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Spinal cord injury (SCI) in the mamma-
lian CNS results in the formation of a glial
scar around the lesion site (Fig. 1A). The
scar limits axon regeneration but it also
serves a protective role by sequestering in-
flammatory cells to the lesion center, re-
ducing tissue damage (Herrmann et al.,
2008). Although astrocytes have been
thought to be the primary cellular source
of the glial scar, recent work suggests the
scar is comprised of a complex milieu of
interacting cell types, including perivas-
cular fibroblasts, stromal cells, inflamma-
tory cells, and oligodendrocyte precursor
cells (OPCs) (Cregg et al., 2014). OPCs,
distinguishable from mature oligoden-
drocytes by their expression of NG2 and
PDGFR�, rapidly proliferate and form
new oligodendrocytes in the spared pa-
renchyma after injury, likely mediating
myelin repair (Tripathi and McTigue,
2007). However, proximal to the lesion

core, OPCs are found at very high densi-
ties, often in close association with the
dystrophic end-bulbs of axons that have
failed to regenerate (Cregg et al., 2014).
Given the interaction of NG2 cells with
dystrophic end-bulbs of axons in the le-
sion, it seems plausible that reducing their
contribution to scarring might enhance
regeneration.

Wnt signaling is a likely candidate to
regulate the OPC response after SCI. Oli-
godendrocyte development and OPC dif-
ferentiation in demyelinating lesions are
regulated by Wnt signaling (Fancy et al.,
2011) and following SCI, Wnt ligand ex-
pression is increased (Fernández-Martos
et al., 2011). �-catenin is an intracellular
signal transducer in the Wnt signaling path-
way (Fig. 1A�) and its deletion effectively
halts canonical Wnt target gene expression
(Fig. 1B�). In a recent study, Rodriguez et al.
(2014) modulated the OPC response to
CNS trauma by deleting �-catenin from
PDGFR�-expressing cells, a population
that includes OPCs. The authors crossed
PDGFR�creERT2 mice with floxed �-catenin
mice to excise �-catenin when tamoxifen is
administered, just before SCI. Inducible ex-
pression of yellow fluorescent protein allowed
tracking of the fate of recombined cells.

Rodriguez et al. (2014) first examined
the effect of inducible deletion of �-catenin
from PDGFR�-expressing cells on OPC
density and proliferation in both the unin-
jured and injured CNS. The removal of

�-catenin did not affect the percentage of
cells that remained as OPCs (defined by the
authors as expressing NG2) in the uninjured
CNS 25 d later (Rodriguez et al., 2014, their
Fig. 1C). This suggests that �-catenin dele-
tion does not alter OPC differentiation in
the uninjured CNS during this timeframe.
However, after SCI, �-catenin inducible
conditional knock-out (ICKO) mice had re-
duced NG2 cell density and proliferation,
such that these cells failed to accumulate
around the lesion (Fig. 1B) (Rodriguez et al.,
2014, their Fig. 3). Because inhibiting ca-
nonical Wnt signaling promotes differenti-
ation of OPCs in chemical demyelinating
models (Fancy et al., 2011), accelerated dif-
ferentiation of OPCs could explain the re-
duction in NG2 cell density observed by
Rodriguez et al. (2014). The authors did not
assess whether �-catenin deletion was suffi-
cient to enhance OPC differentiation into
mature oligodendrocytes after injury, how-
ever. Doing so may have yielded insight into
the fate of these cells and their capacity to
remyelinate.

Rodriguez et al. (2014) next examined
astrogliosis and inflammation in �-catenin
ICKO mice subjected to SCI. Astrogliosis
was reduced in �-catenin ICKO mice; spe-
cifically, there were reductions in astrocyte
hypertrophy, chondroitin sulfate proteogly-
can (CSPG) expression, and formation of
the compact glial fibrillary acidic protein
(GFAP) lesion border typical of the glial scar
(Fig. 1B) (Rodriguez et al., 2014, their Figs. 5
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and 6). Interestingly, the level of microglia/
macrophage inflammation was also sharply
reduced in the penumbra of �-catenin
ICKO mice (Rodriguez et al., 2014, their Fig.
4). This comes as a surprise, as a failure of
astroglial scar formation has previously
been implicated in exacerbated microglia/
macrophage spread and accumulation
(Herrmann et al., 2008). However, in Ro-
driguez et al. (2014), changes in microglia/
macrophage density occurred concurrently
with changes in NG2 density but before the
formation of a mature glial scar, indicating
that OPCs may directly affect inflammation
independently of subsequent astrogliosis.

Recent studies (Kang et al., 2013; Yuen
et al., 2014) shed light on how OPCs
might regulate inflammation following
SCI. The amassing of inflammatory mi-
croglia/macrophages after SCI results
from both local microglia proliferation/
migration as well as the accumulation of
blood-derived macrophages (Cregg et al.,
2014). Importantly, Rodriguez et al. (2014)
demonstrated that microglia/macrophage
cell proliferation was not disrupted follow-
ing �-catenin deletion (Rodriguez et
al., 2014, their Fig. 4C), implying that
�-catenin deletion from OPCs may be
affecting the accumulation of blood-
derived macrophages. Macrophage accu-
mulation occurs concurrently with
revascularization of the tissue (Casella et
al., 2002). Recent work by Yuen et al.
(2014) suggests that OPCs promote brain
angiogenesis by directly inducing endo-
thelial cell proliferation and blood vessel
formation during development. Further-
more, OPCs regulate inflammation in
experimental autoimmune encephalomy-
elitis by proinflammatory cytokine pro-
duction and by promoting blood– brain
barrier permeability (Kang et al., 2013).
Thus, an intriguing possibility is that
dampened inflammation in �-catenin
ICKO mice following SCI is the result of
an impairment in OPC-induced proinflam-
matory signals and angiogenesis, which is
required for macrophage infiltration. Fu-
ture studies should examine the role of
OPCs in the formation of new vasculature
after traumatic injury and the subsequent
impact on the ability of monocytes to enter
damaged tissue.

�-catenin ICKO from PDGFR�-exp-
ressing cells reduces injury-induced astro-
gliosis and CSPG expression, a known
inhibitor of axon regeneration. Therefore,
the knock-out may produce an environ-
ment permissive to axonal regeneration. To
test this hypothesis, Rodriguez et al. (2014)
crushed the optic nerve in �-catenin ICKO
and control mice. �-catenin ICKO mice had

less accumulation of recombined cells at the
lesion site and greater axon growth up to 1
mm past the lesion relative to control (Ro-
driguez et al., 2014, their Fig. 7). Therefore,
�-catenin deletion in PDGFR�-expressing
cells promoted axon regeneration in the op-
tic nerve. No histological assessment was
made of supraspinal axon growth after SCI,
which would demonstrate whether Wnt sig-
naling in PDGFR�-expressing cells restricts
axon growth following SCI.

Although Rodriguez et al. (2014) at-
tribute the changes in astrocytic, inflamma-
tory, and regenerative responses following
injury to abrogation of �-catenin in OPCs
specifically, it is worth noting that PDGFR�
is also expressed in pericytes (Göritz et al.,
2011). Indeed, recombination in pericytes
of PDGFR�creER mice occurs after tamox-
ifen administration (Kang et al., 2010), so
the mice used by Rodriguez et al. (2014) (�-
cateninfl/fl:PDGFR�creERT2) would lack
�-catenin in PDGFR�-expressing pericytes.
Considering that pericytes in the CNS can
also express NG2 (Ozerdem et al., 2001),
the marker Rodriguez et al. (2014) use for
OPCs, measurements of both NG2 and
recombined cell density after SCI in
�-catenin ICKO may also reflect changes
in pericyte density. Pericytes have a robust

role after SCI: they dissociate from the
vasculature and contribute extensively to
fibrosis within the lesion core (Göritz et
al., 2011). In addition, studies on kidney
fibrosis suggests that Wnt signaling is ac-
tive in pericytes and drives their differen-
tiation into myofibroblasts (DiRocco et
al., 2013). These myofibroblasts express
�SMA like some pericyte-derived cells do
after SCI (Göritz et al., 2011). Together,
this evidence suggests a role for �-catenin
in the accumulation and possibly the dif-
ferentiation of fibrotic pericyte derived-
cells after SCI. Changes in astrogliosis,
inflammation, and axon regeneration
described by Rodriguez et al. (2014) might
result, at least in part, from pericytic
�-catenin deletion.

In summary, the work of Rodriguez et al.
(2014) highlights a critical role for �-catenin
in PDGFR�-expressing cells to promote as-
trogliosis and inflammation, and attenuate
axon regeneration after injury. The pathway
has been modulated in vivo using small
molecule inhibitors (Fancy et al., 2011)
and evidence from Rodriguez et al.
(2014) strongly suggests that reducing
Wnt signaling warrants therapeutic in-
vestigation for SCI.

Figure 1. Deletion of �-catenin from NG2 glia before SCI reduces astrogliosis and inflammation. A, An overview of the cellular
response to SCI by glial and inflammatory cells. A prominent glial scar containing hypertrophic astrocytes (purple) and inflam-
matory microglia/macrophages (blue) is formed. NG2 glia (green) proliferate and accumulate around the lesion. They express
Wnt target genes after SCI. A�, �-catenin is the downstream signal inducer of canonical Wnt signaling. When Wnt ligands bind to
the Frizzled receptor, Dishevelled (DVL)-LRP-Frizzled recruits the Axin complex to the receptors, allowing �-catenin to drive Wnt
target gene expression in conjunction with the TCF/LEF family of transcription factors. B, ICKO of �-catenin reduces astrogliosis,
CSPG expression (yellow), microglial/macrophage accumulation, and NG2 recruitment to the lesion. Lacking hypertrophic astro-
cytes, the boundary of the glial scar does not form a compact border. B�, �-catenin deletion inhibits Wnt target gene expression
in the presence of Wnt ligands.
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