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Attention deficit hyperactivity disorder (ADHD) is a neurobehavioral disorder affecting children and adults. Genetic and environmental
factors are associated with the etiology of ADHD. Among the environmental factors, exposure of the developing brain to nicotine is
considered a major risk factor. Recent evidence suggests that environmental influences on the brain and behavior may be transmitted
from one generation to the next. We used a prenatal nicotine exposure (PNE) mouse model of ADHD to test the hypothesis that PNE-
induced hyperactivity, a proxy for human ADHD phenotype, is transmitted from one generation to the next. Our data reveal transgen-
erational transmission of PNE-induced hyperactivity in mice via the maternal but not the paternal line of descent. We suggest that
transgenerational transmission is a plausible mechanism for propagation of environmentally induced ADHD phenotypes in the
population.
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Introduction
Attention deficit hyperactivity disorder (ADHD) is a neurobe-
havioral disorder characterized by hyperactivity, inattention, and
impulsivity. ADHD affects �10% of children and 5% of adults in
the United States (Faraone et al., 2003; Barbaresi et al., 2004;
Kessler et al., 2006). Genetic and environmental factors contrib-
ute to the etiology of ADHD (Biederman et al., 2006; Swanson
et al., 2007). Exposure to nicotine during prenatal and early post-
natal periods is a major environmental contributor (Milberger et
al., 1996; Milberger et al., 1998; Ernst et al., 2001). Children born
to mothers who smoked cigarettes before, during, or immediately
after pregnancy have a twofold higher risk of developing ADHD
(Milberger et al., 1996; Milberger et al., 1998). We showed previ-
ously that ADHD associated with prenatal nicotine exposure is
symptomatically indistinguishable from ADHD due to other
causes (Biederman et al., 2012). In another recent study (Zhu et
al., 2012), we showed that a mouse model of prenatal nicotine
exposure (PNE) shares anatomical, biochemical, and behavioral
features with human ADHD. Although maternal cigarette smok-
ing is a significant contributor to ADHD in the exposed children,
it should be emphasized that some studies report no major ad-
verse consequences of maternal cigarette smoking on cognitive
abilities of the children (Thapar et al., 2009; Obel et al., 2011).

In the present study, we show that PNE-induced hyperactivity, a
proxy for the human ADHD phenotype, is transmitted in the mouse
model from one generation to the next. Our findings may have sig-
nificant implications for transgenerational transmission of environ-
mentally induced ADHD in human populations.

Materials and Methods
Animals. We used C57BL/6 mice (Charles River Laboratories) to create a
PNE mouse model (Zhu et al., 2012). Female mice (F0 generation) were
administered (�)-nicotine (0.1 mg/ml) dissolved in saccharin (2%; both
from Sigma) in drinking water starting 3 weeks before mating and
throughout pregnancy. The saccharin renders the water palatable. The
male breeders were not exposed to nicotine or saccharin. Control groups
only received 2% saccharin in the drinking water (SAC group). Nicotine
administration in drinking water to pregnant dams is widely used for
modeling fetal nicotine exposure caused by maternal tobacco use during
pregnancy (Sparks and Pauly, 1999; Paz et al., 2007; Zhu et al., 2012). On
the day of birth (postnatal day 0; P0), offspring in the PNE and SAC
groups (F1 generation) were cross-fostered to drug-naive nursing moth-
ers. At �6 – 8 weeks of age, the F1 females from each of the PNE and SAC
groups were bred with wild-type, drug-naive males to generate the F2
generation (Fig. 1). Similarly, at �6 – 8 weeks of age, the F2 females from
each of the PNE and SAC groups were bred with wild-type, drug-naive
males to generate the F3 generation (Fig. 1). In a parallel set of experi-
ments, F1 males from each of the PNE and SAC groups were bred with
wild-type, drug-naive females to produce the F2 generation (Fig. 1).
Neither the F2 nor the F3 generation was exposed to nicotine directly
either during development or at adulthood. The only nicotine exposure
was for the F0 females as adults in drinking water and the F1 mice (males
and females) in utero due to exposure of the F0 mother during and before
pregnancy. We used no more than one male and one female offspring
from any given litter in our analyses to minimize the contribution of litter
effects to the data.

We showed in an earlier study that spontaneous locomotor activity
is significantly elevated in 6-week-old F1 male and female mice in the
PNE group compared with their counterparts in the SAC group (Zhu
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et al., 2012). Moreover, locomotor activity was not significantly dif-
ferent between mice in the SAC group and mice exposed to plain
drinking water (without any additives), suggesting that saccharin
alone did not influence locomotor activity (Zhu et al., 2012). There-
fore, we excluded the plain water group and used the SAC group as
controls in the present study.

Analysis of locomotor activity. We examined spontaneous locomotor
activity in 6- to 7-week-old F2 and F3 male and female mice derived from
F1 and F2 male or female founders from the PNE or the SAC groups. The
mice were placed individually in testing cages equipped with photobeam
motion sensors (Photobeam Activity System; San Diego Instruments).
Each instance in which consecutive breaks were recorded in adjacent
photobeams (positioned 5.4 cm apart) was scored as an ambulatory
event. Photobeam breaks were grouped into hourly activity measure-
ments for statistical analysis. The analysis was conducted over a 17 h
period from 15:00 to 08:00 h. Because locomotor activity increases tran-
siently upon placement in the novel environment of the testing appara-
tus, we excluded from analysis the initial 4 h period from 15:00 to 19:00 h.
Because the hyperactivity occurred in the F1 generation only during the

lights-off period (Zhu et al., 2012), we per-
formed the current analysis over a 12 h period
from 19:00 to 07:00 h when the lights were off.

Statistics. Differences between more than
two experimental groups (prenatal treatment,
gender, and generation) were compared for
statistical significance using ANOVA. Differ-
ences between two groups were then analyzed
using Tukey–Kramer pairwise comparisons.
When only two experimental groups were in-
volved, we used Student’s t test.

Results
Locomotor activity was significantly in-
creased in the F2 male and female mice
derived from F1 PNE females (Fig. 2A,B)
and in F3 male and female mice derived
from F2 PNE females (Fig. 2C,D) com-
pared with control SAC counterparts. In
contrast, the activity in F2 mice derived
from male F1 PNE mice was not signifi-
cantly different from their SAC counter-
parts (Fig. 2E,F).

In an earlier study, we showed that a
single oral administration of 0.75 mg/kg
methylphenidate (MPH) reduces loco-
motor activity in PNE F1 male and female
mice (Zhu et al., 2012). This oral MPH
dose is equivalent to therapeutic doses for
ADHD (Balcioglu et al., 2009). We ad-
ministered MPH or saline by oral gavage
(0.75 mg/kg) at 19:00 h, when the lights
were turned off, to F2 mice. The MPH de-
creased locomotor activity in the F2 PNE
male and female mice (Fig. 3), as well as in
the F3 PNE male and female mice (Fig. 4)
in the same manner as it did in F1 mice in
our earlier study (Zhu et al., 2012).

Our data demonstrate that spontane-
ous locomotor activity is transmitted
from F1 to F2 and F2 to F3 generations
even though nicotine exposure occurred
only for the F1 (in utero exposure) and F2
(in utero germ cell exposure) generations.
Moreover, the transmission occurred via
the maternal and not the paternal line, al-
though in each generation both male and

female offspring were hyperactive. The hyperactivity was associ-
ated with exposure to an environmental agent and not likely due
to genetic causes, because every offspring from every PNE litter
(F1) and maternally derived F2 and F3 generations showed hy-
peractivity. The hyperactivity did not show classical Mendelian
inheritance.

Discussion
Our data show that PNE-induced hyperactivity is transmitted
from one generation to the next, although only the founder gen-
erations are exposed to nicotine. The transmission occurs via the
maternal and not the paternal line.

We have used a mouse model of PNE in which nicotine is
administered to the pregnant dams via drinking water. We chose
this model because of a number of advantages. For example,
administration of nicotine in drinking water avoids the stress
associated with systemic nicotine administration (e.g., intraperi-

Figure 1. Generation of F1, F2, and F3 mice from the PNE dams. Dams in the founder (F0) generation were exposed to nicotine
in drinking water beginning 3 weeks before they were crossed with a drug-naive sire. The nicotine exposure continued throughout
pregnancy. At �6 – 8 weeks of age, male and female offspring (F1) born to the PNE dams were crossed with drug-naive male and
female mice, respectively, to produce the F2 generations. At �6 – 8 weeks of age, PNE-F2 female mice were crossed with
drug-naive males to produce the PNE-female-derived F3 generation. PNE-F2 male mice were not used for further breeding. From
each generation, 6- to 8-week-old mice were used for experimental analysis. An identical breeding plan was used to generate F1,
F2, and F3 mice from the prenatally saccharin-exposed dams (data not shown).
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toneal injection or osmotic pump; Rowell
et al., 1983; Sparks and Pauly, 1999; Vagle-
nova et al., 2004; Paz et al., 2007). Prenatal
stress significantly influences behavior
and brain structure (Muhammad and
Kolb, 2011). Nicotine administered via
drinking water or non-oral routes pro-
duces comparable changes in locomotor
activity and nicotinic acetylcholine recep-
tor activity (Sparks and Pauly, 1999). A
criticism of the oral nicotine paradigm is
that it does not mimic the peaks and val-
leys of plasma nicotine levels associated
with cigarette smoking (Benowitz et al.,
1982). However, nicotine pharmacoki-
netics in the fetus are quite different from
those in adults, and whether the peaks and
valleys occur in the fetal blood and brain
as a result of maternal cigarette smoking
remains unclear (Wickstrom, 2007). More-
over, nicotine patch or smokeless tobacco
use by pregnant women, which remains a
significant public health concern (for re-
view, see Wickstrom, 2007), is associated
with sustained plasma nicotine concen-
trations (Benowitz et al., 1982; Hukkanen
et al., 2005). Another criticism of experi-
mental models of nicotine exposure is that
cigarette smoke contains thousands of
unique ingredients, many of which are
harmful, and the adverse consequences of
cigarette smoke may not be due to nico-
tine alone. However, the behavioral ef-
fects of cigarette smoke exposure can be
recapitulated by exposure of the develop-
ing and mature brain to nicotine (Slotkin
et al., 1987; Navarro et al., 1989a; Navarro
et al., 1989b). Therefore, our PNE mouse
model recapitulates the consequences of
cigarette smoking during pregnancy for
the developing brain.

Our finding of transgenerational trans-
mission of hyperactivity in the PNE
mouse model is uniquely relevant to
ADHD for the following reasons. Prena-
tally nicotine exposed rodents not only
show hyperactivity, but also attention
deficits (Schneider et al., 2011). Hyper-
activity and attention deficit constitute
major domains of ADHD symptomatol-
ogy. Unlike other ADHD animal models (Sagvolden et al., 2005),
the PNE model carries ecological validity because cigarette smok-
ing during pregnancy is associated with a nearly twofold increase
in ADHD risk in the offspring (Milberger et al., 1996; Milberger
et al., 1998; Biederman et al., 2012). The PNE mouse model also
shows a frontal cortical hypodopaminergic state and reduced cin-
gulate cortex volume (Zhu et al., 2012), cardinal features of un-
treated ADHD (Makris et al., 2007; Volkow et al., 2009). Finally,
the hyperactivity in the PNE mouse model is significantly re-
duced and the frontal cortical dopamine levels are significantly
elevated after oral MPH administration (Zhu et al., 2012). There-
fore, the PNE mouse model shows face validity, construct valid-
ity, and predictive validity fulfilling the criteria for a valid

animal model of human ADHD (Sagvolden et al., 2005).
Therefore, the transgenerational transmission of hyperactivity
in this model bears considerable significance and relevance for
ADHD.

The hyperactivity in the F2 and F3 generations was responsive
to oral MPH, suggesting that MPH-induced increases in dopa-
mine content of the brain may have contributed to the reductions
in hyperactivity. This was the case for the F1 generation in our
earlier study (Zhu et al., 2012). Therefore, the CNS hypodop-
aminergic state in the F1 generation was likely transmitted to the
F2 and F3 generation. In other words, the neurobiological mech-
anisms and the behavioral phenotypes appear to be transmissible
from one generation to the next.

Figure 2. Transgenerational transmission of hyperactivity induced by PNE. Spontaneous locomotor activity was analyzed
between 17:00 and 09:00 h in the F2 (A, B) and F3 (C, D) generations. The founder mice for each generation were females from the
PNE or SAC group and drug-naive males. Hourly (A, C) and cumulative (B, D) locomotor activity measurements are shown (mean�
SEM values). The cumulative activity represents locomotor activity during the lights-off period (19:00 – 07:00 h). Hourly measure-
ments showed that both PNE male and female F2 (A) and F3 (C) mice showed significantly higher activity compared with the
prenatal SAC counterparts. Cumulative activity showed significant effects of prenatal treatment in F2 (F(3,44) � 19.7; p � 0.0001)
and F3 generations (F(3,44) � 14.3; p � 0.0001). Tukey–Kramer multiple-comparison tests showed significantly higher cumula-
tive activity in both male and female PNE F2 and F3 mice compared with their SAC counterparts ( p � 0.001). There was no
significant difference between male and female mice in either the prenatal treatment group or either generation ( p � 0.05). n �
12–13 for each group. PNE-induced hyperactivity is not transmitted from one generation to the next via male founders (E–F ).
Spontaneous locomotor activity was analyzed from 17:00 – 09:00 h in male F2 mice produced by breeding male PNE or SAC mice
with drug-naive females. The cumulative activity represents locomotor activity during the lights-off period (19:00 – 07:00 h).
Hourly (E) and cumulative (F ) locomotor activity measurements are shown (mean � SEM values). Hourly activity was similar
between the PNE and SAC groups (E). Cumulative activity did not show significant differences between the two groups (t test, p �
0.13, n � 9 per group).
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Our findings are also significant from another public health
perspective. The rates of ADHD diagnosis increased by 24% over
a 10-year period between 2001 and 2010 (Getahun et al., 2013).
Although revised diagnostic criteria, sophisticated diagnostic
tools, and increased awareness among parents, patients, and the
general public alike may contribute to the increase in ADHD
incidence, whether those factors alone can cause the increase
remains unclear. Although genetic factors are associated with
ADHD (Biederman et al., 1986; Wallis et al., 2008), a decade may
not be long enough for newly acquired mutations to contribute to
the dramatic rise. Increasing exposure to harmful environmen-
tal factors may be another potential culprit (Banerjee et al.,
2007; Environmental Protection Agency, 2007). However, increas-
ing public awareness and stringent public safety measures in re-
cent decades may be expected to decrease the risk of harmful
environmental exposures (Environmental Protection Agency,

2007). Therefore, in addition to the po-
tential causes above, some other, as yet
unknown factors or mechanisms may
contribute to the increased incidence of
ADHD.

Our findings suggest that the adverse
effects of environmental factors on one
generation can be transmitted to subse-
quent generations to amplify the impact
of a temporally distal and discrete insult
over time. In other words, we suggest that
transgenerational transmission may be
one mechanism contributing to the ap-
parent increases in ADHD diagnosis over
time. Our data do not reveal whether the
transgenerational transmission would oc-
cur if the ADHD were treated successfully
in a given generation. Future studies will
test this interesting possibility.

A plausible mechanism for the trans-
generational transmission of the PNE-
induced brain and behavioral changes is
heritable epigenetic modifications of the
germ cell genome (for review, see Dax-
inger and Whitelaw, 2012). Nicotine is
known to produce DNA methylation in a
number of genes, including the gene cod-
ing for monoamine oxidase, a key enzyme
in the metabolism of dopamine and other
monoamines (Philibert et al., 2008; Phi-
libert et al., 2010). Therefore, nicotine-
induced epigenetic changes emerge as a
potential mechanism for transgenera-
tional heritability. Because the transmis-
sion of hyperactivity occurred only via the
mother and not the father, mitochondrial
genes, which are inherited exclusively
from the mother, may be significant con-
tributors. Alternatively, male germ cells
may be somehow resistant to the effects of
prenatal nicotine exposure, preventing
transmission via the father. However, the
male germ cells do acquire and transmit
environment-induced epigenetic changes.
For example, cocaine produces epige-
netic changes in the sperm DNA (Vas-
soler et al., 2013) and these changes are

transmitted to subsequent generations. Genomic imprinting
is another plausible mechanism that may promote the herita-
bility of hyperactivity in the PNE model. Recent evidence in-
dicates that there are imprints/parent-of-origin effects on
transcription at �1300 loci (Gregg et al., 2010b) and that
�350 autosomal genes with sex-specific parent-of-origin ef-
fects may exist in the mouse brain (Gregg et al., 2010a). Ped-
igree analysis coupled with epigenetic techniques will be
required to elucidate fully the mechanism(s) mediating heri-
table and sex-linked patterns, be it X-linkage, maternal effect,
or parental imprinting.

In summary, our data show that the hyperactivity produced
by PNE is transmitted via mothers from one generation to the
next. A PNE-induced hypodopaminergic state in the brain may
also be transmitted in the same manner because MPH adminis-
tration ameliorates hyperactivity in multiple generations.

Figure 3. Effects of a single oral dose (0.75 mg/kg) of MPH on PNE induced spontaneous locomotor activity in male and female
F2 mice derived from female founders. Locomotor activity was assayed from 17:00 – 09:00 h (A–D). MPH or saline (SAL) was
gavaged at 19:00 h. Cumulative activity in the PNE (E) and SAC (F ) groups was analyzed for the 12 h lights-off period from
19:00 – 07:00 h. Data are shown as means � SEM. Hourly measurements showed that both male (A) and female (B) mice derived
from PNE founders showed lower activity upon MPH administration compared with SAL administration. In the SAC group, MPH
administration did not produce significant effects on the hourly activity compared with SAL administration in male (C) or female
(D) mice. Cumulative activity over the entire 12 h lights-off period showed significant decreases in the PNE male and female mice
(E) receiving MPH compared with SAL, whereas MPH had no significant effect on male or female mice in the SAC group (F ).
Cumulative activity showed significant effects of drug treatment in the PNE group (ANOVA: F(3,28) � 6.3; p � 0.003). Tukey–
Kramer multiple-comparison test revealed significant differences in cumulative activity between SAL and MPH treatments
for male and female mice ( p � 0.05). ANOVA did not reveal significant changes in cumulative activity in the SAC group
(F(3,37) � 1.02, p � 0.39).
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