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Prenatal drug exposure, particularly prenatal cocaine exposure (PCE), incurs great public and scientific interest because of its associated
neurodevelopmental consequences. However, the neural underpinnings of PCE remain essentially uncharted, and existing studies in
school-aged children and adolescents are confounded greatly by postnatal environmental factors. In this study, leveraging a large
neonate sample (N � 152) and non-invasive resting-state functional magnetic resonance imaging, we compared human infants with PCE
comorbid with other drugs (such as nicotine, alcohol, marijuana, and antidepressant) with infants with similar non-cocaine poly drug
exposure and drug-free controls. We aimed to characterize the neural correlates of PCE based on functional connectivity measurements
of the amygdala and insula at the earliest stage of development. Our results revealed common drug exposure-related connectivity
disruptions within the amygdala–frontal, insula–frontal, and insula–sensorimotor circuits. Moreover, a cocaine-specific effect was
detected within a subregion of the amygdala–frontal network. This pathway is thought to play an important role in arousal regulation,
which has been shown to be irregular in PCE infants and adolescents. These novel results provide the earliest human-based functional
delineations of the neural-developmental consequences of prenatal drug exposure and thus open a new window for the advancement of
effective strategies aimed at early risk identification and intervention.
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Introduction
Prenatal drug exposure is a significant public health concern.
Particularly, prenatal cocaine exposure (PCE) has attracted con-
siderable attention given its well documented influence on devel-
opmental and behavioral outcomes (Lambert and Bauer, 2012).
However, the neural correlates of PCE in humans have been
scarcely studied, and the results are inconsistent. The few existing
studies are limited to late childhood (Smith et al., 2001; Dow-
Edwards et al., 2006) and adolescence (Rao et al., 2007; Hurt et al.,
2008; Sheinkopf et al., 2009; Li et al., 2011, 2013), which, although
informative, are likely confounded by adverse postnatal environ-
mental circumstances that often accompany maternal drug use
(Yumoto et al., 2008; Eiden et al., 2014). However, deficits in
attention and arousal regulation have been observed readily in
neonates with PCE (Bard et al., 2000; Lester et al., 2002; Eiden et
al., 2009), suggesting the earliest existence of drug-related devel-

opmental effects. Therefore, it is imperative to delineate the neu-
ral underpinnings of PCE during the earliest stages of brain
development.

Previous neuroimaging studies of PCE in infants are mostly
limited to structural explorations (Grewen et al., 2014). However,
the brain undergoes dramatic functional development prenatally
(Doria et al., 2010; Thomason et al., 2013; Gao et al., 2014a,b), so
it is likely that PCE has already left a footprint on the functional
organization of the brain before birth. Indeed, neonatal electro-
encephalography (EEG) studies show delayed brain functional
maturation and reduced interhemispheric functional connectiv-
ity in 1-month-old infants with PCE (Scher et al., 2000; Lester et
al., 2003). Compared with EEG, recent advances in the resting-
state functional magnetic resonance imaging (rsfMRI) technique
offer an improved opportunity to non-invasively probe the func-
tional organization of the whole brain during infancy (Gao et al.,
2009, 2011, 2013, 2014a, 2015; Smyser et al., 2010; Fransson et al.,
2011). Therefore, rsfMRI-based explorations in neonates would
likely further advance our understanding of the neural correlates
of PCE and potentially facilitate future intervention efforts.

In this study, three groups of neonates underwent rsfMRI
scans: (1) 45 PCE infants with or without in utero exposure to
marijuana, alcohol, nicotine, antidepressant [serotonin-specific
reuptake inhibitor (SSRI)], and others; (2) 43 with in utero expo-
sure to some combination of non-cocaine drugs (NCOC); and
(3) 64 drug-free controls (CTR). Functional connectivity analy-
ses were done based on two regions of interest, the amygdala and
the insula. These two regions were selected because of the follow-
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ing: (1) they experience the earliest prenatal structural and func-
tional growth (Ulfig et al., 2003; Afif et al., 2007); and (2)
disruptions of their functional connectivity have been reported in
both cocaine-dependent adults (Gu et al., 2010; Cisler et al., 2013;
McHugh et al., 2013) and adolescents with PCE (Li et al., 2011,
2013). Given the observed arousal dysregulation in neonates with
PCE, we hypothesized that PCE-related alterations in brain con-
nectivity would also be present, particularly between the areas of
the amygdala/insula and prefrontal cortex (PFC; Cisler et al.,
2013; Li et al., 2013). Moreover, we predicted cocaine-specific
alterations in connectivity compared with other drugs.

Materials and Methods
Participants. Infants were part of an ongoing study of the neurodevelop-
mental effects of PCE. Results reported here include 152 infants. Inclu-
sion/exclusion criteria have been described previously (Grewen et al.,
2014). One hundred nineteen infants (33 for PCE, 40 for NCOC, and 46
for CTL) completing the neonatal MRI scan with good data were in-
cluded in the study by Grewen et al., whereas the current study used a
larger sample that included an additional 33 infants (12 for PCE, 3 for
NCOC, and 18 for CTL). Pregnant women were recruited in the third
trimester of pregnancy. Primary recruitment sites for PCE and NCOC
participants were local residential and outpatient treatment programs for
women with perinatal substance abuse and their children. Specifically,
we recruited both CTR and drug-exposed mothers from Chatham, Or-
ange, Durham, Alamance, and Wake County Health Department obstet-
ric clinics, the University of North Carolina hospital low-income
obstetrics clinic, and flyers, local advertisements, and Craigslist. All par-
ticipants were tested for perinatal drug use using interviews, medical
record review, and postnatal urine toxicology at study visits. Drug-use
status was based on three criteria: (1) self-report on a time-line follow-
back interview conducted at 1 month postpartum; (2) response to a
questionnaire about maternal substance use done at 3 months; and (3)
medical record queries of prenatal urine toxicology. Maternal self-report
or positive urine toxicology for cocaine qualified the mother–infant dyad
for PCE status. The study sample (N � 152, 77 males and 75 females)
consisted of the following: (1) 45 infants from the PCE group; (2) 43
infants from the NCOC group; and (3) 64 infants from the CTR group.
Participants were further characterized according to gestational age at
birth, postnatal age (gestational age at scan), and birth weight. Birth
weight data were unavailable for two participants. Prenatal and postnatal
categorical drug use was characterized in the drug-using groups. Postna-
tal drug exposure information (i.e., postnatal maternal drug use plus
feeding mode) was available for a subset of the cohort. Approximately
half (n � 77) of the mothers breastfed exclusively or in combination with
formula. Postnatal maternal drug use was minimal for cocaine (n � 2),
marijuana (n � 4), alcohol (n � 7), and other (n � 10) and was moderate
for nicotine (n � 38). The numbers of neonates exposed to the combi-
nation of postnatal maternal drug use and breastfeeding (i.e., with effec-
tive postnatal drug exposure) were n � 0 for cocaine, n � 0 for
marijuana, n � 2 for alcohol (1 for CTR and 1 for NCOC), n � 3 for other
(1 for PCE and 2 for NCOC), and n � 17 for nicotine (9 for PCE and 8 for
NCOC). Therefore, postnatal drug exposure is present in a small subset
and thus likely has minimal effects on the functional connectivity analy-
sis. Note, however, that postnatal nicotine exposure from second-hand
smoke inhalation represents an alternative pathway for effective postna-
tal exposure. Nevertheless, because of the inherent difficulty in the eval-
uation and quantification of this channel of exposure, its effects are hard
to characterize and are beyond the scope of this study. We obtained
information on family income and maternal education, as well as mater-
nal depression levels. However, income is unlikely to be a faithful repre-
sentation of socioeconomic status (SES) because of the fact that a large
number of drug-using women in the sample were living in residential
treatment for varying lengths of time during pregnancy and postpartum.
Therefore, even if family income was zero, mother–infant dyads still had
a safe, violence-free place to live and all basic needs met, unlike women
living in the community. Thus, maternal education (n � 123) and de-
pression level (n � 147) were used as potential explanatory variables to

test the effects of environmental factors (SES and caregiver traits). Spe-
cifically, maternal education was determined by self-report and ranged
from some high school to postgraduate work in this sample. Rank scores
were as follows: 3, some high school; 4, graduated from high school; 5,
trade school or business college; 6, some college; 7, graduated with a 4
year college degree; and 8, postgraduate work at a university. Maternal
depression level was determined by scores on the Edinburgh Postnatal
Depression Scale and was measured at the time of the infant MRI (2– 4
weeks postpartum). Participant (mother and infant) characteristics were
compared statistically: group means were compared using the ANOVA
method, and group proportions were tested using the � 2 statistic (� 2

with Yates’ correction for continuity). This study was approved by the
Biomedical Institutional Review Board of the University of North Caro-
lina at Chapel Hill.

Imaging and preprocessing. Before imaging, each participant was fed,
swaddled, and fitted with ear protection. Subjects were not sedated but
slept during image acquisition. Head position was secured in the scanner
using a vacuum-fixation device. Vital signs (heart rate, SaO2) were mon-
itored continuously by a nurse throughout the examination. Data were
collected using two scanners: (1) 3T head-only Siemens Allegra with
circular polarization head coil (n � 89; 14 for PCE, 34 for NCOC, and 41
for CTR); and (2) 3T Siemens Tim Trio with 32-channel head coil (n �
63; 31 for PCE, 9 for NCOC, and 23 for CTR. T1-weighted structural
images were collected using a 3D magnetization-prepared rapid acquisi-
tion gradient echo pulse sequences: repetition time (TR), 1820 ms; echo
time (TE), 3.75 ms; inversion time, 1100 ms; flip angle, 7 o; 144 slices;
voxel size, 1 mm 3. A small number of subjects (n � 5) were excluded as
a result of severe motion during the anatomical acquisition. rsfMRIs
were acquired using a T2*-weighted echo planar imaging pulse sequence:
TR, 2 s; TE, 32 ms; 33 slices; voxel size, 4 mm 3; number of volumes, 150
(5 min). Subjects were excluded (n � 8) if the final number of volumes
was �90 after data preprocessing (see below, Functional connectivity
analyses).

Functional data were preprocessed using a common pipeline in the
FMRIB (for Functional MRI of the Brain) Software Library (FSL; version
4.1.9) (Jenkinson et al., 2012). Steps included discarding the first 10
volumes (20 s), slice-timing correction, rigid-body motion correction,
spatial smoothing (Gaussian kernel FWHM of 6 mm), bandpass filtering
(0.01– 0.08 Hz), and regression of whole brain [global signal regression
(GSR)], white matter, CSF, and the six motion parameters. Data scrub-
bing was also implemented; scrubbing criteria, 0.5% signal change and
0.5 mm framewise displacement (Power et al., 2012). Scrubbing pa-
rameters (volumes removed and residual framewise displacement)
were compared at the group level using the ANOVA method. FSL and
the Analysis of Functional NeuroImages software suite (AFNI version
2011-12-21-1014; Cox, 1996) were used to process the structural im-
ages. Structural image skull stripping was done using a two-step pro-
cess. First, FSL-bet2 (options: –f 0.3 – g –1.0) was used to perform an
initial skull strip, and then the result was bolstered using the AFNI
script @NoisySkullStrip (options: – use_skull – blur_fwhm 1 –init_ra-
dius 25). Alignment of functional data into a common space involved
two steps: (1) within-subject rigid alignment [FSL FLIRT (for FMRIB
Linear Image Restoration Tool)] between functional and T1-weighted
images; and (2) nonlinear [FSL FNIRT (for FMRIB Nonlinear Image
Registration Tool)] registration of the T1-weighted images to a T1-
weighted template image acquired from an independent subject scanned
at 2 weeks of age. The combined transformation field (linear plus non-
linear) was used to warp the preprocessed rsfMRI data to the template
space. Alignment was inspected visually for quality across all subjects.
Amygdala and insula regions were defined using the Harvard–Oxford
probabilistic atlas (Desikan et al., 2006) provided with FSL. The atlas was
warped into the study-specific template space using 4D HAMMER (Shen
and Davatzikos, 2004).

Functional connectivity analyses. Standard seed-based whole-brain
functional connectivity analyses were performed using the temporal cor-
relation method (Biswal et al., 1995). Briefly, for each seed region, the
average BOLD time series was computed and then cross-correlated with
the time series of every voxel in the brain. This resulted in a seed-specific
correlation value—signifying functional connectivity—for each subject
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and voxel. The voxelwise correlation values were Fisher’s Z-transformed
and then compared within groups to generate connectivity maps corre-
sponding to each group and seed region. Within-group comparisons
were performed using a voxelwise one-sample t test. Inclusion of a voxel
in the whole-brain significant connectivity map was determined using
the “combined approach” (Forman et al., 1995). Briefly, the combined
approach attempts to correct for the multiple comparison problem
(number of voxels) by estimating the probability of false-positive clusters
in the data. More specifically, a p value threshold and a cluster size thresh-
old are “combined” to form an � threshold, i.e., a corrected probability of
detecting a type I error. The combined approach requires an estimate of
the smoothness in the data that were acquired using the preprocessed
rsfRMI data from all subjects (the AFNI program 3dFWHMx). The final
whole-brain combined threshold setting was as follows (� � 0.05): p �
0.01; cluster size, 32 voxels; nearest neighbor (NN) clustering, 3. Voxel-
wise multivariate modeling (the AFNI program 3dMVM) was used for
quantitative comparisons between groups at the whole-brain level.
3dMVM is a group-analysis program that performs ANOVA- and
ANCOVA-style computations (Chen et al., 2014). Explanatory variables
included group, gestational age, birth weight, postnatal age (gestational
age at scan), gender, and scanner. At this step, continuous variables (ges-
tational age, birth weight, and postnatal age) were mean centered within
group to control for within-group variations. Significant group main
effects were detected using the same combined statistical thresholding
approach outlined above, resulting in clusters with putative groupwise
differences after correcting for multiple comparisons.

For each identified cluster, the mean Z scores were extracted, and an
additional groupwise comparison was performed using ANOVA (the
MATLAB function anovan) to test the effects of all potential explanatory
variables. Specifically, gestational age at birth, postnatal age, birth weight,
scanner, gender, maternal education, and maternal depression level were
included in this full model. Here, none of the continuous variables were
mean centered so that we could explicitly model the contribution of
the combined within- and between-group differences of each variable to
the observed variations in functional connectivity. Significant ANOVA
main effects [i.e., p � 0.05 corrected for number of seeds (i.e., 4) based on
false discovery rate (FDR) correction (Benjamini and Yekutieli, 2001)]
were followed up with post hoc comparisons (the MATLAB function
multcompare, Dunn–Sidak corrected) on the marginal mean Z scores to
identify significant ( p � 0.05) pairwise differences. After analyses at the
whole-cluster level and after observing connectivity gradient differences
between PCE and NCOC, potential PCE-specific effects were further
investigated at the subcluster level. Specifically, the combined threshold-
ing approach described above was used again within the identified clus-
ters to detect potential subclusters showing significant differences
between PCE and NCOC using two-sample t tests (� � 0.05): p � 0.05;
cluster size, 11, 13, or 8 voxels for the three detected clusters, respectively
(see Fig. 5); NN clustering, 3.

Finally, the specificity of the amygdala and insula seed regions was
examined by using two additional seed regions that are generally unre-
lated to drug exposure: the left and right visual cortices. We expected no
significant group differences associated with these control seeds, and, if
tested to be true, our results would support the relative specific associa-
tion between the two hypothesized seeds and prenatal drug exposure.
Functional connectivity maps were visualized on a surface model (Caret
version 5.65; Van Essen et al., 2001) created from the University of North
Carolina neonate template (Shi et al., 2011). The surface model was aligned
to the template space using the AFNI script @SUMA_aligntoExperiment.
Connectivity differences for the drug-exposed groups were described
in relation to the CTR group. Hyperconnectivity and hypoconnectiv-
ity are indicative of positive or negative shifts in connectivity relative
to CTR for a given seed, respectively. However, we use the term
“disrupted connectivity” to describe both types of deviations from the
results of the non-exposed group.

Results
Participant characteristics
Summary statistics for gender, gestational age, postnatal age (age
at scan), birth weight, maternal education, maternal depression,
and categorical drug exposure were tabulated for each group (Ta-
ble 1). A � 2 test revealed no significant difference in gender dis-
tribution (p � 0.05). One-way ANOVA revealed group-level
differences (p � 0.05– 0.001) for gestational age, birth weight,
maternal education, and maternal depression. Effect sizes were
moderate for each main effect (�p

2 � 0.10 – 0.14). Post hoc com-
parisons revealed significant group differences (p � 0.05– 0.001,
Dunn–Sidak corrected) predominantly involving the PCE group.
Consistent with previous reports, infants in the PCE group were
born �7 d earlier and 14 ounces lighter than those in the NCOC
and CTR groups. Similarly, mothers from the PCE group had
lower education and higher depression levels. The NCOC group
followed a similar trend with the PCE group for both maternal
education and depression levels. Neither of the two variables dif-
fered between the PCE and NCOC groups. In subsequent analy-
ses, these variables and the categorical factors of scanner and
gender were included as potential explanatory variables in the
statistical models unless noted otherwise. Non-cocaine drug use
was similar between the PCE and NCOC groups (p � 0.05).
SSRIs and other (methadone, opiates, or suboxone) drug use
represented a slightly larger proportion in the PCE group (mar-
ginal significance, p � 0.05– 0.06). In the preprocessing pipeline,
“data scrubbing” was implemented to reduce the effect of motion
in the rsfMRI analyses. The number of volumes removed (Fig.

Table 1. Summary of participant characteristics

PCE NCOC CTR F or �2 p �p
2 PCE versus NCOC PCE versus CTR NCOC versus CTR

Infant
n (females) 45 (24) 43 (24) 64 (27) 1.67 0.433
Gestational age (d) 272 � 1.65 280 � 1.20 278 � 1.03 8.10 � 0.001 0.10 0.001 0.003 0.871
Postnatal age (d) 308 � 2.92 305 � 1.53 306 � 1.41 0.80 0.453 0.01
Birth weight (pounds) 6.70 � 0.15 7.51 � 0.17 7.59 � 0.12 11.03 � 0.001 0.13 �0.001 �0.001 0.971

Mother
Education (rank score)a 4.82 � 0.22 5.18 � 0.27 6.20 � 0.22 9.59 �0.001 0.14 0.719 �0.001 0.010
Depression (scale) 5.89 � 0.72 5.32 � 0.96 3.32 � 0.38 4.59 0.012 0.06 0.921 0.016 0.096

Drug exposure (n)
Nicotine 40 37 0.01 0.938
Alcohol 14 17 0.37 0.546
Marijuana 22 20 0.17 0.992
SSRIb 14 5 3.85 0.050
Otherc 15 6 3.54 0.060

aRank scores for maternal education: 3, some high school; 4, graduated from high school; 5, trade school or business college; 6, some college; 7, graduated with a 4 year college degree; and 8, postgraduate work at a university.
bAntidepressant.
cMethadone, opiates, or suboxone
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1A) and residual framewise displacement (Fig. 1B) were com-
pared using the ANOVA. The three neonate groups were found
to be statistically indistinguishable (number of volumes re-
moved, F(2,151) � 1.20, p � 0.304, �p

2 � 0.016; and residual frame-
wise displacement, F(2,151) � 0.25, p � 0.782, �p

2 � 0.003).

Amygdala and insula functional connectivity by
drug-exposure group
Functional connectivity maps (� � 0.05; see Materials and Meth-
ods) for the left amygdala (Fig. 2, left) and left insula (Fig. 2, right)
seed regions were generated and pseudocolored based on the group

mean Z score. Consistent with previous re-
ports (Alcauter et al., 2013), the connectivity
patterns in the CTR group (Fig. 2, CTR) are
already extensive at birth. Specifically, the
left amygdala seed produced widespread bi-
lateral positive connectivity throughout the
subcortex: olfactory, amygdala, pallidum,
putamen, thalamus, hippocampus, para-
hippocampus, and caudate. The cerebellum
(data not shown), vermis (data not
shown), insula, temporal pole, and central
gyrus (sensorimotor cortex) also dis-
played positive connectivity. In contrast,
the superior parietal and medial–superior
orbitofrontal cortices showed bilateral
negative connectivity. Other regions with
negative connectivity included the precu-
neus, cuneus, right angular gyrus–inferior
parietal cortex, and superior–supplemen-
tal occipital cortices. Insular connectivity
was bilaterally positive with multiple struc-
tures: subcortical (olfactory, amygdala, puta-
men,pallidum,hippocampus,andthalamus),
insula, Heschl’s gyri, operculum, temporal
pole, anterior cingulate, calcarine, and
sensorimotor and superior temporal cor-
tices. Insula-generated bilateral negative
connectivity is present in the occipital,
frontal, and parietal cortices. Negative
connectivity was also present in the cere-
bellum, vermis, precuneus, cuneus, rectus,
angular gyrus, and posterior cingulate.
Functional connectivity patterns in the
NCOC and PCE groups (Fig. 2, NCOC and
PCE) were generally consistent with the

CTR group, but noticeable differences were also revealed (Fig. 2,
arrows). Right hemisphere seeds (Fig. 3) yielded similar results, but
qualitative groupwise differences were less evident.

Drug-related functional connectivity differences involving
the amygdala and insula
Z scores for each subject and voxel in the brain were compared
across the three groups using a multivariate model with the
following explanatory variables: group, gestational age, birth weight,
scan age, gender, and scanner. Functional connectivity group differ-
ences corresponding to the left amygdala seed yielded a significant
cluster (left amygdala [frontal]) that overlapped bilaterally with the
medial–inferior orbital frontal cortex, rectus, anterior cingulate, and
olfactory nuclei (Fig. 4, left column). The left insula seed generated
two spatially distinct clusters (Fig. 4, middle and right columns). The
large anterior cluster (left insula [frontal]) overlaps bilaterally with
the rectus, orbital frontal cortex, and left anterior cingulate. The
superior and posterior cluster (left insula [sensorimotor]) coincides
primarily with the right sensorimotor cortex. No significant group-
level differences were detected for the right-hemisphere seeds.

The cluster associated with the left amygdala showed a pro-
nounced connectivity gradient in the CTR group: primarily neg-
ative connectivity in the dorsal–anterior portion, with a negative-
to-positive gradient, becoming positive in the ventral posterior
portion of the cluster. In both the PCE and NCOC groups, this
gradient is hyperconnective relative to the CTR group, and the
PCE gradient is virtually entirely positive. The frontal cortex clus-
ter associated with the left insula seed is mostly hyperconnective

Figure 3. Visualization of functional connectivity for right amygdala and right insula seed
regions across neonatal groups. Top row, PCE; middle row, NCOC; bottom row, CTR; left column,
amygdala; right column, insula. Significant connectivity (�� 0.05) is pseudocolored based on
the Fisher’s Z-transformed correlation measure (see color bar, bottom right) generated from the
connectivity analysis. Data visualized on a partially inflated surface model. Asterisks show the
approximate locations of the seed regions.

Figure 1. Comparison of motion scrubbing parameters across neonatal groups. A, Number of volumes removed. B, Residual
framewise displacement (FD). Data are plotted as mean � SEM. For both motion parameters, the neonatal groups were statisti-
cally indistinguishable ( p � 0.05, ANOVA).

Figure 2. Visualization of functional connectivity for left amygdala and left insula seed regions across neonatal groups. Top row,
PCE; middle row, NCOC; bottom row, CTR; left column, amygdala; right column, insula. Significant connectivity (� � 0.05) is
pseudocolored based on the Fisher’s Z-transformed correlation measure (see color bar, bottom right) generated from the connec-
tivity analysis. Data are visualized on the partially inflated surface model. Asterisks show the approximate locations of the seed
regions. Arrows highlight regions of dissimilarity across groups.
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in the PCE and NCOC groups and shows
little variation throughout the cluster,
whereas negative connectivity predomi-
nates in the CTR group. Conversely, the
left insula [sensorimotor] cluster is hypo-
connective in the PCE and NCOC groups.

Clusters that showed significant group
differences underwent additional post hoc
statistical testing (Fig. 5). Mean Z scores
were compared at the cluster level using
ANOVAs.Themodelincludedallexplanatory
variables, including gestational age, birth
weight, postnatal age, gender, scanner,
maternal education, and depression level.
Note that none of the variables were mean
centered at this step so that we could esti-
mate explicitly whether the combined
within- and between-group differences of
each variable contributed significantly to
the observed variations in functional con-
nectivity. Our results showed that all clus-
ters produced significant (p � 0.01, FDR
corrected; Table 2) drug-group main ef-
fects. Post hoc comparisons also revealed
significant (p � 0.05– 0.001, Dunn–Sidak
corrected) pairwise differences between
the PCE/NCOC and CTR groups. No sta-
tistical difference between the PCE and
NCOC groups were detected at this level.
Prenatal drug exposure induced approxi-
mately fourfold hyperconnectivity in clus-
ters associated with the frontal cortex. The
sensorimotor cluster behaved in the oppo-
site manner, with drug-exposed subjects
showinganapproximatelyequivalentamount
of hypoconnectivity. None of the other ex-
planatory variables included in the model
produced significant main effects.

Subcluster analysis and cocaine-specific
effects
Given the observed gradient differences in
functional connectivity between the PCE
and NCOC groups, particularly within the left amygdala [frontal]
cluster as described above, we further explored potential cocaine-
specific effects within the three detected clusters. Consistent with
the qualitative observation of the gradient difference in the left
amygdala [frontal] cluster, we detected a continuous subcluster
(left amygdala [frontal subcluster]) that showed significant dif-
ferences (� � 0.05) between the PCE and NCOC groups (Fig.
6A). Z scores were compared by group for the detected subcluster
(Fig. 6B), and statistical comparisons were again performed using
the ANOVA after controlling for gestational age, birth weight,
postnatal age, gender, and scanner. Overall group differences
were found to be significant (F(2,149) � 12.92, p � 0.001). Post hoc
comparisons between groups revealed a significant difference for
PCE versus NCOC (p � 0.005) and PCE versus CTL (p � 0.001)
but not for NCOC versus CTL (p � 0.344). No significant sub-
clusters were detected in either of the remaining main clusters.
For a subset of the PCE subjects (n � 40), maternal self-reported
cocaine use data were available (number of times used per
trimester). There was no statistical difference in connectivity
for the left amygdala subcluster regarding multiple (n � 25)

versus single (n � 15) trimester usage (F(1,39) � 1.38, p �
0.247). Likewise, there was no obvious linear relationship be-
tween connectivity and the average usage per trimester (R 2 �
7.26E �06, p � 0.987; Fig. 7). Finally, to rule out non-cocaine

Figure 4. Visualization of groupwise differences in seed-based functional connectivity. Top row, PCE; middle row, NCOC;
bottom row, CTR. Columns are labeled as “seed location [cluster location]”: left, left amygdala [frontal]; middle, left insula [frontal];
right, left insula [sensorimotor]. Three significant clusters (�� 0.05, controlling for participant characteristics) are pseudocolored
based on the Fisher’s Z-transformed correlation measures (see color bar, bottom right) generated in the connectivity analysis. Data
are visualized on the inflated surface model. Note that the surface view is slightly tilted compared with those in Figure 2 to better
show the clusters. LH, Left hemisphere; RH, right hemisphere.

Figure 5. Post hoc comparisons of functional connectivity by group within the detected group-level significant clusters. Plots
are labeled as “seed location [cluster location].” Seed regions were located in the left hemisphere. *p � 0.05, pairwise differences
between groups (Dunn–Sidak corrected). Data are plotted for all subjects as mean � SEM.

Table 2. Summary of seed �cluster	 post hoc analyses

Left amygdala
�frontal	 Left insula �frontal	

Left insula �sensori-
motor	

Main effects F p �p
2 F p �p

2 F p �p
2

Group 6.76 0.002 0.11 8.13 � 0.001 0.13 6.54 0.002 0.11
Gestational age 0.16 0.690 0.00 0.98 0.324 0.01 0.69 0.407 0.01
Postnatal age 1.49 0.225 0.01 0.13 0.719 0.00 0.63 0.429 0.01
Weight 1.71 0.193 0.02 1.55 0.216 0.01 0.15 0.699 0.00
Gender 2.54 0.114 0.02 0.29 0.594 0.00 3.27 0.073 0.03
Scanner 0.88 0.350 0.01 1.03 0.312 0.01 0.32 0.572 0.00
Maternal education 0.52 0.473 0.00 0.01 0.923 0.00 0.22 0.641 0.00
Maternal depression 3.15 0.079 0.03 2.55 0.113 0.02 1.11 0.293 0.01
Post hoc (group)

PCE versus NCOC 0.998 0.783 0.829
PCE versus CTR 0.013 �0.001 0.046
NCOC versus CTR 0.005 0.012 0.003
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drug use as a confounding factor and to test the specificity of
cocaine for the detected subcluster, we tested the effect of drug type
(cocaine, nicotine, alcohol, marijuana, antidepressant, and others)
in separate ANOVAs. Cocaine was the only drug type that
produced a significant effect ( p � 0.05; Table 3) for the PCE-
specific subcluster.

Specificity and GSR
Visual cortex seeds were used to test the
specificity of the reported connectivity al-
terations. When the left and right visual
cortices were used as the seed regions, (1)
no clusters showing significant group-
level differences were detected, and (2)
post hoc analyses of visual cortex connec-
tivity within the pre-established clusters
associated with the hypothesized seeds
(i.e., left amygdala [frontal], left amygdala
[frontal subcluster], left insula [frontal],
and left insula [sensorimotor]) revealed
no group main effects or pairwise differ-
ences, confirming the specificity of the
previous relationships to amygdala and
insula connectivity (Fig. 8). Finally, post

hoc analyses were repeated without GSR, and the results re-
mained essentially consistent with our primary results (Fig. 9).

Discussion
We examined the neural correlates of prenatal drug exposure during
the neonatal period. Results revealed significant amygdala and insula
functional connectivity alterations that were mostly shared between
the PCE and NCOC groups, but qualitative and quantitative
cocaine-specific effects were also present. To our knowledge, this
study is the first to show that maternal drug use during pregnancy
alters the functional organization of the brain in neonates.

Our finding of abnormal amygdala connectivity in neonates is
consistent with its very early structural–functional development
(Ulfig et al., 2003). Indeed, the delineated neonatal amygdala
functional connectivity maps show comprehensive connections
and distributed networks (Figs. 2, 3), reflecting its remarkable in
utero functional growth (Ulfig et al., 2003). Given the close rela-
tionship between the amygdala and drug effects (Meyer and
Quenzer, 2005), it is likely that prenatal drug exposure has al-
ready left a “footprint” on neonatal amygdala functional con-
nectivity. Indeed, disrupted negative connectivity between the
left amygdala and prefrontal regions was observed in drug-
exposed neonates (Fig. 4). Negative connectivity is generally in-
terpreted as an indicator for “functional competition” (Fox et al.,
2005; Kelly et al., 2008; Gao and Lin, 2012), so the observed
disruption may reflect a failure in the suppression of amygdala
responses from PFCs. Consistent with our findings, smaller in-
creases in the ventral PFC activity and less suppression of
amygdala activity are reported in adolescents with PCE during a
working memory task (Li et al., 2009; Li et al., 2013). However,
one study in cocaine-dependent adults showed decreased posi-
tive connectivity between the amygdala and medial PFC (Gu et
al., 2010). This difference could arise from differential mecha-
nisms associated with prenatal drug exposure and adult drug use.
Specifically, through disruptions of various neurotransmitter/
receptor signaling pathways, prenatal drug exposure may ad-
versely affect the developing brain by affecting the delicate
process of neural proliferation (Ohtani et al., 2003), migration
(Crandall et al., 2007), dendrite growth (Song et al., 2002), and
axonal elongation (Wu et al., 2011). In contrast, adult drug use
acts on the already “hardwired” functional system. Second, the
developmental-stage differences may also underlie the dis-
crepancies, and the reported neonatal pattern is likely subject
to further developmental modification. Future studies are
needed to pinpoint the exact mechanisms. Behaviorally,
arousal dysregulation is believed to be one of the primary

Figure 6. Cocaine-specific effect within the amygdala frontal subcluster. A, Visualization of the subcluster (highlighted in red
with the original cluster in blue). B, Post hoc comparison of functional connectivity by group within the detected subcluster. *p �
0.05, pairwise differences between groups (Dunn–Sidak corrected). Data are plotted as mean � SEM.

Figure 7. Relationship between functional connectivity (Z) and average cocaine usage per
trimester for the amygdala frontal subcluster. Data points (open circles) correspond to individ-
ual subjects. The dashed line is the best linear fit (R 2 � 7.26E �06, p � 0.987).

Table 3. Summary of drug specificity for the detected subcluster

Left amygdala �frontal subcluster	

Main effects F P �p
2

Cocaine 6.17 0.015 0.07
Nicotine 0.66 0.420 0.01
Alcohol 0.46 0.499 0.01
Marijuana 0.28 0.597 0.00
SSRIsa 1.97 0.164 0.02
Othersb 0.82 0.367 0.01
aAntidepressant.
bMethadone, opiates, or suboxone.
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neurodevelopmental consequences of
PCE (Coles et al., 1999; Bard et al., 2000;
Mayes, 2006), and inhibitory signaling
in the reward circuits between the PFC
and amygdala is one pathway by which
this deficit is thought to occur (Mayes,
2002). Therefore, our findings of dis-
rupted neonatal amygdala–prefrontal
negative connectivity are in line with
previous behavioral results, but studies
directly examining functional connec-
tivity and behavior are needed to vali-
date this relationship.

The insula is also reported to have
some of the earliest structural and func-
tional growth during gestation (Nieuwen-
huys, 2012; Alcauter et al., 2013) and is
similarly implicated in drug-related brain
disruptions likely because of its multifac-
eted involvement in sensory perception,
salience detection, emotion, and the inte-
gration of exteroceptive and interoceptive
information (Nieuwenhuys, 2012; Cisler
et al., 2013; Noël et al., 2013; Paulus and
Stewart, 2014). Cocaine dependence in
adults is associated with altered functional
connectivity between the insula and pre-
frontal networks (Cisler et al., 2013), and
reduced functional connectivity has been
observed between the insula and postcentral
gyrus in cocaine-addicted adults (McHugh
et al., 2013). Our findings of disrupted insu-
la–frontal and insula–sensorimotor con-
nectivity (Fig. 4) are highly consistent with
these previous studies. Particularly, our ob-
servation of decreasing insula–sensorimotor connectivity parallels
the report of abnormal regulation of motor responses in cocaine-
exposed infants (Fallone et al., 2014). Overall, our findings of adult-
like disruptions of insula functional connectivity is consistent with
its well documented early development and unique behavioral sig-
nificance (Alcauter et al., 2014).

Mechanistically, it has long been recognized that a variety of
licit and illicit drugs have strong effects on the mesocorticolimbic
reward pathway, which initiates from the ventral tegmental area
(VTA) and projects to the amygdala, insula, and prefrontal areas,
among others (Adinoff, 2004; Meyer and Quenzer, 2005). There-
fore, the common drug-related functional connectivity altera-
tions observed in this study may be related to the shared influence
of different drugs on this pathway. However, among the drugs
examined, cocaine is the only stimulant that directly blocks the
reuptake of dopamine (DA) and amplifies the DA signal within
the reward pathway. Therefore, PCE could expose the DA-rich
regions of the brain (amygdala, PFC, VTA, etc.) to higher risk of
functional disruptions compared with other drugs. Indeed, we
observed a prefrontal subcluster that showed more extreme dis-
ruptions in connectivity for the PCE group (Fig. 6) and was co-
caine specific (Table 3), suggesting that cocaine has a greater
effect on this connection over other drugs. Interestingly, this par-
ticular connectivity alteration does not appear to be dose depen-
dent (Fig. 7), which stands in contrast to a previous behavior
study showing dose-dependent relationships (Morrow et al.,
2001). If independently validated, this pattern would suggest that
cocaine may have a detrimental effect in the developing brain

even after occasional use, thus posting additional warning for
at-risk pregnant women, similar to that of prenatal alcohol expo-
sure (Sowell et al., 2014).

Alternatively, other mechanisms could underlie the current
results. For example, common environmental risks that accom-
pany maternal drug use may be associated with the shared effects
across different drugs. Among these, appetite suppression is a
known side effect of cocaine, nicotine, and opiate usage. Simi-
larly, poor prenatal care is related to illicit drug use in pregnancy
(Roberts and Pies, 2011). Our observed PCE-specific effects on
lower birth weight and shorter gestation may be attributable, in
part, to these factors (Covert et al., 1994). However, diet-
controlled animal studies show that PCE neuronal effects are not
caused by malnutrition (Ren et al., 2004). We included birth
weight and gestational age as explanatory variables, and it was
reassuring that neither variable produced significant effects.
More importantly, our explicit analysis of maternal education
and maternal depression levels showed no significant effects on
functional connectivity, indicating minimal effects from these
socioeconomic and maternal traits, likely because of our design
of imaging of neonates that minimizes postnatal exposure to
most environmental factors. Therefore, our data strongly favor
drug-related mechanisms. Overall, our findings of abnormal
functional connectivity in exposed neonates provide the first
functional delineation of prenatal drug exposure during infancy.
However, although the functional development of the brain is
most dynamic during infancy, later growth/reorganization is also
significant (Fair et al., 2009; Supekar et al., 2009). Furthermore,

Figure 8. Post hoc comparisons within previously established group-level significant clusters using functional connectivity
measures generated from visual cortex or control seed regions. A, Main clusters. B, Subcluster. Data are plotted as mean � SEM.
No significant group-level effects ( p � 0.05, ANOVA) were detected within the pre-established clusters (originally defined using
left hemisphere seeds) using the visual cortex connectivity measures.

Figure 9. Post hoc comparisons within group-level significant clusters without GSR. A, Main clusters. B, Subcluster. Plots are
labeled as “seed location [cluster location].” All seed regions were located in the left hemisphere. *p � 0.05, pairwise differences
between groups (Dunn–Sidak corrected). Data are plotted as mean � SEM.
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although we did not detect significant effects with the examined
environmental variables, these factors may become increasingly
more important with prolonged postnatal exposure. Therefore, it
is likely that the early deficits reported here will evolve and inter-
act with the postnatal environment, leading to either increased
functional deficits (Derauf et al., 2009) or partial/full recovery.

Our results also revealed a left-lateralized pattern for func-
tional connectivity alterations. This is consistent with previous
studies showing left-lateralized amygdala connectivity abnor-
malities in different psychiatric disorders (Gee et al., 2012;
Townsend et al., 2013). The functional bias of the left amygdala
toward sustained emotional processing (Wager et al., 2003; Baas
et al., 2004) and the left insula toward parasympathetic nervous
system function, positive emotions, and appetitive behaviors
(Craig, 2005; Harrison et al., 2010; Ibañez et al., 2010) may partly
underlie the observed lateralized effects. However, future studies
are again needed to rigorously examine such effects.

Several limitations deserve additional discussion. First, two
scanners were used to image our subjects. However, we included
scanner as a control variable, and no significant main effect was
detected (Table 2). Furthermore, we performed a post hoc analy-
sis on the interactions between scanner and group and found no
significant effects (p � 0.05 for all four detected clusters). Sec-
ond, the step of GSR does not appear to alter the main conclusion
of our findings, although the likely partial volume effect associ-
ated with defining CSF and white matter regions for regression in
neonatal brain may artificially reduce the differences between
connectivity with and without GSR in our results (Fig. 9). Third,
we have previously detected prefrontal gray matter volume re-
ductions in PCE (Grewen et al., 2014), which could potentially
mediate the observed alterations in functional connectivity. To
test this possibility, we performed a correlation analysis using the
overlapping subsample and found no significant relationships
(p � 0.05 for all four detected clusters). Finally, regarding the
specificity of our findings, two seed regions in the visual cortex
were explored further, and no differences were detected either at
the whole-brain level or within the detected clusters (Fig. 8).
However, potential alterations within other reward-related path-
ways (e.g., thalamus and VTA) deserve additional investigation
(Knutson and Greer, 2008; Cauda et al., 2011; Liu et al., 2011;
Cho et al., 2013).

In conclusion, we have delineated neonatal functional con-
nectivity alteration profiles associated with the amygdala and
insula attributable to prenatal drug exposure. Connectivity ab-
normalities common to multiple drug exposures and cocaine-
specific connectivity disruptions were observed. The detection of
neonatal functional connectivity abnormalities related to drug
exposure greatly advances our understanding of their neural
correlates. This may shed light on the early identification of
specific vulnerabilities and facilitate the development of effec-
tive interventions.
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