitter across laps in the backward running condition relative to for-
ward running. In light of this, we considered methods of determining
theta phase precession.

Although there were specific examples where spike phase versus posi-
tion shows clear precession during backward running (Fig. 1, left column
row 4) in most cases the plots of spike phase versus position during
backward running did not show clear precession, due to the higher vari-
ability in place-field position during backward running. However, we
demonstrate consistent theta phase precession versus time (see Figs. 3, 6).

Although not an explicit measure of theta phase precession, prior
studies have used phase-position correlations to infer theta phase preces-
sion (Maurer et al., 2006b; Burke et al., 2008, 2011). This analysis, how-
ever, does not demonstrate that the spike times shift their phase relative
to the hippocampal theta rhythm, but only provides a means to deter-
mine the slope of precession in space and the coefficient of determination
(how well the variation in one variable explains the variance in another).
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Movie 1.  Video of a rat trained to run forward and backward, with the same head orienta-
tion, to obtain a food reward.

Moreover, as the center-of-mass is higher during backward running
compared with forward traversals, meaning that the position of spikes
cannot be treated as a fixed value (violating the weak exogeneity assump-
tion). There are a number of other factors that make regression analysis
an inappropriate model for determining spike phase-location relation-
ships. These include the fact that linear—linear and circular-linear regres-
sion analyses are vulnerable to outliers in the data (Diba and Buzsaki,
2008), have difficulty in quantifying bimodal or nonlinear data (Kempter
etal., 2012), and violate the basic statistical assumptions of homoscedas-
ticity and normality. That is, phase variance is not equal across all posi-
tions (i.e., are not homoscedastic; Yamaguchi et al., 2002), and place
fields can have a strong kurtosis (i.e., are not normally distributed; Mehta
et al., 1997, 2000). Because of these factors, other techniques were re-
quired to quantify theta phase precession that are independent of posi-
tion information (Harris et al., 2002; Pastalkova et al., 2008).

Our first nonspatial measure of theta phase precession was based on
the analysis first developed by Harris et al. (2002), aimed at determining
phase shifts that occur between the onset and offset of firing periods of
neuronal spiking. For the present study, spikes in the backward and
forward directions that belonged to an epoch when firing rate was in-
creasing (the previous 8 theta cycles contained no more than 4 spikes,
whereas the following 8 theta cycles contain at least 16 spikes) or decreas-
ing (the previous 8 theta cycles contained 16 or more spikes, whereas the
following 8 theta cycles contain 4 spikes or fewer; Harris et al., 2002) were
determined. The rationale for these values is that, assuming theta is 8 Hz,
the spike frequency increases either from 4 to 16 Hz (or vice versa for the
decreasing epochs). By calculating the mean circular phase of the onset
and offset of spikes, it was possible to identify whether the spikes ad-
vanced relative to the theta rhythm.

The second phase precession analysis involved comparing the auto-
correlogram frequency of individual neurons to the theta frequency
across different running velocities (O’Keefe and Recce, 1993). To calcu-
late the autocorrelograms by velocity, the animal’s velocity at the occur-
rence of each spike was determined in bins of 10 cm/s. A moving window
method was used to optimize the calculation of the spike autocorrelo-
grams and theta peak autocorrelation frequency. To calculate the fre-
quency of autocorrelograms, spectra were calculated using a multitaper
method (Geisler et al., 2007).

Finally, a novel method for quantifying theta phase precession across
the entire population of recorded CA1 cells was developed, the theta-
time population vector autocorrelogram. This temporal population vec-
tor was constructed in a manner similar to the position population
vector, with 7 cells by f temporal bins. Time was binned into ~14° of a
theta cycle with 546 bins over 21 consecutive theta cycles centered on a
single theta trough. The population vector within each theta bin was then
correlated with all other bins across the 20 theta cycles. To account for the
asymmetry of hippocampal theta oscillation (Buzsaki et al., 1983) in the
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Spatial population vector correlation during forward and backward running. A, The mean population vector (PV) correlation matrices during forward (negative) and backward (positive)

traversals for four rats. Warmer colors correspond to higher correlation values. B, The mean PV correlation across laps for forward (red) and backward (blue) traversals. B, Inset, The normalized PV
correlations across laps. Average bidirectional (black) correlation values were significantly reduced relative to the correlation values across laps for the forward ( p << 0.02) and backward (p << 0.001)
running conditions alone. €, Cumulative Z-score distribution of place-field overlap between forward and backward runs (black; bidirectionality), forward—forward runs (red), and backward—
backward (blue) runs (place-field stability) relative to a shuffled control distribution. The vertical line at Z = 1.6 corresponds to the proportion of fields with overlap above chance. The overall mean
correlation across laps between the forward (mean: 0.19, SEM =0.02) and backward (mean: 0.19, SEM ==0.01) directions was not significantly different from each other (p = 0.71). D, The mean

PV reconstructed position of rats plotted against actual position for both running conditions.

determination of neuronal firing phase, we used methods similar to those
of Belluscio et al. (2012). The tetrode that recorded the most pyramidal
neurons was selected as a theta reference. To “seed” our initial peak/
trough finding algorithm, we digitally filtered the EEG, bidirectionally in
time to avoid phase shifts, with a 6—8 Hz Chebyshev bandpass filter. In
these conditions, theta approximates a sinusoid facilitating peak deter-
mination by using the derivative of the oscillation. Next, we found the
absolute minimum in the 1- 80 Hz filtered EEG that fell between the time
stamps of two peaks in the 6 —8 Hz filtered data. These troughs were saved
and used to find the absolute maximum in the 1-80 Hz trace that fell
between the timestamps of two troughs (Belluscio et al., 2012).

Unless otherwise indicated, for all summary statistics means were cal-
culated for each rat for comparisons between forward and backward
running conditions and significance was tested using paired-samples ¢
tests with @ = 0.05. The positions at which rats receive reward were
excluded from the analysis.

The degree to which the place fields showed stable location-specific
firing on repeated runs in the same direction, as well as runs in opposite
movement directions (bidirectionality) were assessed by calculating a

standardized measurement of place-field overlap (S; Battaglia et al.,
2004) as follows:

_ szin(Plap i Plnp i+1)
E(plupi:}_)lup[-#l) ’

= Nbr'nsPInp
Pln B VR
2P

P,ap is the normalized firing rate vector composed of the firing rate at each
position bin on the linear track divided by the sum of firing rates across
bins for a given lap. f’,,,p is calculated for all laps. This overlap measure is
invariant for rescaling of the place-field profiles, and it assumes the limit
values of 0 for nonoverlapping place-field profiles and of 1 for profiles
that are identical. The s value was computed for all pairwise lap combi-
nations. These values were then averaged for each cell to get a single
measure of field stability. To attain a measurement of chance field over-
lap, the s values were then calculated for each pairwise lap combination
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for each cell compared with all other cells. Fi-
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statistical difference in their average ve- Phase (degrees)

locities during forward (mean: 13.4 cm/s,

SEM = 2.6) compared with backward Figure3. Phase shifts between neuron onset and offset spiking activity. A, Spikes were identified that occurred at the onset of

(mean: 7.4 cm/s, SEM * 0.4) runs () =
3.46, p = 0.08). Nonetheless, when com-
paring the highest 10% of velocities, there
was a significant difference between run-
ning forward (mean: 41.6 cm/s, SEM *
6.5) and backward (mean: 15.8 cm/s,
SEM = 1.1) conditions (3, = 7.11, p < 0.05). These data indicate
that the rats spent more time running at faster speeds in the
forward relative to the backward running conditions.

Only those cells with an information per spike score >0.2
(Skaggs et al., 1993), a spatial coherence score >0.7 (Muller et al.,
1987), a minimum average of 10 spikes per lap, and a peak firing
rate >110% of the average firing rate for both running directions
were included. A total of 437 of 1033 cells met the inclusion
criteria. Figure 1 shows examples of single-unit activity. In tradi-
tional track-shuttling tasks, place-field activity is uncorrelated
between inbound and outbound journeys (McNaughton et al.,
1983), whereas place fields are omnidirectional in random forag-
ing conditions (Muller et al., 1994). The reason for this discrep-
ancy is unknown. The current study hypothesized that a rodent,
in the same physical location, with the same head orientation,
should have the same place-field activity independent of direc-
tion of travel. Therefore, place fields should be bidirectional as a
rat ambulates forward and reverse on a linear track. To test this
idea, a spatial population matrix was computed for every 0.33 cm
spatial bin within each lap and then correlated with the matrices
from all other laps and spatial bins (Gothard et al., 1996) within
each running condition and between the forward and backward
runs. Average bidirectional correlation values never exceeded
0.04, and were significantly reduced relative to the correlation
values across laps for the forward (¢, = 4.5, p < 0.02) and
backward (t;, = 12.9, p < 0.001) running conditions alone.
Contrary to the hypothesis, the data indicated place-field remap-
ping between behavioral conditions, despite persistent head ori-
entation (Fig. 2). In addition, hippocampal cells exhibited higher
correlations over a larger area in reverse traversals relative to
forward (Fig. 2A,B; 35.7 cm during backward runs, 17.9 cm for
forward runs; t;, = 5.8, p < 0.01). The overall mean correlation
across laps between the forward (r = 0.22) and backward (r =
0.20) directions, however, was not significantly different from

activity (dark red/dark blue) and the offset of activity (pink/light blue; see Materials and Methods). Spikes that did not fit either
onset or offset criterion (gray) were excluded from the analysis. Top, Four example spike trains from four single units as rats
traversed the track either forward or backward. The vertical black lines are theta peaks. B, The average circular mean and SD for all
spikes in the analysis considered to be onset or offset spikes. Note that phase shift occurred in both forward and backward running
conditions. Error bars represent the 95% confidence interval.

each other (¢;, = 1.6, p = 0.21), indicating similar stability for
the population as a whole across laps in both conditions (Fig. 2C).

The population vectors of spatial activity for one lap can also
be used to “reconstruct” the rat’s position in other laps by finding
the location of maximum correlation (Wilson and McNaughton,
1993). The position of maximum correlation tended to fall
around unity in both forward and backward running conditions
(Fig. 2D). Although place fields were larger during backward run-
ning, the mean reconstruction error between the forward and
reverse directions was not significantly different (¢5) = 0.8, p =
0.47). This indicates that, despite reduced spatial specificity and
decreased consistency in the locations of place-field centers
across laps (see Materials and Methods), the population activity
was able to update the rat’s position similarly in both directions.

Although the population of hippocampal neurons on broad
timescales is able to reconstruct the rodent’s position in space, we
were also interested to determine whether the short-time scale
temporal dynamics were maintained during backward running.
To explicitly measure the advancement of spikes relative to the
hippocampal theta rhythm, we used three nonspatial analyses. By
comparing the phase of spikes that lead an epoch of high firing
rate versus spikes that fell on the tail end of a high firing rate
epoch (Harris et al., 2002; see Materials and Methods) one can
determine whether the phase of onset of spikes occurs later rela-
tive to the phase of offset bursts during forward and backward
running (Fig. 3). In both the forward (F, 5,5, = 66.76) and
reverse (F(; 4,9,y = 57.04) running conditions, the phase of spikes
at the end of a high firing rate epoch occurred earlier than the
spikes at the beginning of the high firing rate epoch (p < 000.1;
pairwise Mardia-Watson-Wheeler test).

Pyramidal cells showed theta-modulated firing in both for-
ward (mean: 0.6 depth of modulation, SEM = 0.25) and back-
ward (mean: 0.6 depth of modulation, SEM =* 0.25) running
conditions with no significant difference in the depth of modu-
lation (#.5) = 1.08, p = 0.48). As initially noted by O’Keefe and
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that during forward and backward running, the first peak of the autocorrelogram occurs before the corresponding peak in theta. Thus, the bursting frequency is faster than theta frequency indicating
that theta phase precession occurs in both movement conditions. B, The mean spike autocorrelogram of principal cells during forward running. The different color traces correspond to the different
velocity bins (cm/s) indicated on the scale bar on the right. ¢, Same as in B except for backward running. Note that fewer velocity bins are represented due to rats running slower in the backward
condition relative to forward running. D, The estimation of theta frequency by velocity calculated from the latency of the first peak in the theta autocorrelogram forward (red) and backward (blue)
running conditions. The solid lines indicate the mean frequency across rats and the shading area represents =1 SEM. Slopes significantly increased with velocity (forward running: 0.02 cycles/cm,
p < 0.05; backward running: 0.05 cycles/cm, p << 0.05). E, Same as in D except frequency ( y-axis) was estimated from the peaks of the cell autocorrelograms (that is, from the interburst interval)
and is plotted as a function of running speed for forward (red) and backward (blue) running conditions. F, The difference between cell oscillation and theta frequencies for different running
conditions, across all velocities. Note that across all velocities the cell oscillation (E) is significantly greater than the theta oscillation (D), indicating theta phase precession.

Recce (1993), the occurrence of theta phase precession requires
that the burst frequency of neurons is slightly faster than the

—_ b mECaa hippocampal theta rhythm (Fig. 4). Therefore, it is possible to
E 95 mBackward demonstrate that a neuron’s spike time shifts relative to the theta
- oscillation if the frequency of the spike autocorrelogram is faster
> 9 than the frequency of the autocorrelogram of theta peak times
8 (Geisler et al., 2007). Figure 5 shows the mean values of the fre-
5 8.5 = quency of the autocorrelograms for the cells versus theta during
Qo 8 forward and backward running. These frequency values were
w subject to a two-way factorial ANOVA with the factors of running
75 condition (forward vs backward) and autocorrelogram (spikes vs
Cell Autocorrelogram Theta Peak theta). The main effect of autocorrelogram was significant
Autocorrelogram (F(1,70) = 541.56, p < 0.001), such that the frequency of the spike

autocorrelogram was significantly faster compared with theta.

Figure 5.  Mean autocorrelogram frequency of the cell spiking versus theta peaks. The  Running condition, however, did not significantly affect the

y-axis shows the mean frequency of the cell and theta peaks autocorrelograms (x-axis) for
the forward (red) and backward (blue) running conditions. Running condition did not
significantly affect the overall autocorrelogram frequency (p << 0.43), but the interaction
between running condition and autocorrelogram was significant (p << 0.01). Post hoc
analysis showed that during both forward and backward running there was a significant
difference between the frequency of the spiking and theta autocorrelograms (p < 0.001
for both comparisons; Tukey), indicative of theta phase precession. The frequency of the

overall autocorrelogram frequency (F, ;, = 0.57, p < 0.43). The
interaction between running condition and autocorrelogram was
also significant (F,,, = 12.47, p < 0.01). Post hoc analysis
showed that during both forward and backward running there
was a significant difference between the frequency of the spike
and theta autocorrelograms (p < 0.001 for both comparisons;

theta autocorrelogram did not significantly differ between running conditions (p = 0.33;
Tukey), but cell autocorrelogram frequency was significantly greater during forward run-
ning relative to backward (p << 0.05; Tukey); * p << 0.05, #p << 0.001. Error bars indicate
+1SEM.

Tukey). This indicates that the cells precessed relative to theta in
both running conditions. Importantly, the frequency of the theta
autocorrelogram did not significantly differ between running
conditions (p = 0.33; Tukey), but cell autocorrelogram fre-
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Theta phase precession of the CA1 neuronal population during forward and reverse running. 4, Schematic of the method for creating population matrix theta-time autocorrelograms.

For simplicity, only one cycle is used as a reference in this example (indicated by thick vertical red lines) although in actual analyses, every bin within a window of 21 theta cycles were correlated with
every other bin. Gray vertical tick marks are the spike rasters for the different neurons. The number of spikes for each cell were binned by theta time for 20 cycles surrounding the reference cycle
(boundaries marked by red lines). Every bin (columnar vector) of the central reference theta was correlated with every other vector to produce a theta-time autocorrelogram matrix (bottom). This
matrix depicts the extent that cellular activity within a theta cycle correlates with other cycles. In the theta-time autocorrelogram matrix, the warmer colors correspond to theta phases within the
reference cycle with higher correlation values across the different theta times represented over all 20 cycles of theta examined. Dark blue areas represent phase times in which no spikes occurred
resulting in a nonexistent correlation or NaN value. Note that sparse vectors result in a sparse theta phase-time autocorrelogram matrix, and that the cell dimension in the spike-rate matrix drops
out, leaving a theta time autocorrelogram with the units of phase. B, The average of all theta-time autocorrelation matrices across rats. By averaging over multiple theta cycles, the bins with NaN
values dropout and the overall correlation averages develop high resolution. The population vector theta-time autocorrelograms are shown for the forward (left) and backward (right) running
conditions. €, The x-axis shows theta time over four cycles and the y-axis is the phase of maximum correlation. The phase of maximum correlation significantly changed across adjacent theta cycles.
This indicates that the CA1 neuronal population exhibits theta phase precession, in both forward and backward running conditions.

quency was significantly greater during forward running relative
to backward (p < 0.05; Tukey). This is consistent with the obser-
vation that place-field size was significantly larger during back-
ward running relative to forward as indicated by the spatial
population vector correlation.

To evaluate the effect of backward ambulation on the theta
phase precession across the recorded ensemble, population activ-
ity was temporally binned relative to the hippocampal theta os-
cillation and correlated across multiple theta cycles (Fig. 6A). The
phase of maximum correlation for the trough of the two cycles
preceding and following the reference cycle was then calculated.
This method quantifies how the population activity changes over
successive theta cycles. During forward running laps, the average
phase shift over five cycles was 50°, which was significantly dif-
ferent from 0 (5, = 3.2, p < 0.05; one-sample ¢ test). Moreover,
during the backward running laps the total phase shift was 31°
and this was also significantly different from 0 (t5, = 5.8, p <
0.01; one-sample £ test). The forward and backward phase shifts
were not statistically different from each other, however (¢, =
1.38, p < 0.3), suggesting that the population dynamics of CA1

neurons show theta phase precession in both running directions
(Fig. 6 B,C).

Discussion

By decoupling a rodent’s movement direction from its head ori-
entation, the current experiment tested two competing attractor
network models. One class of models uses head-direction, and
self-motion signals, to shift the ensemble of active neurons to
fields located ahead of the rodent during movement (Redish and
Touretzky, 1997; Samsonovich and McNaughton, 1997; Mc-
Naughton et al., 2006). The second model proposes that a veloc-
ity vector, potentially from the parietal cortex, provides
directional input to the hippocampal network (Conklin and Elia-
smith, 2005). If a rat were to run backward, in opposition to the
direction it is facing, there are two potential outcomes, each lend-
ing support to one model over the other. The head-direction
hypothesis would predict that hippocampal spatial activity
should be distorted or destroyed during backward running. Al-
ternatively, the posterior parietal model of hippocampal updat-
ing suggests that the place code should be maintained regardless
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of direction of ambulation (Conklin and Eliasmith, 2005). This is
not to suggest that other brain regions involved in movement
information, such as the prefrontal cortex, striatum, or cerebel-
lum, are not also critical for updating hippocampal activity
patterns.

Although there was a higher variance of center-of-mass across
laps during backward running, the rat’s position reconstruction
could be obtained from the population of active cells. Moreover,
this was comparable to the reconstruction accuracy obtained
during forward running. Furthermore, intact theta phase preces-
sion observed during both forward and backward running, as
indicated by two independent single-cell analyses and a
population-based temporal vector correlation measure, is evi-
dence that the network activity can be appropriately updated on
short-time scales as well. Therefore, the present data favor the
parietal mechanism of updating.

As place fields were significantly larger in backward compared
with forward running, which could be interpreted as a distortion
of the map, this finding could potentially support models of
head-direction mechanisms for hippocampal updating. An alter-
nate explanation, however, is that the increase in place-field size is
a result of contradictory velocity processing between the parietal
cortex (Whitlock et al., 2012) and the head-direction cells, which
are known to increase their firing rates with linear velocity
(Taube etal., 1990). In the parietal model of hippocampal updat-
ing, head-direction neurons govern the velocity input into the
network (Conklin and Eliasmith, 2005). As sensitivity to incom-
ing self-motion information, inferred by velocity-firing rate rela-
tionships, has been suggested to govern hippocampal place-field
size (Maurer et al., 2005; Terrazas et al., 2005), it is feasible that
the head-direction system manages the flow of parietal velocity
input to the hippocampal network. During reverse ambulation,
this signal is mitigated. Moreover, place cells have been described
as speed-controlled oscillators, in which their autocorrelation
burst frequency increases with velocity (O’Keefe and Recce, 1993;
Geisler et al., 2007). In line with this idea, pyramidal neurons
were found to oscillate at a slower frequency during backward
running relative to forward running, supporting the idea that
there was attenuated velocity information during backward
movement.

In a recent experiment by Cei et al. (2014), rodents were
trained to run forward on a treadmill. The treadmill could be
moved forward in space, congruent with the rat’s head-direction
and running-direction, or it could move backward, incongruent
with the head direction and running direction of the rat. In this
experiment, the posterior parietal velocity information is not in
conflict with head-direction, as the rat is always ambulating for-
ward even when the train is moving backward. One interesting
difference between the current data and those in Cei et al. (2014)
is that in the present study CA1 place cell activity was unidirec-
tional as opposed to bidirectional. As there is a population of
neurons in the posterior parietal cortex that show activity corre-
lated with “simple motion states” (McNaughton et al., 1994;
Whitlock et al., 2012), one explanation for the disparate findings
regarding direction-selectivity could be differences in posterior
parietal neuron activity between the treadmill and reverse ambu-
lation conditions. As posterior parietal cortical neurons have al-
tered activity in north- and south-bound routes in a hairpin maze
(Whitlock et al., 2012), their directional selectivity may be re-
sponsible for unidirectional place fields on linear tracks. When
the movement vector is maintained, such as during treadmill
running, parietal information is hypothetically maintained, re-
sulting in bidirectional place fields (Cei et al., 2014). Given that
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the posterior parietal activity precedes that of the onset of move-
ment by up to 500 ms (Gold and Shadlen, 2000; Whitlock et al.,
2012), it is also possible that a signal from this region is respon-
sible for driving the observed predictive hippocampal sweeps
(Johnson and Redish, 2007), as well as forward and reverse reac-
tivation observed at the ends of a track (Foster and Wilson, 2006;
Diba and Buzsaki, 2007). Finally, as the route-specific correla-
tions of posterior parietal neurons are scalable in size (Nitz, 2006)
and capable of holding multiple reference frames at a single mo-
ment (Nitz, 2012), it is possible that this cortical input contrib-
utes to the scaling of hippocampal place fields and grid cells in
conditions when a familiar environment is compressed or
stretched (O’Keefe and Burgess, 1996; Gothard et al., 2001; Hux-
ter et al., 2003; Barry et al., 2007).

Numerous empirical data and theoretical models indicate that
the sequential activation of place cells within a theta cycle is re-
sponsible for the phenomenon of theta phase precession (Dragoi
and Buzsaki, 2006; Foster and Wilson, 2007; Maurer and Mc-
Naughton, 2007; Maurer et al., 2012) and perhaps theta itself
(Geisler et al., 2010). Thus, considering the current data in terms
of mechanisms for governing temporal sequence dynamics may
be more pertinent than determining which theta phase preces-
sion model best accounts for the these results. Fortunately, mod-
els of hippocampal theta phase precession complement each
other when it comes to understanding the phenomenon of en-
semble sequence encoding. The intrinsic oscillation of neurons
(O’Keefe and Recce, 1993; Kamondi et al., 1998; Bose et al., 2000;
Harris et al., 2002; Lengyel et al., 2003) can be synchronized via
strong synaptic network connections (Jensen and Lisman, 1996;
Tsodyks et al., 1996) and precisely controlled by reciprocal
inhibitory-excitatory connections (Wallenstein and Hasselmo,
1997; Mehta et al., 2002). Thus, each component of the prior
models can be integrated to support the self-organized dynamic
patterns (Kelso, 1995) critical for ensemble sequence encoding.

There is recent experimental evidence to validate the idea that
there is dramatic interconnectivity between the models. For ex-
ample, driving parvalbumin interneurons in a network with an
optical chirp stimulus can rhythmically entrain pyramidal neu-
rons; an effect dependent on hyperpolarization-activated cyclic
nucleotide-gated (HCN) channel function (Stark et al., 2013).
Moreover, the recent observation that neurons maintain their
firing rate magnitude across environments and behavioral states
supports the idea of a preconfigured network capable of asym-
metric neuronal activation (i.e., “trajectories”; Pastalkova et al.,
2008; Mizuseki and Buzsaki, 2014) In light of these findings,
inhibition and excitation models of phase precession, along with
intrinsic oscillation dynamics and asymmetric network connec-
tivity models, can be integrated to propagate a sequence of activ-
ity across the network Under this framework, at the beginning of
each theta cycle, input into the hippocampus activates a specific
cell assembly with the magnitude of activation proportional to
the velocity input (Conklin and Eliasmith, 2005; Maurer et al.,
2012). This “node of attraction” (Izhikevich, 2007) is transient,
limited by mechanisms, such as the distribution of pyramidal cell
HCN channels (Giocomo and Hasselmo, 2008; Dougherty et al.,
2013), and feedback projections from inhibitory interneurons
(Marshall et al., 2002; Maurer et al., 2006a; Geisler et al., 2007).
Provided a vector of displacement (i.e., heading and velocity as
described by Conklin and Eliasmith, 2005), and the asymmetric
firing rate biases of the network (Mizuseki and Buzsaki, 2014),
the network activity moves toward he next most stable state. In
this view, a chain reaction occurs in which the total number of
distinct assemblies activated within a single theta cycle is propor-
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tional to the magnitude of the velocity input (Conklin and Elia-
smith, 2005; Maurer et al., 2012). Notably, as the signal
propagates within the theta cycle, each sequential state is less
stable than its predecessor due to a loss of excitation (partially due
to feedback inhibition). Moreover, the amount of time that each
assembly is active becomes progressively shorter, shifting later in
the theta cycle. The propagation of activity therefore effectively
accelerates across assemblies while simultaneously losing
strength until it collapses. This description effectively accounts
for the heteroskedasticity in phase-position portraits (cells are
active for significantly longer periods of time early in the theta
cycle), and bimodality (the activity of the network accelerates
away from the initial state). This also accounts for the current
finding that the short-time scale dynamics of the hippocampus
are maintained during backward running. Together, the present
data show that CAl ensemble sequence encoding persists even
when the sequence is in the direction opposite of the animal’s
orientation. This may be due to self-organized hippocampal dy-
namics in conjunction with parietal cortical input.
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