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Tau is required for the induction of long-term depression (LTD) of synaptic transmission in the hippocampus. Here we probe the role of
tau in LTD, finding that an AMPA receptor internalization mechanism is impaired in tau KO mice, and that LTD causes specific phos-
phorylation at the serine 396 and 404 residues of tau. Surprisingly, we find that phosphorylation at serine 396, specifically, is critical for
LTD but has no role in LTP. Finally, we show that tau KO mice exhibit deficits in spatial reversal learning. These findings underscore the
physiological role for tau at the synapse and identify a behavioral correlate of its role in LTD.
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Introduction
The canonical role of tau in neuronal function is as a
microtubule-associated protein that is important for microtu-
bule stabilization and axon elongation (Weingarten et al., 1975;
Drubin et al., 1985; Cáceres and Kosik, 1990). Much of our atten-
tion when considering tau has been directed toward developing
an understanding of neurodegenerative tauopathies (Ballatore et
al., 2007), where hyperphosphorylation of tau and its mislocal-
ization to dendritic regions are considered key aspects of tau-
related cytopathogenesis (Kowall and Kosik, 1987). Recently,
however, tau has been observed in dendritic regions under phys-
iological conditions (Ittner et al., 2010; Mondragón-Rodríguez et
al., 2012; Kimura et al., 2014). In concert with this, novel roles for
tau in neuronal function have begun to emerge (Morris et al.,
2011), and tau is receiving increased attention as an intracellular
signaling protein, particularly at the synapse.

It is known that the function of tau is strongly affected by its
phosphorylation status, influencing its ability to interact with
microtubules and various kinases (Reynolds et al., 2008; Fischer

et al., 2009), as well as altering its conformational status (Jegana-
than et al., 2008; Fischer et al., 2009), its localization and associ-
ation with membranes (Hoover et al., 2010; Usardi et al., 2011;
Pooler et al., 2012), its cleavage (Mondragón-Rodriguez et al.,
2008) and further post-translational modifications (Martin et
al., 2011). Exactly how tau phosphorylation might affect its
physiological function at the synapse, however, remains to be
determined.

One of the emerging physiological roles of tau at the synapse is
in synaptic plasticity, the molecular mechanisms by which syn-
aptic connections are dynamically modulated, and the process
thought to underlie learning and memory (Mayford et al., 2012).
Tau has been identified to be required for long-term depression
(LTD) of synaptic transmission, which describes the weakening
of a synaptic connection (Kimura et al., 2014). Glycogen synthase
kinase-3 (GSK-3�), a prominent tau kinase (Mandelkow et al.,
1992; Ishiguro et al., 1993), has previously been identified as an
important signaling component of NMDA receptor (NMDAR)-
dependent LTD (Peineau et al., 2007) and its activation is re-
quired for AMPAR internalization (Du et al., 2010). Our
previous study (Kimura et al., 2014) suggests that GSK-3� activ-
ity causes tau phosphorylation during LTD, suggesting that tau is
likely a downstream substrate of GSK-3� in LTD. This raises the
question as to the possible significance of these tau phosphoryla-
tion events.

Here we demonstrate that tau has an important mediatory
role in regulating the interaction between protein kinase C bind-
ing protein 1 (PICK1) and GluA2, a molecular mechanism fun-
damental to AMPAR internalization. Using biochemical and
electrophysiological assays, we show that site-specific phosphor-
ylation at 396 (S396) of tau is associated with and required for
LTD. In addition, we show that the absence of tau results in the
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reversal of spatial memory deficits, underscoring the importance
of the role of tau in hippocampal LTD.

Materials and Methods
Animals. All procedures involving animals were performed in accor-
dance with the UK Animals (Scientific Procedures) Act, 1986. Male
Wistar rats (Charles River) were used to prepare organotypic (7-d-old
rats) and acute hippocampal slices (2- to 3-week-old rats). Male B6.129-
Mapttm1Hnd/J mice (Tau KO, The Jackson Laboratory) and wild-type
(WT) C57BL/6J counterparts were used to prepare acute hippocampal
slices (2–3 weeks old) and for behavioral tests (4 –5 months old), as
approved by the Institutional Animal Care and Use Committee of Kyung
Hee University (Seoul, Republic of Korea). Mice or rats were housed four
or five per cage, and were allowed access to water and food ad libitum.
The cages were maintained at a constant temperature (23 � 1°C) and
relative humidity (60 � 10%) under a 12-h light/dark cycle (lights on
from 7:30 A.M. to 7:30 P.M.).

Acute hippocampal slice preparation. Animals were killed by cervical
dislocation and were decapitated. Following this, the brain was rapidly
removed and placed into ice-cold artificial CSF (aCSF; continuously
bubbled with 95% O2/5% CO2) containing 124 mM NaCl, 3 mM KCl, 26
mM NaHCO3, 1.25 mM NaH2PO4, 2 mM CaCl2, 1 mM MgSO4, and 10 mM

D-glucose. Hippocampi were extracted and transverse hippocampal
slices (400 �m thickness) were cut using a McIlwain tissue chopper.
Following manual separation, the slices were then submerged in aCSF for
a minimum of 1 h before experiments commenced.

Organotypic hippocampal slice preparation. Organotypic slices were
cultured based upon a method previously described by Stoppini et al.
(1991). Rats were decapitated, and their brains were rapidly removed and
placed into ice-cold dissecting medium containing the following: 238 mM

sucrose, 2.5 mM KCl, 26 mM NaHCO3, 1 mM NaH2PO4, 5 mM MgCl2, 11
mM D-glucose, and 1 mM CaCl2. Hippocampi were extracted, and trans-
verse hippocampal slices (350 �m thickness) were cut and placed upon
sterile, semi-porous membranes. These were stored and maintained at the
interface between air and culture medium (containing the following: 78.8%
Mimimum Essential Medium, 20% heat-inactivated horse serum, 30 mM

HEPES, 26 mM D-glucose, 5.8 mM NaHCO3, 2 mM CaCl2, 2 mM MgSO4,
70 �M ascorbic acid, and 1 �g/ml insulin, pH adjusted to 7.3 and 320 –
330 mOsm/kg) inside a humidified incubator at 35°C with a 5% CO2-
enriched atmosphere. Culture medium was refreshed every 2 d, and slices
were used for whole-cell recording at 6 – 8 din vitro (DIV).

Biolistic transfection and plasmid constructs. DNA-coated microcarriers
for biolistic transfection of organotypic hippocampal slices were pre-
pared based on previously described methods (Lo et al., 1994). At DIV
3–5, neurons were transfected with plasmids expressing shRNA against
rat tau protein (OriGene Technologies). A mixture of four different tau
shRNA constructs (1:1:1:1, in pGFP-V-RS vector) was used for tau si-
lencing. Phosphorylation-null (serine residues mutated to alanine) hu-
man tau constructs of the AT8 [S199, S202, threonine 205 (T205)] and
PHF-1 (S396, S404) epitopes, in pCI-neo vectors, were provided by Dr.
A. Takashima (Department of Aging Neurobiology, National Center for
Geriatrics and Gerontology, Obu, Japan). Individual mutations to the
PHF-1 epitope (residues S396 or S404) were generated by site-directed
mutagenesis (Agilent Technologies) of 2N4R human tau.

Electrophysiology. For whole-cell recordings from organotypic slices,
the recording chamber was perfused with a buffer solution containing
119 mM NaCl, 2.5 mM KCl, 4 mM CaCl2, 4 mM MgCl2, 26 mM NaHCO3,
1 mM NaH2PO4, 11 mM glucose, 0.02 mM picrotoxin, and 0.01 mM

2-chloroadenosine. The buffer solution was maintained at 29 –30°C and
saturated with 95% O2/5% CO2. Bipolar stimulating electrodes were
placed on the Schaffer collateral pathway and on the subiculum–CA1
input. Recording electrodes (5– 6 M�) containing CsMeSO4 filling so-
lution (comprising 130 mM CsMeSO4, 8 mM NaCl, 4 mM Mg-ATP, 0.3
mM Na-GTP, 0.5 mM EGTA, 10 mM HEPES, and 6 mM QX-314, pH
7.2–7.3 and 270 –290 mOsm/kg) were used to patch and voltage clamp
CA1 pyramidal neurons. EPSCs were recorded at a holding voltage of
�70 mV, and only cells that had an initial Rs (series resistance) � 20 M�
that was maintained at a level within 20% of that value from start to finish
were included in final data analysis. To induce LTD, depolarization of the

cell to a holding voltage of �40 mV was paired with 200 pulses of 1 Hz
stimulation to the Schaffer collateral input. For LTP experiments, depo-
larization of the cell to 0 mV was paired with 200 pulses of 2 Hz stimu-
lation to the Schaffer collateral input. In both cases, the change in peak
amplitude of the EPSC, relative to baseline, was used to assess the effects
of these stimulation protocols on synaptic efficacy. On-line electrophys-
iology data acquisition and analysis were performed using WinLTP soft-
ware (Anderson and Collingridge, 2007).

LTD induction and microdissection. LTD was induced in hippocampal
slices using low-frequency stimulation (LFS; slices were stimulated with
900 pulses at 1 Hz by a stimulation electrode placed in the Schaffer
collateral– commissural fiber pathway). The CA1 dendritic region was
microdissected immediately after treatment, as previously described
(Kimura et al., 2014), and homogenized in lysis buffer containing 1% SDS, 5
mM NaF, 1 mM EDTA, 0.3 M sucrose, 1� protease inhibitor cocktail (Roche),
and 1� phosphatase inhibitor cocktail 3 (Sigma-Aldrich).

Western blotting and antibodies. Soluble protein lysates were resolved
by SDS-PAGE and transferred to PVDF membranes. The following an-
tibodies were used for probing: Tau-5, mouse monoclonal (1:500; Invit-
rogen); AT8, mouse monoclonal (1:200; Thermo Scientific); PHF-1,
mouse monoclonal (1:1000; provided by Dr. P. Davies, Department of
Pathology, Albert Einstein College of Medicine, Bronx, NY); pS396,
rabbit polyclonal (1:1000; Life Technologies); pS404, rabbit polyclonal
(1:1000; Life Technologies); and �-actin, mouse monoclonal (1:10,000;
Abcam). Epitopes of phosphor (p)-tau antibodies are denoted by their
position on the longest isoform (2N4R) of human tau (441 residues in
length). Immunoreactive bands were imaged using the G:BOX XT4 im-
aging system (Syngene), and optical densities were quantified using NIH
ImageJ software and normalized to relative control protein levels.

Coimmunoprecipitation. Hippocampal slices from wild-type/tau KO
mice or rats were treated with NMDA (25 �M NMDA for 3 min) and in
some cases were pretreated with CT-99021 (1 �M). Crude cellular lysates
were prepared in lysis/binding buffer containing 50 mM Tris, pH 7.4, 150
mM NaCl, 1% Triton X-100, 15 �M CaCl2, and a protease inhibitor cock-
tail (Roche), and were precleared with washed protein G Sepharose beads
for 1 h at 4°C. Aliquots (300 �g) of precleared lysates were subjected to
immunoprecipitation with 3 �g of rabbit polyclonal anti-PICK1 H-300
antibody (Santa Cruz Biotechnology) for 4 h at 4°C, followed by immu-
nocapture on washed protein G Sepharose beads for 2 h at 4°C. The
immunoprecipitate complexes were washed three times with lysis/bind-
ing buffer followed by one wash with Tris-buffered saline and eluted with
SDS sample buffer. Proteins were resolved by SDS-PAGE, and Western
blotting was performed with the following antibodies: mouse monoclo-
nal anti-GluA2 (1:1000; Millipore) and goat polyclonal anti-PICK1 C-20
(1:500; Santa Cruz Biotechnology). Optical densities of immunoreactive
bands were quantified using NIH ImageJ software. GluA2 immunoreac-
tivities were normalized to PICK1 band intensity.

Behavioral studies. To assess spatial learning and memory, a Barnes
circular maze test was performed as described below. The Barnes circular
maze is a planar, round, white Plexiglas platform (90 cm in diameter),
1 m above the floor, with 20 evenly spaced holes (7 cm diameter) located
5 cm from the perimeter. A black escape box (15 � 7 � 7 cm) was placed
under one hole. Spatial cues with distinct patterns and shapes were
placed on the wall of the testing room. A 60 W light was turned on during
the trial. An experimenter remained in the same place with minimal
movement throughout the trials. The platform and the escape box were
cleaned thoroughly with 70% ethanol and paper towels between each
trial to remove olfactory cues. One day before the training trials began,
test mice were habituated in the target box for 3 min. The training trials
were repeated for 4 consecutive days, and three trials per day were per-
formed with 20 min intertrial intervals. At the beginning of each trial, the
mouse was placed in a cylindrical holding chamber (10 cm in diameter)
that was located in the center of the maze. After 10 s of holding time, the
mouse was allowed to search for the target hole for 3 min. If the mouse
failed to find the target hole in 3 min, it was gently guided into the target
hole by the experimenter’s hands. When the mouse entered the escape
box, the light was turned off, and the mouse remained undisturbed for 1
min. The movement of the mouse was recorded, and the latency to find
the target hole was measured during the training trials by video tracking
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software (Nodulus). On day 5, the probe trial was performed with each
mouse. The escape box was removed, and the test mouse was allowed to
find the target hole freely for 90 s. During the probe trial, the percentage
of time spent in each quadrant, the total distance traveled, and speeds
were measured using the video tracking software. In reversal learning, the
escape box was placed at the new quadrant, and the mice were then
retrained over 4 d (on days 6 –9). On day 10, each mouse was subjected to
a single 90 s probe trial.

Statistics. Data were analyzed from one slice per rat or mouse for
biochemical experiments (n � number of slices � number of rats/mice),
from individual cells for electrophysiology (n � number of cells) and
from individual mice for behavioral data (n � number of mice). All data
are expressed as the mean � SEM. For synaptic plasticity experiments,
the effects of the stimulation protocol were measured �30 min after

LTD/LTP induction. Data are expressed relative to a normalized baseline
or averaged control (100% � no change). Significance ( p � 0.05) from
baseline or control, or between mice, was tested using two-tailed paired
or unpaired t tests or one-way ANOVAs, with post hoc pairwise Bonfer-
roni correction where appropriate, as indicated in the figure legends. All
experimental powers were calculated using SigmaPlot data analysis soft-
ware and were above the recommended threshold of 0.8.

Results
Tau is required for an AMPAR endocytosis signaling
interaction
Molecular processes of AMPAR endocytosis underpin the LTD-
associated removal of AMPARs from the postsynaptic mem-
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brane. These processes are regulated, in part, by protein
interactions between the C terminus of the GluA2 subunit of
AMPARs and PICK1 (Hanley and Henley, 2005; Lu and Ziff,
2005; Terashima et al., 2008). Enhanced binding between PICK1
and GluA2 evokes AMPAR endocytosis following NMDAR acti-
vation and Ca 2	 influx (Hanley and Henley, 2005), and preventing
this interaction blocks AMPAR internalizationandhippocampalLTD
(Terashima et al., 2008).

Given that tau is required for hippocampal LTD and is phos-
phorylated by GSK-3�—a key regulator of AMPAR internaliza-
tion (Du et al., 2010; Kimura et al., 2014)— during this process,
we wondered whether tau itself might also regulate AMPAR in-
ternalization. Using a coimmunoprecipitation assay, we there-
fore tested the hypothesis that tau is an important regulator of an
AMPAR endocytosis signaling mechanism, namely, the GluA2
and PICK1 interaction. NMDA treatment induces a chemical
form of LTD (chem-LTD, data not shown) that is considered to
be analogous to LTD induced by activity (Lee et al., 1998). Fol-
lowing NMDA treatment of hippocampal slices (25 �M, 3 min),
we found an enhanced protein association between GluA2-PICK1
in WT mice but not in tau knock-out (KO) mice (NMDA in WT
mice: 438 � 85% of non-NMDA treatment; p � 0.016; n � 4;
NMDA in tau KO mice: 104 � 46% of non-NMDA treatment; p �
0.947; n � 4; Fig. 1A,B).

The observation that tau is required
for the GluA2–PICK1 interaction during
LTD is intriguing, but could reflect non-
specific dysregulation of protein interac-
tions in tau KO mice. To support the
hypothesis that this role for tau is LTD
specific, we tested whether blocking tau
phosphorylation during LTD could also
prevent the GluA2–PICK interaction. We
used the GSK-3� inhibitor CT-99021 to
prevent GSK-3�-mediated phosphory-
lation of tau during NMDA treatment.
Critically, the observed GluA2–PICK1 en-
hancement after NMDA treatment in hip-
pocampal slices from WT mice was
significantly inhibited by pretreatment
with CT-99021 (NMDA: 366.84 � 51.7%;
NMDA plus CT-99021: 142.76 � 36.68%;
p � 0.002; n � 8; Fig. 1C,D), while no
significant modulation of the basal inter-
action was observed when CT-99021 was
administered alone (control: 100 �
28.24%; n � 8; CT-99021: 113.51 �
29.96%; n � 4; p � 1.0). Previous studies
from our laboratory and other laborato-
ries have extensively investigated the
mechanisms of LTD using rat hippocam-
pus brain slices (Lee et al., 1998; Zhu et al.,
2002; Dickinson et al., 2009; Li et al., 2010;
Nicolas et al., 2012; Kimura et al., 2014).
We therefore further verified the above
findings in rat hippocampal slices treated
in the same manner (NMDA: 153.2 �
6.98%; NMDA plus CT-99021: 75.7 �
10.45%; p � 0.008; n � 4; Fig. 1E,F).
Treatment with CT-99021 alone in this
model also had no effect on the basal in-
teraction (control: 100 � 10.95%; CT-
99021: 70.39 � 6.79%; p � 0.231; n � 4).

Combined, these results suggest that dynamic phosphorylation
of tau by GSK-3� during LTD processes specifically regulates the
GluA2-PICK1 AMPAR internalization signaling interaction in
two independent species.

NMDAR activation induces tau phosphorylation at the
PHF-1 epitope
Though the exact function of phosphorylation of tau has yet to be
fully characterized, the numerous phosphorylation sites of tau
have been extensively examined (for review, see Hanger and No-
ble, 2011). We were therefore interested in determining whether
tau was subject to specific phosphorylation events during LTD.
LFS was delivered to Schaffer collateral axons of acutely dissected
rat hippocampal slices to induce LTD at CA1 synapses (Dudek
and Bear, 1992). Following LFS, we measured the phosphoryla-
tion status of tau in the microdissected CA1 region of the rat
hippocampal slices, as previously described (Zhu et al., 2002;
Peineau et al., 2007; Kimura et al., 2014), using the antibodies
PHF-1 (an antibody that recognizes phosphorylation at residues
S396 and S404 of tau; Otvos et al., 1994) and AT8 (an antibody
that recognizes phosphorylation at S202 and T205 residues of tau;
Goedert et al., 1995). PHF-1 and AT8 sites were chosen specifi-
cally as they are substrates for GSK-3� (Hanger and Noble, 2011),
and their phosphorylation can confer distinct changes to tau pro-
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tein folding (Jeganathan et al., 2008; Bibow et al., 2011) and lo-
calization (Pooler et al., 2012), both of which could alter the
ability of tau to interact with proteins relevant to AMPAR traf-
ficking. We observed a dramatic increase in the phosphorylation
of tau using PHF-1 (174 � 24% of averaged control; p � 0.005 vs
non-LFS; n � 4; Fig. 2A,B). In contrast, no changes were found
with AT8 (93 � 13% of averaged control; p � 0.535; n � 4; Fig.
2A,B). It is well established that this form of LTD induced by LFS
at hippocampal CA1 synapses is reliant upon the activation of
postsynaptic NMDARs (Dudek and Bear, 1992; Mulkey and
Malenka, 1992). Consistent with the phosphorylation of tau be-
ing of relevance to this form of LTD, the NMDAR antagonist AP5
blocked the LFS-induced phosphorylation of tau detected by
PHF-1 (PHF-1: 111 � 13% of averaged control; p � 0.045 vs LFS;
Fig. 2A,B).

In agreement with the above findings, antibodies recognizing
phosphorylation at the individual S396 and S404 residues (Bram-
blett et al., 1993; Singer et al., 2005) also showed enhanced ex-
pression following LFS (pS396: 184 � 7% of averaged control;
p � 0.012 vs non-LFS; n � 4; pS404: 179 � 19% of averaged

control; p � 0.016 vs non-LFS; n � 6; Fig. 2A,C). This LFS-
induced phosphorylation was similarly blocked by AP5 (pS396:
85 � 16% of averaged control; p � 0.004 vs LFS; pS404: 98 � 19%
of averaged control; p � 0.014 vs LFS; Fig. 2A,C). No difference
in the total levels of tau protein were found using Tau-5 (LFS:
105 � 10% of averaged control; LFS plus AP5: 93 � 20% of
averaged control, n � 4; p � 0.844; Fig. 2A,D), an antibody that
recognizes all tau independent of phosphorylation status (Lo-
Presti et al., 1995). Together, these data suggest that specific tau
phosphorylation is associated with NMDAR activity-dependent
key molecular mechanisms of LTD.

Tau phosphorylation at serine 396 is required for LTD
So far, we have demonstrated that tau phosphorylation at specific
serine residues within the PHF-1 epitope is associated with LTD.
This observation raises a fundamental question: are these phos-
phorylation events functionally related to LTD, or are they simply
a byproduct of enhanced activity of LTD signaling molecules
such as GSK-3� (Peineau et al., 2007)? To answer this, we gener-
ated mutants of human tau that were phosphorylation null at
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particular sites, by mutating the serine/threonine residues to
alanine (see Materials and Methods). Next, we biolistically
cotransfected constructs containing rat tau-shRNA and the phos-
phomutant human tau (not targeted by rat tau-shRNA) into cul-
tured hippocampal slice neurons. Delivering a 1 Hz, 200 pulse
[holding potential (Vh ) � �40 mV] stimulation routinely in-
duced LTD in untransfected neurons (49.7 � 4.2% of baseline;
p � 0.006 vs baseline, n � 6; Fig. 3A). However, in neurons
expressing S396/404A tau (phosphorylation null at the PHF-1
epitope), LTD was inhibited (92.5 � 6.5% of baseline; p � 0.0001
vs untransfected neurons; n � 9; Fig. 3A). In contrast, LTD was
robustly induced in neurons expressing S/T199/202/205A tau
(phosphorylation null at the AT8 epitope; S/T199/202/205A:
43.9 � 6.7% of baseline; n � 6; neighboring untransfected neu-
rons: 40.6 � 5.9% of baseline; n � 6; p � 0.721; Fig. 3C). In both sets
of tau mutant neurons, LTP was assayed by pairing a 2 Hz, 200
pulse stimulation protocol with strong postsynaptic depolariza-
tion (Vh � 0 mV). LTP was present in both sets of neurons

transfected with S396/404A (S396/404A:
164 � 24% of baseline; n � 6; neighboring
untransfected neurons: 164 � 11%; n � 6;
p � 0.866; Fig. 3B) or S/T199/202/205A
tau (S/T199/202/205A: 163 � 24% of
baseline; n � 6; neighboring untrans-
fected neurons: 175 � 17% of baseline;
n � 6; p � 0.662; Fig. 3D). These data
suggest that phosphorylation at the PHF-1
epitope of tau is required for LTD, but not
for LTP.

To further test the specificity of LTD
inhibition by the mutant S396/404A tau,
we generated phosphorylation-null mu-
tants for the individual residues S396 and
S404. We found that LTD was signifi-
cantly impaired in neurons transfected
with S396A mutant tau (S396A: 88.8 �
11.1% of baseline; n � 6; neighboring un-
transfected neurons: 50.0 � 5.4% of base-
line; n � 6; p � 0.0002; Fig. 3E) but
remained intact in neurons expressing
S404A mutant tau (S404A: 68.7 � 6.1%
of baseline; n � 6; neighboring untrans-
fected neurons: 51.4 � 2.2% of baseline;
n � 6; p � 0.370; Fig. 3F ). These data
highlight that phosphorylation of tau at
the individual S396 residue is a critical
molecular event during LTD.

Tau is required for reversal
learning memory
Previous behavioral assays of tau KO mice
have largely revealed few or no differences
in cognition when compared with WT
mice (Roberson et al., 2007; Ittner et al.,
2010; Lei et al., 2012). However, as a spe-
cific role for tau in hippocampal LTD, but
not LTP, has now been identified (Kimura
et al., 2014), we tested a behavioral para-
digm where LTD expression has been
deemed important: hippocampus-depe-
ndent spatial reversal learning (Kim et al.,
2011; Dong et al., 2013). We used the
Barnes maze to test spatial learning and

reversal memory function. No significant differences were ob-
served in the total distance traveled by the mice (Fig. 4A; p �
0.136) or in their average velocity (Fig. 4B; p � 0.269) during a
probe trial on day 5. Both WT and tau KO mice showed a similar
ability to learn the location of the escape hole following successive
trials on days 1– 4 (day 4 escape latency: tau KO mice, 38 � 10 s;
n � 8; WT mice, 24 � 6 s; n � 9; p � 0.126; Fig. 4C). Similarly,
during a probe trial on day 5, both mice spent similar durations in
the quadrant of the Barnes maze containing the escape hole [per-
centage of time spent in the target quadrant (TQ): tau KO mice,
58 � 6%; WT mice, 44 � 4%; p � 0.093; Fig. 4D]. However, upon
repositioning the escape hole to a different quadrant on day 6, tau
KO mice showed a deficit in learning the new location, when
compared with WT mice, during subsequent trials on days 7–9
(escape latency on day 9: tau KO mice, 37 � 9 s; WT mice, 11 �
3 s; p � 0.014; Fig. 4E). Accordingly, during a probe trial on day
10 tau KO mice spent significantly less time in the new TQ com-
pared with WT mice (percentage of time spent in TQ: tau KO

*
*

100

80

60

40

0

Es
ca

pe
 la

te
nc

y 
(s

)

6 7 8 9
Day

WT
Tau KO

20

*
*

20

0

40

60

80

Ti
m

e 
sp

en
t (

%
)

TQ OQ PQ LQ

20

0

40

60

80
Ti

m
e 

sp
en

t (
%

)

TQ OQ RQ LQ

WT
Tau KO

WT
Tau KO

200

150

100

50

0

Es
ca

pe
 la

te
nc

y 
(s

)

1 2 3 4
Day

WT
Tau KO TQLQ

RQOQ

PQTQ
OQLQ

A B

C D

E F

0

200

400

600

800

D
is

ta
nc

e 
tra

ve
le

d 
(c

m
)

WT Tau KO
0

2

4

6

8

Ve
lo

ci
ty

 (c
m

/s
)

WT Tau KO

Figure 4. Reversal learning memory is impaired in tau KO mice. A, B, Total distance moved (A) and average velocity (B) in probe
trials on day 5 of Barnes maze test are similar across both mice. C, Time taken to reach the escape hole in the training trials shows
similar learning ability in WT and tau KO mice. D, Both WT and tau KO mice spend a similar percentage of time in the target
quadrant during a probe trial on day 5 of the experiment. E, Time taken to reach the escape hole in the new training trials of a
reversal Barnes maze test shows reduced learning in tau KO mice. F, The percentage of time spent in each quadrant during the
probe trial on day 10 of the experiment is significantly different between WT and tau KO mice. OQ, opposite quadrant; RQ, right
quadrant; LQ, left quadrant. All data are presented as the mean � SEM. Significance (*p � 0.05) was determined using a
two-tailed paired t test comparing tau KO and WT data.

Regan, Piers et al. • Tau Phosphorylation Regulates LTD J. Neurosci., March 25, 2015 • 35(12):4804 – 4812 • 4809



mice, 38 � 4%; WT mice, 58 � 8%; p � 0.049; Fig. 4F). Inter-
estingly, this was accompanied by the observation that tau KO
mice spent a significantly longer time in the quadrant that was
formerly occupied by the escape hole (percentage of time spent in
the previous quadrant (PQ): tau KO mice, 25 � 2%; WT mice,
14 � 4%; p � 0.031; Fig. 4F). Together, these data indicate a
selective deficit in spatial reversal learning as a result of genetic
tau ablation in these mice.

Discussion
Tau phosphorylation is ordinarily considered in terms of aber-
rant hyperphosphorylation and aggregation under pathological
neurotoxic conditions in the brain (Grundke-Iqbal et al., 1986;
Ihara et al., 1986). Consequently, limited progress has been made
in determining how specific tau phosphorylation events can af-
fect neurons in a physiological sense. Tau can be phosphorylated
at multiple epitopes, and there is some evidence to suggest that
phosphorylation at particular sites can confer specific attributes
to the tau protein (Noble et al., 2013). Here we have shown that
tau is robustly phosphorylated at both the S396 and S404 residues
following the activation of NMDARs. However, while S396 phos-
phorylation was required for LTD, S404 phosphorylation was
not. The reasons for this discrepancy are unclear, but likely rep-
resent the shared tendency for both residues to become phos-
phorylated together (Li and Paudel, 2006), which is a specific
mechanistic attribute of the S396 residue for LTD.

It has been suggested that phosphorylation at S396 contrib-
utes to reduced tau–microtubule binding (Bramblett et al., 1993),
and is also correlated with C-terminal tau cleavage (Mondragón-
Rodríguez, et al., 2014) and distinct conformational changes (Je-
ganathan et al., 2008). How these effects upon tau could be
related to LTD is not yet apparent, but could potentially affect its
synaptic translocation and its interaction with synaptic proteins
such as PSD-95, Fyn kinase, or F-actin, which can alter synaptic
strength (Ittner et al., 2010; Mondragón-Rodríguez et al., 2012).
Nevertheless, our finding that a site-specific phosphorylation
event on tau can confer a distinct physiological function at the
level of synaptic modulation lends weight to the notion that fu-
ture studies ought to examine more closely the phosphorylation
code of tau, rather than broad levels of tau phosphorylation and
hyperphosphorylation per se. We recognize that another study
(Mondragón-Rodríguez et al., 2012) has shown that PHF-1, AT8,
and AT180 epitopes all show enhanced phosphorylation after a
chem-LTD stimulation. This differs somewhat from our find-
ings. The reasons for the differences in observations are unclear,
although the difference in LTD stimulation protocol is likely a
significant factor. Interestingly, their study shows progressive
changes in phosphorylation patterns of tau at different time
points after LTD induction. Therefore, it requires further inves-
tigation to explain the dynamics of tau phosphorylation between
the induction and maintenance of LTD in the future.

Another unanswered question is how tau might regulate
AMPAR trafficking. It is clear from our GluA2–PICK1 coimmu-
noprecipitation data that the presence of tau is necessary for the
occurrence of a molecular association that promotes AMPAR
internalization and/or intracellular AMPAR retention (Lu and
Ziff, 2005; Terashima et al., 2008). Notably, basal levels of GluA2–
PICK1 interactions do not differ between WT and tau KO mice,
rather the deficit is noticed only upon treatment with NMDA.
This is consistent with an effector role for tau in the activity-
driven internalization of GluA2-containing AMPARs mediated
by PICK1 (Hanley and Henley, 2005; Terashima et al., 2008; Na-
kamura et al., 2011), rather than in constitutive GluA2 recycling.

The knowledge of the full repertoire of molecules involved in
AMPAR internalization and LTD is far from complete but likely
involves hundreds of different proteins that are capable of regu-
lating endocytotic molecules and scaffolding proteins, many of
which could potentially be affected by tau. There is emerging
evidence that alterations in microtubule dynamics play an im-
portant part in the expression of LTD (Kapitein et al., 2011).
Conceivably then, through its interactions with both the micro-
tubule and actin networks, tau may provide a mechanistic link
between these cytoskeletal elements in the trafficking of AMPARs
at the synapse.

Finally, in our study we address the potential and hypothetical
behavioral relevance of the role of tau in LTD. Tau KO mice
appear to exhibit normal cognition in spatial learning tasks (Rob-
erson et al., 2007; Ittner et al., 2010; Lei et al., 2012). What, then,
is the underlying relevance of the finding that tau is required for
LTD? The answer appears to stem from the physiological relevance
of hippocampal LTD itself. Conceptually, LTD-like physiological
synapse weakening is thought to contribute to information encod-
ing and discrimination (Kemp and Manahan-Vaughan, 2007), and
is considered to be a fundamental cellular mechanism in certain
cognitive processes such as novelty discrimination and tasks requir-
ing behavioral flexibility (Manahan-Vaughan and Braunewell, 1999;
Nicholls et al., 2008). In particular, a number of studies now link
spatial reversal learning to the molecular mechanisms of hippocam-
pal NMDAR-dependent LTD (Nicholls et al., 2008; Kim et al., 2011;
Dong et al., 2013). Our novel finding of a deficit in spatial reversal
learning memory in tau KO mice may therefore reflect the role for
LTD-like signaling in certain cognitive functions.

In summary, we have shed further light on a physiological role
for tau at the synapse. Tau joins a plethora of dynamically inter-
acting synaptic proteins, which interact in a spatially and tempo-
rally distinct manner to ensure specificity of synaptic events.
Phosphorylation is an important regulator of such specificity,
and it is already established that phosphorylation at specific res-
idues of other proteins, such as serine 845 of GluA1 (Esteban et
al., 2003) or serine 880 of GluA2 (Seidenman et al., 2003) are
important signals for the modulation of AMPAR trafficking dur-
ing synaptic plasticity. Here we have shown that the internaliza-
tion of AMPARs is associated with changes in tau function
induced by phosphorylation at the individual serine 396 residue.
This appears to be a critical event during a serial LTD signaling
cascade and paves the way for further examination of tau phos-
phorylation in a physiological, rather than a pathological, sense.
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