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Although vestibular disorders are common and often disabling, they remain difficult to diagnose and treat. For these reasons, consider-
able interest has been focused on developing new ways to identify peripheral and central vestibular abnormalities and on new therapeutic
options that could benefit the numerous patients who remain symptomatic despite optimal therapy. In this review, I focus on the
potential utility of psychophysical vestibular testing and vestibular prosthetics. The former offers a new diagnostic approach that may
prove to be superior to the current tests in some circumstances; the latter may be a way to provide the brain with information about head
motion that restores some elements of the information normally provided by the vestibular labyrinth.

Introduction

Diseases that affect the peripheral or cen-
tral vestibular system are very common
and are responsible for substantial morbid-
ity. Many of these disorders remain difficult
to diagnose and often are only minimally
amenable to medical or surgical therapy.
Here, I provide a brief overview of vestibular
physiology and pathophysiology and then
discuss two topics that offer the promise of
significant diagnostic and therapeutic ad-
vances—vestibular psychophysics, an in-
triguing way to diagnosis both peripheral
and central vestibular disorders, and vestib-
ular prosthetics, which could treat patients
with peripheral vestibular damage by pro-
viding information about head motion and
orientation directly to the brain through
electrical stimulation of the vestibular affer-
ent nerves.
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Overview of the vestibular system

Function

The peripheral vestibular system consists
of the vestibular labyrinth and the vestib-
ular portion of the eighth cranial nerve
(for review, see Liberman et al., 2010).
Three mutually perpendicular semicircu-
lar canals transduce angular head velocity
and two otolith organs (the saccule and
utricle), which are also approximately or-
thogonal, sense the vector sum of gravity
and linear acceleration (gravito-inertial
acceleration, GIA). These physical param-
eters are transduced by the stereocilia of
the hair cells (Torre et al., 1995) that are
embedded in the canal’s cupula (the cris-
tae) and the ototlith organ’s otoconial
membrane (the maculae). The semicircu-
lar canals are mechanical high-pass filters
and temporal integrators so, over the
physiologic range of frequencies, each cu-
pula’s deflection is proportional to the fil-
tered component of the angular head
velocity that is parallel to the canal’s rota-
tional axis. All hair cells in each canal are
aligned so deflection of the cupula bends
all stereocilia in that cristae in one of two
directions, resulting in either a decrease or
increase in the primary vestibular affer-
ent’s firing rate. The three canals in each

ear can therefore sense angular head ve-
locity in three dimensions and provide the
brain this information by modulating the
discharge rate of the ampullary nerves
about their nonzero resting rates. A semi-
circular canal prosthesis could therefore
approximate normal canal function by in-
creasing or decreasing the rate of electrical
stimulation applied to the canal ampul-
lary nerves based on the head’s angular
velocity. The otolith organs’ maculae are
sensitive to gravity and linear acceleration
and, with the head upright, they lie in
planes approximately parallel to gravity
(saccule) and the ground (utricle). Unlike
the canals, the stereocilia in different hair
cells are not aligned, but rather are ori-
ented radially and reverse their orienta-
tion at the striola. Head tilt or translation
therefore generates a complex pattern of
modulation in the firing rates of nerve fi-
bers innervating the otolith organs, so an
otolith prosthesis would need to provide
much more complex electrical stimula-
tion than a canal prosthesis (Suzuki et al.,
1969).

The central vestibular system in the
brainstem and cerebellum has four prin-
cipal features: (1) inhibitory commissural
connections between the vestibular nuclei
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on each side result in a “push-pull” mech-
anism whereby head rotation both excites
and disinhibits the ipsilateral vestibular
nuclei; (2) a temporal integrator called ve-
locity storage improves the low-frequency
dynamics of the central angular velocity
signal and mediates the otolith signal’s
effects on canal rotational cues, thereby
suppressing the postrotational signal
whenever the head’s rotational axis is not
aligned with gravity; (3) the cerebellar
nodulus and uvula synthesize canal-
mediated rotational and otolith-mediated
GIA cues and segregate the GIA signal into
its tilt and translational components and
these regions of the cerebellar vermis also
tonically inhibit the velocity storage net-
work in the brainstem via Purkinje cell
projections to the vestibular nuclei; and (4)
the cerebellar flocculus and ventral parafloc-
culus underlie the adaptive modification of
vestibular-mediated eye movements. Cen-
tral processing in infratentorial structures
generates relatively accurate estimates of
the head’s angular velocity, linear acceler-
ation, and orientation relative to gravity
(Angelaki and Yakusheva, 2009). These
neural estimates contribute to three be-
haviors: perception of head motion and
orientation, eye movements that stabilize
images on the retina during head motion
(the vestibulo-ocular reflex or VOR), and
postural reflexes. Vestibular perception
forms the basis of psychophysical testing
and reflects neural processing in the re-
gions of the thalamus and cerebral cortex
that receive projections from the vestibu-
lar nuclei and the cerebellum. The loca-
tion of the “vestibular cerebral cortex” in
humans remains controversial (Kahane et
al., 2003), but fMRI, electrical stimula-
tion, and other methods show that these
cortical areas broadly correspond to loca-
tions in the cerebral cortex of animals (lo-
cated primarily in the insular, parietal,
and temporal regions) that receive vestibu-
lar inputs and are involved in multisensory
integration (Lopez and Blanke, 2011).

Dysfunction

Vestibular disorders can be classified as
acute, chronic, and episodic (Bisdorff et
al., 2009). Acute disorders begin sud-
denly, usually with severe vertigo, nausea,
and ataxia, and are typically due to perma-
nent damage in the peripheral or central
vestibular system. Compensation in the
brain (Peusner et al., 2012) suppresses the
vertigo within days and gradually im-
proves (but never fully corrects) the dy-
namic vestibular deficits, which manifest
as imbalance and dizziness provoked by
head motion, visual flow stimuli, and

changes in head orientation. Acute pe-
ripheral damage is most commonly due to
viral infection or reactivation and the as-
sociated inflammation (Beyea at el., 2012)
and can affect the vestibular system (ves-
tibular neuritis) or the vestibular and au-
ditory systems (labyrinthitis). Although
these terms imply pathological localization,
it is uncertain whether these syndromes
damage the labyrinth (killing hair cells), the
afferent nerve (killing peripheral neurons),
or both. Acute central damage is usually vas-
cular in origin. Interestingly, lesions that
affect the brainstem or cerebellum cause
dizziness, but damage to vestibular regions
of the cerebral cortex does not (except for
possible rare exceptions; Brandt etal., 1995).
As expected, recovery from central lesions is
usually less complete than with peripheral
lesions because the brain structures required
for compensation are often damaged.

Chronic disorders are progressive and
present with gradually worsening imbal-
ance and head motion intolerance.
Chronic peripheral disorders that affect
one ear are usually slowly growing lesions
that damage the labyrinth or afferent
nerve, such as a vestibular schwannoma.
Chronic peripheral disorders are more
typically bilateral and can be due to oto-
toxins, aging, or other causes. Aside from
structural lesions that damage the eighth
nerve, chronic disorders primarily kill
hair cells in the labyrinth, so these patients
may benefit from a vestibular prosthesis
because the afferent innervation of the
labyrinth should remain electrically excit-
able despite hair cell loss and because bilat-
eral deficits result in more severe symptoms
than unilateral lesions. Chronic central dis-
orders are usually degenerative and most
commonly are inherited or sporadic spino-
cerebellar atrophies, but rarely are caused by
slowly growing brain tumors, toxins, or vi-
tamin deficiencies.

Episodic disorders cause recurrent
vertigo because of abrupt fluctuations in
vestibular function. Vestibular function is
often largely preserved with episodic syn-
dromes, so these disorders can be the most
difficult to diagnose using standard ves-
tibular tests. Developing new diagnostic
approaches is therefore particularly im-
portant for this large patient population.
Meniere’s disease (Merchant et al., 2005)
is one of the most common episodic pe-
ripheral disorders (prevalence of 0.2%);
its cause is unknown and it cannot be di-
agnosed until it has progressed signifi-
cantly (e.g., after hearing loss develops).
Episodic central vestibular disorders are
dominated by vestibular migraine (VM;
Kayan and Hood, 1984), a common vari-
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ant of migraine that occurs in >1% of the
population. In VM, migraines present
with dizziness in addition to or instead of
headaches and VM is responsible for
about 50% of dizziness in children and
about 9% in adults (Lempert and Neu-
hauser, 2009). The mechanism(s) that re-
late migraine to the vestibular system
remain uncertain despite (or because of)
the extensive interconnections between
the brain regions that generate migraine
and the vestibular system (e.g., the recipro-
cal innervation of the dorsal raphe nucleus
and locus ceruleus with the vestibular nu-
clei; for review, see Furman et al., 2013).
Other episodic central disorders are quite
rare and include inherited channelopathies
and seizures generated by foci within the
vestibular cerebral cortex.

Diagnosis of vestibular disorders:
psychophysics
Approaches to vestibular testing
Vestibular testing requires a stimulus to
activate the labyrinthine end organ(s) and
measurement of a vestibular-mediated
output (Fife et al., 2000). The lateral ca-
nals’ function is assessed by activating
them with a thermal (caloric) stimulus or
with rotation and by recording eye move-
ment (VOR) responses (Curthoys, 2012).
A newer approach involves head-thrust
testing using high acceleration head-on-
body rotations in the three primary canal
planes as the stimuli and the VOR as the
output (MacDougall et al., 2013). The
otolith organs are assessed with vestibular
evoked myogenic potential (VEMP) tests
using sound or vibration to activate the
saccule (cervical VEMP) or the utricle
(ocular VEMP) and measure cervical or
ocular muscle evoked electrical responses,
respectively (Young, 2013). Caloric and
VEMP tests activate one labyrinth at a
time, so they are particularly useful when
localizing dysfunction to one ear is critical
(e.g., when guiding ear surgery). These
tests can also be abnormal in both ears,
suggesting bilateral dysfunction. In con-
trast, all tests using motion stimuli simul-
taneously modulate activity in both ears,
so they generally offer less localizing infor-
mation, although they can almost always
segregate unilateral from bilateral damage.
Head-thrust tests largely overcome this de-
ficiency by using high-acceleration rota-
tions that drive the afferent discharge rate
from one ear to zero, producing asymmetric
VOR responses that are smaller when the
head is rotated in the direction that activates
the damaged canal.

Because 30% of patients with vestibu-
lar symptoms cannot be diagnosed using
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Figure1. A, Perceptual thresholdsin normal subjects (X's fit by line), patients with no vestibular function (+'s), and patients with idiopathic bilateral vestibulopathy (circular and square icons)

foryaw rotation, roll tilt, Z (superior-inferior) translation, and ¥ (interaural) translation (reprinted with permission from Priesol et al., 2014). B, Perceptual thresholds (in degrees) during roll tilt about
an earth-horizontal axis at a frequency of 0.1 Hz for 8 subjects who were normal, had a history of migraine, or a history of vestibular migraine, all tested while asymptomatic (reprinted with

permission from Lewis et al., 2011b).

currently available tests (Agrawal et al,
2009), research has focused on developing
new ways to evaluate vestibular function.
Current tests are probably insensitive be-
cause patients primarily experience per-
ceptual symptoms (e.g., vertigo), whereas
tests evaluate vestibulo-ocular and spinal
reflexes rather than vestibular-mediated
perception. Furthermore, psychophysical
studies probe the thalamic and cerebro-
cortical regions and could provide diag-
nostic information unavailable at the
vestibulo-ocular or vestibulo-spinal lev-
els. Specifically, different afferent signals
could be supplied to supratentorial and
infratentorial structures, these brain re-
gions could process vestibular inputs dif-
ferently, or dysfunction in supratentorial
processing could be directly responsible
for vestibular symptomatology. All three
of these putative mechanisms are poten-
tially contributory because neurons in the
vestibular nuclei that project to the thala-
mus differ from those that project to the oc-
ular motor nuclei (Cullen, 2012); behavioral
studies indicate that the perception of mo-
tion is primarily based on integrating canal
and otolith cues, whereas eye movements
are primarily determined by head motion
frequency (Merfeld et al., 2005) and fMRI of
patients with vestibular symptoms can show
abnormalities isolated to supratentorial
structures (Russo et al., 2014).

Vestibular psychophysics

Psychophysical testing can quantify sev-
eral elements of the vestibular percept.
Perceptual thresholds are the smallest ves-
tibular stimulus the brain can distinguish
from the noise inherent in vestibular pro-
cessing (Grabherr et al., 2008). Figure 1A
shows perceptual thresholds for normal
subjects (X’s) and patients with no vestib-
ular function (+’s) as a function of fre-
quency for motions that isolate the canals
(yaw rotation) or otoliths [Y (interaural)
and Z (superior-inferior) translation],
and for combined canal-otolith stimula-
tion (roll tilt; Valko et al., 2012; Priesol et
al., 2014). As expected, thresholds were
larger in subjects with no vestibular func-
tion for all motion protocols, but this dif-
ference was most pronounced for yaw
rotation and Z translation. Patients with
peripheral vestibular damage should have
thresholds that fall between the boundar-
ies set by the normal and vestibular-
absent subjects for one or more motion
paradigms, depending on the distribution
of damage. The peripheral disorder called
idiopathic bilateral vestibular hypofunc-
tion (iBVH; Baloh et al., 1989), for exam-
ple, is characterized by death of hair cells
in the vestibular labyrinth and functional
deficits in this disorder have been evalu-
ated using combinations of head rotation,
caloric, and VEMP tests. Although the re-

sults of these studies have been contradic-
tory (Zingler et al., 2008; Fujimoto et al.,
2009), iBVH patients tested with percep-
tual thresholds (squares/circles in Fig. 1A)
show a consistent pattern of changes sug-
gesting that labyrinthine damage is pri-
marily localized to the lateral canals and
utricles (as evidenced by increased thresh-
olds for yaw rotation and low-frequency Y
translation; Priesol et al., 2014). Further
studies are needed to compare the sensitiv-
ity of perceptual and reflexive measures to
identify peripheral vestibular damage, for
example, comparing Zand Y axis thresholds
with cervical and ocular VEMPs, respec-
tively (Agrawal et al., 2013).

The most common central vestibular
disorder is VM and interictal thresholds in
these subjects appear to be abnormally low
during midfrequency roll tilt (Lewis et al.,
2011a, 2011b; Fig. 1B). Control studies us-
ing roll rotation while supine (canal-only
stimulus) and very slow, “quasi-static” roll
tilt (otolith-only stimuli) demonstrated
equivalent thresholds in the VM, migraine,
and normal groups (Lewis et al., 2011a).
Although these results are preliminary,
they suggest that abnormally low roll tilt
perceptual thresholds may distinguish
VM from control groups and could be-
come a pathognomonic finding for this
disorder, which currently lacks specific di-
agnostic findings. This threshold reduc-
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tion is consistent with the more general
sensitization to sensory stimuli associated
with migraine (Schwedt, 2013) and the
specificity to roll tilt at midfrequencies,
where the contribution of nonlinear in-
teractions between canal and otolith in-
puts are prominent, suggests that the
central synthesis of canal and otolith sig-
nals may be the underlying abnormality
(King et al., 2014). Because canal-otolith
integration occurs in the cerebellar nodu-
lus and uvula (Angelaki and Yakusheva,
2009), these results suggest a possible an-
atomic locus for vestibular dysfunction in
VM. More generally, disorders such as
VM that affect central vestibular process-
ing directly may be the type of clinical ves-
tibular problem most amenable to
diagnosis using perceptual thresholds.

The magnitude and dynamics of the
vestibular percept can also be measured.
In normal subjects, for example, the per-
cept of yaw rotation and the VOR decay
similarly over time, implying that both re-
sponses share processing by the velocity
storage integrator (Bertolini et al., 2011).
After a unilateral peripheral lesion, how-
ever, the amplitude and dynamics of the
rotational percept deviate from the VOR
as the percept becomes smaller and decays
more rapidly (Cousins et al., 2013). This
finding’s significance is uncertain but may
reflect cerebral mechanisms that suppress
the abnormal percept of vertigo, possibly
through cortical habituation (Cousins et al,
2013). Consistent with these human stud-
ies, our preliminary experiments in rhesus
monkeys demonstrated a discrepancy be-
tween the duration of the percept of head
tilt and the nystagmus evoked by intral-
abyrinthine electrical stimulation, with
the former decaying faster (Lewis et al.,
2013a). These results suggest that psycho-
physical testing could help to explain why
vestibular symptoms frequently diverge
from objective, reflex-based test results.
Patients who lose peripheral vestibular
function, for example, remain subjectively
dizzier if they have a history of migraines,
even though objective measures do not
demonstrate a similar discrepancy between
vestibulopathic migraine and nonmigraine
populations (Wrisley et al., 2002). This
could be a clinical analog to these exper-
imental findings showing that the mag-
nitude of patient’s percepts/symptoms
deviates from their abnormal reflexes/
signs because of changes in thalamic or
cerebral processing that are accessible
only through perceptual testing.

The brain normally synthesizes vestib-
ular information with visual, auditory,
and other sensory and motor cues to gen-

erate a stable and accurate percept of head
motion and orientation. Psychophysical
methods can assess multisensory integra-
tion by quantifying the temporal binding
window (TBW) for vestibular and non-
vestibular sensory cues, defined as the
largest time difference between two sen-
sory stimuli where they are still perceived
as simultaneous (Vroomen and Keetels,
2010). Prior studies have estimated the
TBW for vestibular and auditory stimuli
(Barnett-Cowan and Harris, 2009; Chang
et at., 2012), for example, and suggest a
relationship between the TBW width and
the severity of motion sickness because
subjects with higher levels of motion in-
tolerance had larger binding windows
(Hullar et al., 2012). This observation
raises many interesting questions regard-
ing the possible influence of temporal
binding on vestibular symptomatology.
Do patients experience “dizziness” be-
cause they fail to temporally bind vestibu-
lar and nonvestibular singals that are from
derived from one event or because they
abnormally bind sensory cues caused by
distinct events? If abnormal TBWs cause
vestibular symptomatology, adaptive mod-
ification of TBW (Vroomen et al., 2004)
may open new therapeutic approaches for
patients with these syndromes. Further-
more, multimodal integration of different
percepts that can be assessed with temporal
binding methods may prove to be abnormal
in some patients with dizziness that cannot
be diagnosed with any other measure.
Chronic subjective dizziness, for example, is
a disorder characterized by persistent dizzi-
ness without any objective abnormalities
(Ruckenstein and Staab, 2009), but it may
be that we are measuring the wrong things
in these patients.

Treatment of vestibular
disorders: prosthetics

Overview

Peripheral vestibular damage is usually
permanent and treatment is limited to
vestibular physical therapy, which seeks to
maximize central compensation (Cabrera
Kang and Tusa, 2013). Patients with
severe peripheral vestibular deficits, how-
ever, usually have persistent visual, pos-
tural, and perceptual symptoms despite
therapy. To address this problem, increas-
ing interest has focused on the develop-
ment and implementation of vestibular
prosthetics (Dakin et al., 2013). As noted
above, this work concentrates on simulat-
ing semicircular canal function because of
the complex hair cell organization in the
otolithic maculae. The guiding principal
is that a canal prosthesis that senses angular
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head velocity and provides this information
to the brain by stimulating semicircular ca-
nal afferents could potentially improve
vestibular-mediated behaviors if the periph-
eral disorder is characterized by hair cell
death but preservation of electrically excit-
able primary vestibular afferents (Hirvonen
etal., 2005).

Technical development

The prototype canal prosthesis (Gong and
Merfeld, 2000) consists of a rate sensor
that measures angular head velocity about
one rotational axis, an electrode im-
planted in one canal near the ampulla, and
the circuitry and power needed to provide
electrical stimulation to the implanted
electrode based on the velocity measured
by the sensor. To provide bidirectional
motion cues to the brain with a unilateral
implant, the prototype prosthesis pro-
vided a tonic rate of electrical stimulation
(250 pulses/s) that was well above the nor-
mal baseline firing rate of the canal affer-
ent nerve. It was hypothesized and
subsequently demonstrated that the brain
adapts to the imbalance in vestibular tone
produced by artificially increased tonic
firing rates in one ear (Lewis et al., 2013b)
and that stimulation could modulate
down (to the baseline discharge rate of the
afferents, about 100 spikes/s) or up (to
their maximal firing rate, about 450
spikes/s) to signal the direction of head
rotation away or toward the implanted
ear, respectively (Merfeld et al., 2007).
The basic unit of stimulation was bipha-
sic, charge-balance current pulses and an-
gular head velocity was encoded by
changing the rate that these pulses were
applied to the ampullary nerve, similar to
normal rate coding of angular head veloc-
ity by the canals. Many technical develop-
ments have subsequently enhanced the
capabilities of the prosthesis: multisite
electrodes (Nie et al., 2013; Valentin et al.,
2013) provide more precise stimulation
with more constrained current paths
(4,5); 3D canal prosthetics extended the
1D prototype with three angular velocity
sensors, each aligned with the sensitive
axis of a canal and controlling the rate
of stimulation applied by the electrode
implanted in the corresponding canal
(Chiang et al., 2011; Dai et al., 2011); and
software has been developed that aligns
the rotational axis of the eyes to that of the
head by combining stimulation from two
or three electrodes to correct the eye’s axis
(Davidovics et al., 2013).
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Transferring information to the brain
Despite extensive study, the optimal way
to transfer angular head velocity informa-
tion to the brain remains uncertain.
Although unilateral implantation can
provide bidirectional rotational cues by
using a relatively high baseline stimula-
tion rate, behavioral measures of the VOR
(Lewis et al., 2010) show that the vestibu-
lar system rapidly becomes less sensitive
to the high-frequency electrical stimula-
tion. Single unit recordings suggest that
this reflects reduced sensitivity at the syn-
apse between the primary afferent and the
vestibular nucleus neuron in a manner
consistent with LTD (Mitchell et al.,
2014). Interestingly, plasticity in the com-
missural connections appear to partially
compensate for this LTD because the con-
tralateral neurons contributing to this
feedback loop do not show an increased
firing rate predicted by depression of the
ipsilateral neuron (Mitchell et al., 2015).
Studies that have investigated how to ex-
tend the prostheses’ dynamic range in-
clude amplitude coding (Perez Fornos et
al., 2014), combined rate and amplitude
coding (Davidovics et al., 2012), filtering
the velocity signal (Lewis et al., 2010), re-
ducing tonic stimulation rates (Dai et al.,
2011), and using DC stimulation to lower
baseline discharge rates of the primary af-
ferents (Fridman et al., 2013). It remains
unclear which of these approaches will
prove to be the most effective.

A second problem is determining
whether electrical stimulation can pro-
duce activity in primary afferents similar
to normal physiologic activity, which may
optimize the prostheses’ behavioral bene-
fits. Because current paths appear to be
highly constrained, afferent activity is
probably not uniform throughout the
nerve, but rather focused near the stimu-
lation site(s). Furthermore, irregular af-
ferents, which are more phasic, are likely
recruited at lower current levels than reg-
ular afferents, which are more tonic
(Goldberg et al., 1984). To activate fibers
relatively independently of their anatomic
location or regularity, the prosthesis
should therefore provide fairly high cur-
rents. Conversely, strong electrical stimuli
would likely entrain the afferent fibers so
that they discharge in temporal synchrony
and preliminary recordings in primary af-
ferents and vestibular nuclei neurons sup-
port this contention (Mitchell et al.,
2013a). Such nonphysiologic firing pat-
terns could affect vestibular-mediated be-
haviors and one possible way to disrupt
this synchrony would involve superim-
posing a very high (e.g., 5 kHz) pulse train

on the motion-modulated stimulus. This
type of stimulation may generate random
spike activity in sensory afferents and de-
synchronize their discharges, adding
noise to the afferent signal (Rubinstein et
al., 1999), which could be titrated to po-
tentiate the sensitivity of the prosthesis by
inducing stochastic resonance (Collins et
al., 1996).

Behavioral experiments
Behavioral experiments are necessary to
determine whether prosthetic stimulation
can improve oculomotor, perceptual, and
postural performance in subjects with se-
vere vestibular damage. More specifically:
Can the prosthesis generate a VOR with
normal kinematic features? Can the pros-
thetic signal can be synthesized with other
sensory signals in a manner that recapitu-
lates normal sensory integration? Can it
can contribute to complex, multimodal
behaviors such as spatial perception and
postural control? Another important is-
sue is the behavioral manifestations of a
canal prosthesis when there is no comple-
mentary otolith input.

1D and 3D prostheses can produce 1D
and 3D VOR responses that compensate
for head motion (Lewis et al., 2010; Dai et
al., 2011, Perez Fornos et al., 2014) and
these eye movements should reduce the
illusion of visual motion (oscillopsia) that
vestibulopathic subjects experience dur-
ing head movements. Although the am-
plitude of the prosthesis-mediated VOR
can be tuned by increasing stimulation
currents, its dynamics are not normal be-
cause its low-frequency performance is
considerably worse than the normal VOR
(Lewis et al., 2010). This dynamic abnor-
mality could reflect LTD from the high-
frequency tonic stimulation or other
nonphysiologic characteristics of the af-
ferent activity such as highly synchronized
firing, which could correlate noise in the
fibers and thereby reduce the velocity
storage integrator’s efficacy (Karmali and
Merfeld, 2012). Because the VOR primar-
ily contributes to vision during high-
frequency head movements, however, the
aberrant low-frequency dynamics are
probably not functionally significant.

Sensory integration can be evaluated
by measuring the effects of the GIA signal
provided by the otolith organs and visual
signals on prosthetic VOR responses. The
“canal-otolith” interaction is a critical as-
pect of central vestibular processing (An-
gelaki et al., 1999) because it is considered
the mechanism used by the brain to dis-
criminate head tilt from translation. It can
be investigated at the oculomotor level by
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measuring the VOR’s spatial orientation
characteristics whereby the eye’s rota-
tional axis shifts to align with the GIA
(Angelaki and Hess, 1994). Similar behav-
ior was observed with the prosthesis be-
cause the prosthetic VOR’s axis shifted
toward alignment with gravity when the
head was tilted (Fig. 2A; Lewis et al,
2012). Visual signals must be capable of
modifying the prosthetic VOR to optimize
its kinematic features and experiments have
demonstrated visually mediated adaptation
because both the amplitude (gain) and
direction (axis) of the eye movement re-
sponse improves during chronic pros-
thetic stimulation (Lewis et al., 2010;
Dai et al., 2013).

Perceptual responses have been dem-
onstrated in rhesus monkeys trained to
perform a subjective visual vertical (SVV)
task (rotating a light bar parallel to grav-
ity; Lewis et al., 2008) and then tested with
and without prosthetic stimulation. Fig-
ure 2B illustrates that electrical stimula-
tion in one posterior canal produced an
SVV deviation contralateral to the stimu-
lated ear, consistent with a misperception
of roll tilt in the appropriate direction
(Lewis et al., 2013a). Furthermore, pre-
liminary data from a monkey with bilat-
eral vestibular ablation showed that SVV
responses during dynamic roll tilts im-
proved when prosthetic stimulation was
provided (Thompson et al., 2012). Be-
cause gravity is normally sensed by the
otolith organs, the presumptive mecha-
nism underlying these findings is that the
brain temporally integrates the angular
velocity signal provided by the prosthesis
to yield head position information, the
same mechanism postulated to occur in
normal subjects (Angelaki and Hess,
1994; Merfeld et al., 1999).

Vestibular signals may contribute to
postural control by providing the brain
with an accurate estimate of head orienta-
tion relative to gravity, which is combined
with information encoding head orienta-
tion relative to the body to produce an
internal estimate of body orientation rel-
ative to gravity (Stapley et al., 2006). Be-
cause perceptual studies suggest that
prosthetic stimulation improves the first
step of this process, a reasonable assump-
tion is that it would similarly improve
postural control. Little data are available
to date to support this contention. In hu-
mans, postural sway appears to align with
the orientation of the stimulated canal
(Phillips et al., 2013), demonstrating that
postural responses in humans can be
modified with electrical stimulation of in-
dividual canals. Furthermore, prosthetic
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Figure2. A, Slow phase velocity of eye movements induced in a squirrel monkey when one lateral canal was electrically stimulated with the animal either upright or statically tilted 45°in roll to
aright-ear-down orientation. Arrows indicate the orientation of gravity relative to the head and lines show the maximal shift in the eye’s rotational axis. Data are shown in polar coordinates, with
horizontal eye velocity on the y-axis and vertical velocity on the x-axis (reprinted with permission from Lewis et al., 2012). B, SVV response in a rhesus monkey before, during, and after electrical
stimulation of one posterior canal at a rate of either 60 or 150 pulses/s. SVV responses deviated away from the stimulated ear during the period of stimulation (which is indicated by the vertical
dashed lines). The solid line is the mean and the gray zone is one SE for the SVV response measured during seven stimulation trials for each of the two rates, in a single monkey (reprinted with

permission from Lewis et al., 2013a).

stimulation in monkeys generates head
turns that appear to have physiologic
characteristics and contribute to gaze
shifts (Mitchell et al., 2013b). Finally, pre-
liminary data from a vestibulopathic
monkey suggests that postural stability
during visually guided head turns is im-
proved by prosthetic stimulation (Lewis et
al., 2011). Although these reports are en-
couraging, more definitive perceptual and
postural experiments are needed to deter-
mine whether subjects with severe vestibu-
lar ablation would benefit from prosthetic
stimulation in a manner that extends be-
yond an improved VOR.

How does the brain interpret rota-
tional cues provided by the canal prosthe-
sis without a complementary GIA signal?
Almost all natural behaviors modulate ac-
tivity in the canals and otolith organs con-
currently and therefore require central
integration of angular velocity and GIA
information. Peripheral vestibular dam-

age typically affects both canals and oto-
lith organs, however, and if a prosthesis
simulates the former but not the latter, it
remains unclear whether spatial orienta-
tion and postural control will benefit. In
fact, decoupling rotational and GIA in-
puts may result in aberrant estimates of
linear acceleration whenever the axis of
the head rotation is not precisely aligned
with gravity (Angelaki et al., 1999; Mer-
feld et al., 1999). This is because pro-
sthesis-mediated angular velocity inputs
affect estimated head orientation (the “G”
in “GIA”; see above), but the GIA signal
sensed by damaged otoliths would not
modulate normally, so a central estimate
of linear acceleration (the “A” in “GIA”)
would be needed to keep the GIA signal
provided by the otoliths consistent with the
brain’s estimate of head orientation. Prelim-
inary experiments in monkeys indeed show
evidence of a misperception of linear ac-
celeration (observable in eye movement

responses) when stimulation is provided
to one posterior canal. This experiment
was done in monkeys with normal inner
ear function, so it would be important to
determine whether this response persists af-
ter a chronic loss of vestibular function, a
more clinically relevant situation. This nor-
mal central linkage between rotational and
GIA signals may be degraded when periph-
eral vestibular function is absent chroni-
cally, similar to the situation astronauts
experience after chronic exposure to micro-
gravity (Cohen et al., 2005).

Summary and conclusions

An emerging literature suggests that psy-
chophysical testing can offer insights into
peripheral and central vestibular pro-
cessing not available from standard
vestibulo-ocular and vestibulo-spinal tests.
To develop vestibular psychophysics as a di-
agnostic tool, the principal challenge is to
build on the available normative data base
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by applying perceptual methods to specific
vestibular problems, an approach that should
expand the understanding of vestibular patho-
physiology while yielding new ways to diag-
nose clinical vestibular disorders.

Canal prosthetics can produce an an-
gular VOR that should improve vision
during head motion, but it remains un-
clear whether it can improve spatial orien-
tation and balance. Progress will depend
on optimizing the efficacy of information
transfer from the sensors to the brain and
determining the effects of prosthetic stim-
ulation on perception and posture. An
otolith prosthesis or GIA “sensory substi-
tution” device (Vuillerme et al., 2011)
may ultimately be required in addition to
a canal prosthesis to maximize these more
complex behaviors.
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