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Signal and noise correlations, a prominent feature of cortical activity, reflect the structure and function of networks during sensory
processing. However, in addition to reflecting network properties, correlations are also shaped by intrinsic neuronal mechanisms. Here
we show that spike threshold transforms correlations by creating nonlinear interactions between signal and noise inputs; even when
input noise correlation is constant, spiking noise correlation varies with both the strength and correlation of signal inputs. We charac-
terize these effects systematically in vitro in mice and demonstrate their impact on sensory processing in vivo in gerbils. We also find that
the effects of nonlinear correlation transfer on cortical responses are stronger in the synchronized state than in the desynchronized state,
and show that they can be reproduced and understood in a model with a simple threshold nonlinearity. Since these effects arise from an
intrinsic neuronal property, they are likely to be present across sensory systems and, thus, our results are a critical step toward a general
understanding of how correlated spiking relates to the structure and function of cortical networks.
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Introduction
Correlated neuronal activity provides a window into network
structure and function over multiple timescales (Cohen and
Kohn, 2011). In sensory systems, correlations can be separated
into signal and noise components, where signal correlations are
the correlations in the part of the neural response that is repeat-
able across stimulus trials, and noise correlations are the correla-
tions in the trial-to-trial variability (Gawne and Richmond,
1993). Studies of signal and noise correlations across cortical areas
typically report a positive dependency, i.e., noise correlation tends to
increase with increasing signal correlation (Bair et al., 2001; Aver-
beck and Lee, 2003; Kohn and Smith, 2005; Ecker et al., 2014), but
recent studies have shown that correlations are dynamic and can be
modulated by changes in stimulus properties (Kohn and Smith,
2005; Hofer et al., 2011), adaptation (Gutnisky and Dragoi, 2008),
attention (Cohen and Maunsell, 2009; Mitchell et al., 2009), brain
state (Poulet and Petersen, 2008; Marguet and Harris, 2011; Ecker et
al., 2014), and learning (Gu et al., 2011; Jeanne et al., 2013).

Correlations are typically attributed to shared inputs and re-
current connectivity, but they can also be shaped by intrinsic

neuronal properties. Because of the thresholding associated with
spike generation, the transfer of correlations from synaptic inputs
to spiking output is highly nonlinear (Lampl et al., 1999; Binder
and Powers, 2001; Dorn and Ringach, 2003; Shamir and Sompo-
linsky, 2004; de la Rocha et al., 2007; Shea-Brown et al., 2008;
Burak et al., 2009; Tchumatchenko et al., 2010; Middleton et al.,
2012). For example, even when total input correlation is constant,
total output correlation can vary with changes in input strength,
resulting in a positive dependency between the mean spike rate and
total correlation in cortical spiking (de la Rocha et al., 2007).

The transformation of signal and noise correlations between
input and output has not yet been studied directly. Many studies
of sensory processing report changes in correlations that are un-
related to mean spike rate, but coincide with changes in other
spiking properties (for example, trial-to-trial variability; Gutni-
sky and Dragoi, 2008; Cohen and Maunsell, 2009; Mitchell et al.,
2009), which suggests that output correlations may depend on
other properties of the input beyond just its overall strength. In
fact, because correlation transfer is nonlinear, the signal and
noise components in the input have the potential to interact and,
as we will show, the resulting transformation of correlations goes
far beyond that expected from the effects of spike threshold acting
on each input separately.

Materials and Methods
In vitro recordings. Deeply anesthetized C57BL/6 mice [postnatal day (P)
30 –P40] were transcardially perfused with 10 ml of ice-cold (4°C) dis-
section ACSF (in mM: 108 choline-Cl, 3 KCL, 26 NaHCO3 1.25 NaHPO4,
25 D-glucose, 3 Na pyruvate, 2 CaCl2, and 1 MgSO4 bubbled with 95%O2/
5%CO2). Coronal brain slices 300 �m thick were cut (Vibratome 3000,
Leica) from V1. Slices were incubated for 30 min in a holding chamber
and then recordings were made at room temperature (24°C) in recording
ACSF (in mM: 120 NaCl, 3 KCL, 23 NaHCO3, 1.25 NaHPO4, 10
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D-glucose, 2 CaCl2, and 1 MgSO4 bubbled with 95%O2/5%CO2). Re-
cordings were targeted to monocular primary visual cortex based on
coordinates from the Paxinos mouse brain atlas (Paxinos and Franklin,
2004). We made whole-cell recordings from L2/3 on a custom-built mi-
croscope under differential interference contrast microscopy. L2/3 pyra-
midal neurons were recorded (based on spiking properties and
pyramidal-shaped soma) in current-clamp mode (Multiclamp 700B,
Molecular Devices). The data were acquired using Ephus freeware (Vid-
rioTech). All recordings were low-pass filtered at 3 kHz and digitized at
10 kHz. Patch pipettes (4 –7 M�) contained the following (in mM): 130
KMeSO4, 8 NaCl, 2 KH2PO4, 2 D-glucose, and 10 HEPES. Recordings
were discarded if the series resistance varied by �15% or the resting
membrane potential or input resistance varied by �10% across the re-
cording period.

Current stimuli. For in vitro experiments, a constant current was in-
jected into the soma to achieve a holding potential close to the action
potential threshold (typically �55 mV) and zero mean signal and noise
currents were injected to study the transfer of correlations. Signal and
noise currents were Gaussian white noise initially created with a sampling
rate of 200 Hz and upsampled to 10 kHz with spline interpolation. Cur-
rents with a given set of variances and correlations were presented in
blocks of 100 trials, with the signal current the same on each trial and the
noise current different on each trial. Currents were delivered in 1 s seg-
ments with a 1 s pause between each segment. All pairs of neurons in-
cluded in the analysis were recorded nonsimultaneously to ensure the
only correlations were those in the injected currents. We explicitly ex-
cluded nonstationary data from the analysis. To test for nonstationarity,
we calculated mean spike rates throughout a recording using a 30 s mov-
ing average; any neuron for which the minimum and maximum rates
differed by �25% during the recording was excluded from the analysis.

In vivo recordings. Adult male gerbils (70 –90 g, P60 –P120) were anes-
thetized for surgery with one of two different anesthetic combinations:
(1) ketamine and xylazine for some extracellular experiments, or (2)
fentanyl, medetomidine, and midazolam for some extracellular experi-
ments and all intracellular experiments. For ketamine and xylazine, an
initial injection of 1 ml per 100 g body weight was given of ketamine (100
mg/ml), xylazine (2% w/v), and saline in a ratio of 5:1:19, and the same
solution was infused continuously during recording at a rate �2.5 �l/
min. For fentanyl, medetomidine, and midazolam, an initial injection of
0.2 ml per 100 g body weight was given with fentanyl (0.05 mg/ml),
medetomidine (1 mg/ml), and midazolam (5 mg/ml) in a ratio of 4:1:10,
and the same solution was infused continuously during recording at a
rate of �0.08 �l/min. Internal temperature was monitored and main-
tained at 38.7°C and heart rate was consistently �300 –350 beats per
minute under all anesthetics. A small metal rod was mounted on the skull
and used to secure the head of the animal in a stereotaxic device in a
sound-attenuated chamber. A craniotomy was made over the primary
auditory cortex (A1). An incision was made in the dura mater. For intra-
cellular recordings, the cisterna magna was drained and a glass pipette
filled with a 1 M potassium acetate solution (with resistance between 70
and 100 M�) was inserted into the brain with bridge balancing and
capacitance compensation. For extracellular recordings, a multitetrode
array (Neuronexus) was inserted into the brain. Intracellular recordings
were made at all depths and extracellular recordings were made between
1 and 1.5 mm from the cortical surface (most likely in layer V; Happel et
al., 2010). We explicitly excluded nonstationary data from the analysis.
To test for nonstationarity, we calculated mean spike rates throughout a
recording using a 30 s moving average; any neuron for which the mini-
mum and maximum rates differed by �25% during the recording was
excluded from the analysis.

Spike sorting. For in vivo extracellular recordings, the procedure for the
isolation of single-unit spikes consisted of the following: (1) bandpass
filtering each channel between 500 and 5000 Hz, (2) whitening each
tetrode, i.e., projecting the signals from the four channels into a space in
which they are uncorrelated, (3) identifying potential spikes as snippets
with energy (Choi et al., 2006) that exceeded a threshold (with �0.7 ms
between potential spikes), (4) projecting each of the snippets into the
space defined by the first three principal components for each channel,
(5) identifying clusters of snippets within this space using KlustaKwik

(http://klustakwik.sourceforge.net) and Klusters (Hazan et al., 2006),
and (6) quantifying the likelihood that each cluster represented a single
unit using isolation distance (Schmitzer-Torbert et al., 2005). Isolation
distance assumes that each cluster forms a multidimensional Gaussian
cloud in feature space and measures, in terms of the SD of the original
cluster, the increase in the size of the cluster required to double the
number of snippets within it. The number of snippets in the “noise”
cluster (nonisolated multiunit activity) for each tetrode was always at
least as large as the number of spikes in any single-unit cluster. Only
single-unit clusters with an isolation distance of �20 were analyzed.

Auditory stimuli. For in vivo experiments, sounds were generated with
a 48 kHz sampling rate, attenuated, and delivered to speakers. Speakers
(Etymotic ER2) coupled to tubes were inserted into both ear canals for
diotic sound presentation along with microphones for calibration. The
frequency response of these speakers measured at the entrance of the ear
canal was flat (�5 dB SPL) between 0.2 and 5 kHz.

In all intracellular experiments and some extracellular experiments,
frequency-modulated (FM) sounds were presented that consisted of a
signal component that was the same on every trial and a noise component
that was different on every trial. The signal and noise components were
created by drawing numbers between 7 and 13 at random from a uniform
distribution and scaled to achieve the desired signal-to-noise ratio
(SNR), measured as the ratio of their variances, while keeping the vari-
ance of their sum constant. The sum of the signal and noise components
was then used as powers of two to create a set of frequencies (falling
mostly between 128 and 8192 Hz). The resulting set of frequencies was
used to specify the frequency of a constant amplitude tone at 10 ms
intervals so that each 10 ms segment of the sound was a frequency mod-
ulation that started at the final frequency of the previous segment and
moved linearly to a new frequency over the 10 ms (see Fig. 2 A, spectro-
gram). For intracellular experiments, three different signal components
were used, yielding six different possible pairings of signal components.
The correlation between the different signal components was 1 for the
three pairings of identical signals, and 0.95, 0.8, and 0.5 for the three
possible pairings of different signals. For extracellular experiments, four
different signal components were used, yielding 10 different possible
pairings of signal components. The correlation between the different
signal components was 1 for the four pairings of identical signals, and
0.95, 0.9, 0.8, 0.65, 0.5, and 0.3 for the six possible pairings of different
signals. For all experiments, two different noise components were used,
with a correlation of 0.95 between them. All combinations of signal and
noise components were presented with an SNR of 3, yielding a set of
sounds with fixed SNR and noise correlation but varying signal correla-
tion, and one of the signal components was presented with each noise
component at SNRs of 0.1 (extracellular only), 0.3 (extracellular only), 1,
3, 10, and 30, yielding a set of sounds with fixed signal and noise corre-
lations, but varying SNRs. All sounds were presented over 100 trials of
2.5 s each with an intensity of either 55 or 65 dB SPL. In some extracel-
lular experiments, 256 repeated trials of a 2.5 s segment of female speech
from the University College London SCRIBE (Spoken Corpus of British
English) database (http://www.phon.ucl.ac.uk/resource/scribe) was pre-
sented at a peak intensity of 75 dB SPL.

Analysis of membrane potential. The analyses of membrane potentials
recorded in vitro and in vivo were performed as follows: the membrane
potential for neuron p on trial i in each 50 ms time bin t, vi

p�t�, was obtained
by first removing action potentials and then downsampling from 10 kHz by
computing the mean value in each time bin. The total membrane potential
variance for each neuron p was computed as the average variance of these
signals across trials, 	var�vi

p�
i, and the total membrane potential correlation
between two neurons p and q was calculated as the correlation coefficient
between membrane potentials on the same trials:

�v �
	cov�vi

p, vi
q�
i

�	var�vi
p�
i 	var�vi

q�
i

The signal component of the membrane potential was estimated from
the mean membrane potential averaged across all trials. The membrane
potential signal variance for each neuron p was computed as the variance
of the signal component var�	vi

p
i� and the membrane potential signal
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correlation between two neurons p and q was calculated as the correlation
coefficient between signal components:

�s �
cov�	vi

p
i, 	vi
q
i�

�var�	vi
p
i� var�	vi

q
i�

The noise component of the membrane potential was estimated from the
deviation of the membrane potential on each trial from the mean aver-
aged across all trials. The membrane potential noise variance for each
neuron p was computed as the average variance of these noise compo-
nents across trials 	var�vi

p � 	vi
p
i�
i and membrane potential noise cor-

relation between two neurons p and q was calculated as the correlation
coefficient between these noise components:

�n �
	cov�vi

p � 	vi
p
i, vi

q � 	vi
q
i�
i

�	var�vi
p � 	vi

p
i�
i 	var�vi
q � 	vi

q
i�
i

Analysis of spiking. The analyses of spiking recorded in vitro and in vivo
or simulated from the leaky integrate-and-fire (LIF) model (see below)
was performed as follows: spiking was considered as spike count vectors
with 50 ms time bins (for experimental data) or with time bins specified
by the response timescale �r (for simulated data) with ri

p�t� � N repre-
senting the number of action potentials fired by neuron p in time bin t on
trial i. Our measure of spiking trial-to-trial variability is the SNR, which
was computed as follows:

SNR �
var�r��

	var�ri � r��
i

where r� is the average spiking across trials [the peristimulus time histo-
gram (PSTH)], and var�ri �r�) is the variance of the deviations from the
PSTH on trial i.

The total spiking correlation between the spiking of two neurons p and q was
calculated as the correlation coefficient between spiking on the same trials:

�r �
	cov�ri

p, ri
q�
i

�	var�ri
p�
i 	var�ri

q�
i

The spike train signal correlation between spiking of two neurons p and
q was calculated as the correlation between spiking on different trials:

�r
sig �

	cov�ri
p, rj

q�
i�j

�	var�ri
p�
i 	var�ri

q�
i

The spike train noise correlation was calculated as the difference between
total and signal correlations:

�r
noise � �r � �r

sig �
	cov�ri

p, ri
q�
i � 	cov�ri

p, rj
q�
i�j

�	var�ri
p�
i 	var�ri

q�
i

Partial correlations between spiking properties were computed using the
“partialcorr” function in Matlab, which computes the partial correlation
between X and Y controlling for Z as the correlation between the residuals
resulting from the regression of X on Z and the residuals resulting from the
regression of Y on Z (using a recursive algorithm for multidimensional Z).

A dichotomized Gaussian model for studying correlation transfer. We
have previously developed a dichotomized Gaussian framework to gen-
erate spiking with specified signal and noise correlations (Lyamzin et al.,
2010, 2012). For a pair of neurons with identical input signal and noise
variances, binary output spiking is obtained by thresholding the sum of
signal and noise inputs in each time bin t:

r�t� � � 1 if s�t� � n�t� 	 1
0 else

with signal input s ~ ��0, 
s
2� assumed to be the same on each trial, noise

input n ~ ��0, 
n
2� assumed to be different on each trial, and correlations

�s and �n between the signal and noise inputs to the two neurons.
Correlations in dichotomized Gaussian model spiking for single time bins.

The total, signal and noise correlations in the output of the dichotomized

Gaussian (DG) model can be computed directly from the input variances
and correlations. For two neurons a and b with identical input signal and
noise variances, the output correlation can be written as follows:

�r �
cov�ra, rb�

�var�ra� var�rb�
�

cov�ra, rb�

var�ra�
�

E
rarb� � E
ra�E
rb�

E
ra
2� � E
ra�

2

�
E
rarb� � E
ra�

2

E
ra
2� � E
ra�

2

For responses in a single time bin, both E
ra� and E
ra
2� � ���1, 
s

2 � 
n
2),

where � is the value of the cumulative distribution function (CDF) for a Gauss-
ian with zero mean and variance 
s

2 � 
n
2 evaluated at �1.

For responses on the same trial, E
rarb� � �2��1, �tot�, where �2 is
the value of the CDF for a bivariate Gaussian with zero mean and
covariance:

�tot � � 
s
2 � 
n

2 
s
2�s � 
n

2�n


s
2�s � 
n

2�n 
s
2 � 
n

2 �
evaluated at �1.

For responses on different trials, E
rarb� � �2��1, �sig�, where

�sig � � 
s
2 � 
n

2 
s
2�s


s
2�s 
s

2 � 
n
2 �

Thus, the output total correlation, which is the correlation between re-
sponses on the same trial, is given by the following:

�r
tot �

�2��1, �tot� � ���1, 
s
2 � 
n

2�2

���1, 
s
2 � 
n

2� � ���1, 
s
2 � 
n

2�2

The output signal correlation, which we define as the correlation between
responses on different trials, is given by the following:

�r
sig �

�2��1, �sig� � ���1, 
s
2 � 
n

2�2

���1, 
s
2 � 
n

2� � ���1, 
s
2 � 
n

2�2

Meanwhile, the output noise correlation, which we define as the differ-
ence between the total correlation and the signal correlation, is given by
the following:

�r
noise � �r

tot � �r
sig �

�2��1, �tot� � �2��1, �sig�

���1, 
s
2 � 
n

2� � ���1, 
s
2 � 
n

2�2

Note these are the same as Equations 6 – 8 in the Results.
Mutual information in DG model spiking for single time bins. The mu-

tual information between the output of the DG model and the input
signal s can be computed directly from the input variances and correla-
tions. Mutual information is defined as follows:

I�r; s� � H�r� � H�r�s� � ��
r

p�r�log2 p�r�

� �
s

p�s��
r

p�r�s�log2 p�r�s�

For two neurons a and b with identical input variances, the condi-
tional probability of a joint binary response in a single time bin is
p�r�s� � �2��, �n�, where �2 is the value of the CDF for a bivariate

Gaussian with zero mean and covariance �n � � 
n
2 
n

2�n


n
2�n 
n

2 �
evaluated at � � � �a

�b

� , where �i��a, b� � � 1 � si if ri � 0
� 1 � si if ri � 1

and the stimulus probability is p�s� �
1


s�2

e

�s2

2
s
2. We computed the

information by summing these probabilities over all values of r and s.
Mutual information breakdown in DG model spiking for single time bins.

We also measured the impact of signal and noise correlations on infor-
mation using an information breakdown approach (Pola et al., 2003).
We computed the information loss due to signal correlations as follows:
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Isig�sim�r; s� � Hind�r� � Hlin�r� � ��
r

pind�r�log2 pind�r�

� �
r

plin�r�log2 plin�r�

where pind(r) is the probability of a joint binary response, assuming there
are no noise correlations between cells, and plin(r) is the probability of a
joint binary response, assuming there are no signal or noise correlations
between cells. We computed the contribution of stimulus-independent
noise correlations to information as follows:

Icor�ind�r; s� � Hind�r� � ��r� � ��
r

pind�r�log2 pind�r�

� �
r

p�r�log2 pind�r�

and the contribution of stimulus-dependent noise correlations to infor-
mation as follows:

Icor�dep�r; s� � H�r� � H�r�s� � ��r� � Hind�r�s�

� � �
r

p�r�log2 p�r� � �
s

p�s��
r

p�r�s�log2 p�r�s� � �
r

p�r�log2 pind�r�

� �
s

p�s��
r

pind�r�s�log2 pind�r�s�

We calculated each of these information breakdown quantities from sim-
ulated DG model spiking using the Direct Method via infoToolbox for
Matlab (Magri et al., 2009) with bias correction via the shuffling method
and quadratic extrapolation (Panzeri et al., 2007). We verified that we
simulated responses to a sufficient number of trials and stimuli to achieve
stable results.

Generating DG model spiking with specified output correlations. To ex-
amine the effects of nonlinear correlation transfer on information, we
artificially decoupled changes in output correlations from changes in
input properties using the DG model. For example, under normal con-
ditions, an increase in input signal correlation increases both output
signal and noise correlation. To remove the effects of the crossover be-
tween signal and noise correlations, we generated spiking with the same
increase in output signal correlation, but no change in output noise
correlation. This was achieved by decreasing the input noise correlation
by the amount required to offset the increase in output noise correlation
caused by the increase in input signal correlation. An analogous ap-
proach was used to keep output correlations fixed while changing input
SNR.

An LIF model for studying correlation transfer. To study the nonlinear
transfer of signal and noise correlations across a range of timescales, we
used an LIF model, where the membrane potential v(t) for each cell at
each time step is given by the following:

�m

dv�t�

dt
� �v�t� � s�t� � n�t�

with signal input s ~ ��0, 
s
2� assumed to be the same on each trial, and

noise input n ~ ��0, 
n
2� assumed to be different on each trial as in the

DG model. We added temporal correlations to the signal and noise in-
puts so that input signal s had autocorrelation e�t/�s and cross-correlation
�se

�t/�s, and the input noise n had autocorrelation e�t/�n and cross-
correlation �ne�t/�n. We generated binary spike trains as in the DG model:

r�t� � � 1 if v�t� 	 1
0 else

We used a membrane time constant �m � 10 ms, imposed a refractory
period during which v(t) was fixed at 0 for 2 ms after each spike, and
simulated model responses with 0.1 ms time steps.

Results
Nonlinear transfer of signal and noise correlations in vitro
Figure 1A illustrates two fundamental properties of correlation
transfer that arise from thresholding. These have been described
previously (Lampl et al., 1999; Binder and Powers, 2001; Dorn

and Ringach, 2003; Shamir and Sompolinsky, 2004; de la Rocha
et al., 2007; Shea-Brown et al., 2008; Burak et al., 2009; Tchu-
matchenko et al., 2010; Middleton et al., 2012) and underlie the
effects of spike threshold on signal and noise correlations, which
we will explore below. The first of these properties, which we call
variance gain, is that the correlation between the spiking of a pair
of neurons increases as the strength (which we measure as vari-
ance) of their inputs is increased, even when the correlation in
their inputs is constant. This increase in output correlation with
increasing input variance is sublinear, i.e., each incremental in-
crease in input variance results in a successively smaller increase
in output correlation. The second fundamental property of cor-
relation transfer, which we call correlation gain, is that output
correlation increases supralinearly with increasing input correla-
tion when all other input properties are held constant. In this
study, we investigate the impact of variance gain and correlation
gain on the transfer of signal and noise correlations in cortical
networks during sensory processing.

Because the transfer of correlations from input to output is
nonlinear, the signal and noise components of inputs during sen-
sory processing have the potential to interact with results that
cannot be predicted from the effects of variance gain and corre-
lation gain acting on each component separately. To characterize
these interactions, we injected Gaussian white noise currents with
specified variances and correlations into layer 2/3 pyramidal neu-
rons in mouse visual cortex in vitro. To simulate a typical study of
sensory processing with repeated presentations of an identical
stimulus, we injected currents with a signal component that was
the same on each trial and a noise component that was different on
each trial (Fig. 1B). To eliminate any correlations due to connections
between neurons and ensure that the only signal and noise correla-
tions in the inputs to the neurons were those that we controlled, we
recorded neurons one at a time and compared input and output
correlations between “virtual pairs,” i.e., pairs recorded nonsimulta-
neously with noise correlations created by the injected currents. To
account for differences in membrane filtering properties between
neurons and isolate the effects of the thresholding associated with
spike generation on correlation transfer, we measured input vari-
ances and correlations from the membrane potential fluctuations
(with spikes removed) measured at the soma, rather than the in-
jected currents themselves (Fig. 1C). We report only results based on
measurements of membrane potential and spiking correlations with
50 ms time bins, but all of the effects that we observed were evident
across a wide range of timescales (see Fig. 5).

To isolate the effects of different input properties, we system-
atically changed either the variance of the signal or noise compo-
nent or the correlation between the signal or noise components
for each pair while keeping other input properties constant. First,
to examine the effects of variance gain on signal and noise corre-
lations, we injected currents with fixed signal and noise correla-
tions and changed the input variances. Figure 1D shows the
output signal and noise correlations as a function of the input
signal variance. As input signal variance increases, output signal
correlation also increases, as might be expected from variance
gain. More surprisingly, output noise correlation decreases with
increasing input signal variance, even though input noise vari-
ance and correlation are constant.

The effects of input noise variance on output correlations mirror
those of input signal variance: an increase in the input noise variance
causes an increase in the output noise correlation and a decrease in
the output signal correlation (data not shown). To separate effects
related to input signal and noise variance from those related to total
input variance (and, thus, mean spike rate), we also varied the rela-
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tive strength of the injected signal and noise currents (and, thus, the
trial-to-trial variability of the input and output) while keeping
the total input variance constant. As shown in Figure 1E, changes in
the input SNR have opposing effects on output signal and noise
correlations: as input SNR is increased, output signal correlation is
increased and output noise correlation is decreased. These results
demonstrate that interactions between signal and noise inputs due to
intrinsic nonlinearities can alter spiking correlations, even when in-
put correlations are constant.

Next, to examine the effects of correlation gain on signal and
noise correlations, we injected currents with fixed signal and
noise variances and varied the signal correlation. As shown in
Figure 1F, an increase in input signal correlation causes an in-
crease in both output signal and noise correlations, even when
input noise correlation is held constant. This dependency of

output noise correlation on input signal correlation arises
from the supralinearity of correlation gain. This crossover
between signal and noise correlations does not occur when
only the input noise correlation is changed (input noise cor-
relation affects output noise correlation, but cannot affect
output signal correlation because noise correlations are elim-
inated through averaging or shuffling across trials before com-
puting signal correlations).

Nonlinear transfer of signal and noise correlations in vivo
Our in vitro results suggest that the thresholding associated with
spike generation can significantly transform the signal and noise
correlations between a pair of neurons, with changes in the
strength of signal or noise inputs creating opposing changes in
output signal and noise correlations due to variance gain, and

Figure 1. Nonlinear transfer of signal and noise correlations in vitro. A, Schematic diagrams illustrating variance gain and correlation gain. Each colored area corresponds to an equal increment
on the horizontal axis. B, To mimic a typical sensory processing experiment with repeated presentations of an identical stimulus, we injected currents with a signal component that was the same on
each trial, and a noise component that was different on each trial. Example membrane potential traces and spiking across trials for a typical neuron are shown. Action potentials were clipped for
plotting. C, We injected Gaussian white noise currents into layer 2/3 pyramidal neurons in mouse V1 in vitro and analyzed the dependence of output signal and noise correlations on the variance and
correlation of signal and noise inputs. We defined the input as the membrane potential fluctuations at the soma and the output as spike counts in 50 ms time bins. D, The input signal variances and
output signal and noise correlations (top and bottom, respectively) that resulted from injecting currents with changing signal variance and fixed noise variance, signal correlation, and noise
correlation. Pairs were grouped by input signal variance. The input signal variance for a pair of neurons was computed as the geometric mean of the input signal variances for each neuron. The
numbers in parentheses above each data point indicate the number of pairs in each group. Error bars indicate 95% confidence intervals on the median value across all pairs in a particular group
(estimated via bootstrapping). The mean input noise variance, input signal correlation, and input noise correlation were 20 mV 2, 0.4, and 0.25. E, The input SNRs and output signal and noise
correlations that resulted from injecting currents with changing SNR and fixed correlations. Pairs were grouped by input SNR. The input SNR for a pair of neurons was computed as the geometric mean
of the SNRs for each neuron. The mean values of the total input variance, input signal correlation, and input noise correlation were 25 mV 2, 0.5, and 0.35. F, The input signal correlations and output
signal and noise correlations that resulted from injecting currents with changing signal correlation and fixed signal variance, noise variance, and noise correlation. Pairs were grouped by input signal
correlation. The mean input signal variance, input noise variance, and input noise correlation were 4 mV 2, 8 mV 2, and 0.8.
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crossover between input signal correlation and output noise cor-
relation due to correlation gain. To examine whether these effects
were also evident during sensory processing in vivo, we examined
responses to FM sounds using intracellular recordings in the pri-
mary auditory cortex (A1) in anesthetized gerbils. Unlike current
injection, manipulation of a sensory stimulus in vivo does not
allow for complete control over the input signal and noise vari-
ances and correlations for a given pair of neurons. To minimize
the impact of the inputs that we could not control, we used the
same virtual pair approach that we used in vitro (i.e., we com-
pared only responses that were recorded nonsimultaneously),
imposing both signal and noise correlations through the FM
sounds. As with our injected currents, the FM sounds had a signal
component that was the same on each trial and a noise compo-
nent that was different on each trial, and we changed the vari-
ances and correlations of these components systematically. The
spectrogram of one of the FM sounds is shown in Figure 2A (see
Materials and Methods for additional details about how we con-
structed the sounds). To eliminate any confounds due to differences
in mean spike rate, frequency preference, etc., between neurons, we
formed pairs using only responses from the same neuron.

Based on the effects that we observed in vitro, we expected that (1)
an increase in the SNR of the sounds would increase the input SNR
to both neurons in a pair, causing an increase in their output signal
correlation and a decrease in their output noise correlation (Fig. 1E),
and (2) an increase in the correlation between the signal components
of the sounds would increase the input signal correlation between
neurons in a pair, causing an increase in both their output signal and
noise correlations (Fig. 1F).

We first examined the relationships between input SNR and
output signal and noise correlations that resulted from changing
the SNR of the sounds while keeping the correlations in the
sounds fixed. Figure 2B shows the membrane potential and spik-
ing responses of a typical neuron to the same sounds with two
different SNRs; as expected, the trial-to-trial variability of the
responses increased as the SNR of the sounds was decreased. The
output (spiking) signal and noise correlations as a function of
the input (membrane potential) SNR for the pair formed from
the responses of this neuron are shown in Figure 2C; with increas-
ing input SNR, output signal correlation increased and output
noise correlation decreased, which is consistent with the results of
our in vitro experiments. We observed similar effects in all of our
intracellular recordings (n � 6): as shown in Figure 2D, the best
linear fit between input SNR and output signal correlation had a
positive slope for all pairs, while the best linear fit between input
SNR and output noise correlation had a negative slope for all
pairs. We also confirmed that the same effects were evident in a
larger sample of extracellular recordings of single-unit responses
to the same sounds. We could not measure directly the input SNR
in these responses, so we instead examined the relationship be-
tween output correlations and output SNR. Because output SNR
was a monotonic function of input SNR in all of our intracellular
recordings, we expected that the same dependencies that we ob-
served between output correlations and input SNR would also be
evident when comparing output correlations and output SNR.
Indeed, the effects of SNR on correlations observed extracellu-
larly mirrored those observed intracellularly: as shown in Figure
2E,F, the best linear fit between output SNR and output signal
correlation had a positive slope for all pairs (n � 34), while the
best linear fit between output SNR and output noise correlation
had a negative slope for all but two pairs.

We next examined the relationship between input signal cor-
relation and output noise correlation that resulted from changing

the correlation between the signal components of the sounds
while keeping the SNR and the correlation in the noise compo-
nents of the sounds fixed. The output noise correlation as a func-
tion of input signal correlation for a typical intracellular
recording is shown in Figure 2G; as expected from the results of
our in vitro experiments, output noise correlation increased with
increasing input signal correlation. This effect was consistent
across all of our intracellular recordings (n � 6; Fig. 2H) and was
also evident in a larger sample of extracellular recordings of
responses to the same sounds in which output noise correla-
tion increased with output signal correlation for all pairs (n �
34; Fig. 2 I, J ).

The impact of nonlinear correlation transfer of depends on
cortical state
We have demonstrated that nonlinear interactions between sig-
nal and noise inputs can significantly affect the transfer of signal
and noise correlations in cortical neurons. However, the effects
that we have demonstrated may depend on the regime in which
the cortex is operating. In asleep, anesthetized, and awake ani-
mals, the state of the cortex can vary along a continuum of
synchronized and desynchronized states across which the trial-
to-trial variability and correlations in sensory responses can vary
dramatically (Steriade et al., 2001; Castro-Alamancos, 2004;
Haider and McCormick, 2009; Harris and Thiele, 2011). When
the cortex is in a synchronized state, concerted fluctuations be-
tween intrinsically generated up and down states result in sensory
responses with low SNRs and large noise correlations, but in
desynchronized states, up and down states are suppressed and
sensory responses have higher SNRs and smaller noise correla-
tions (Harris and Thiele, 2011; Marguet and Harris, 2011; Ecker
et al., 2014).

The nature of variance gain and correlation gain suggests that
these state-dependent differences in SNRs and noise correlations
will affect the strength of the nonlinear interactions between sig-
nal and noise inputs. For example, because variance gain is sub-
linear, the effects of a change in input SNR on output correlations
should be large when the SNR is low and small when the SNR is
high. Similarly, because correlation gain is supralinear, the effects
of a change in input signal correlation on output noise correla-
tion should be small when noise correlations are small and large
when noise correlations are large. Thus, we hypothesized that the
effects of both variance gain and correlation gain should be
strong when the cortex is in a synchronized state with low SNR
and large noise correlations, and weak when the cortex is in a
desynchronized state with high SNR and small noise correlations.
To test whether the strength of the effects of nonlinear interac-
tions between signal and noise inputs were indeed state depen-
dent, we used a multitetrode array to record extracellular
responses to speech (Fig. 3A) from populations of single units in
A1 of gerbils anesthetized with either fentanyl, medetomidine,
and midazolam (four populations, 147 neurons), which produce
stable desynchronized cortical states, or ketamine and xylazine
(five populations, 160 neurons), which produce stable synchro-
nized cortical states (Pachitariu et al., 2014). Example responses
from typical populations in synchronized and desynchronized
A1 are shown in Figure 3B, and the distributions of SNRs and
correlations in the responses for all neurons are shown in Figure
3C–E. The SNR of responses in the desynchronized state was
much higher than that in the synchronized state (median values:
0.3 and 0.04), while the noise correlations in the desynchronized
state were much smaller than those in the synchronized state
(median values: 0.003 and 0.1).
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Because responses in the synchronized state had lower SNRs
and larger noise correlations than responses in the desynchro-
nized state, the effects of nonlinear interactions between signal
and noise inputs that we demonstrated above—the opposing
dependencies of signal and noise correlations on SNR, and the
positive dependency of noise correlation on signal correlation—
should be more evident in the synchronized state than in the

desynchronized state. Indeed, as shown in Figure 3F, scatter plots
of the signal and noise correlations for all pairs, with dots colored
by the geometric mean of the SNRs for each pair, suggest strong
dependencies between SNR, signal correlation, and noise corre-
lation in the synchronized state, while dependencies in the desyn-
chronized state are much less evident. To quantify the strength of
the dependencies in each state, we computed the partial correla-

Figure 2. Nonlinear transfer of signal and noise correlations in vivo. A, The spectrogram of sound with random FMs. See Materials and Methods for a detailed description of sound properties. B,
Example membrane potential and spiking responses of a typical neuron in gerbil A1 across trials for the same FM sound with two different sound SNRs. Action potentials were clipped for plotting.
C, The output signal correlations (left) and output noise correlations (right) as a function of input SNR for the pair formed from the responses of a typical neuron to FM sounds with four different SNRs,
along with the best linear fits. The input SNR for a pair of responses was computed as the geometric mean of the SNRs for each response. The error bars indicate the SDs of the distributions obtained
from bootstrap resampling of trials. D, The best linear fits between input SNR and output signal correlation (left) and output noise correlation (right) for all intracellular recordings in our sample. E,
F, Results for extracellular recordings plotted as in C and D, with input SNR replaced by output SNR. G, The output noise correlation as a function of the input signal correlation for the pair formed from
the responses of a typical neuron to FM sounds with different signal components, along with the best linear fit. H, The best linear fits between input signal correlation and output noise correlation
for all pairs in our sample. I, J, Results for extracellular recordings plotted as in G and H, with input signal correlation replaced by output signal correlation.
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tion between each possible pairing of SNR, signal correlation, and
noise correlation, while factoring out the influence of the third
quantity, as well as the influence of mean spike rate, which can
also affect correlations (de la Rocha et al., 2007). The results of
this analysis, shown in Figure 3G, confirm that all three depen-
dencies were significantly stronger in the synchronized state than
in the desynchronized state (all partial correlations were signifi-
cant with p � 0.001).

Nonlinear transfer of signal and noise correlations in a
simple model
We have attributed the effects of the interactions between signal
and noise inputs on output correlations to thresholding, but the

transformation of synaptic inputs to spiking output in real neu-
rons also involves many other nonlinear processes. To confirm
that thresholding alone was indeed sufficient to account for the
effects that we observed, we examined correlation transfer in a
DG model (Macke et al., 2009; Lyamzin et al., 2010, 2012). In the
standard DG model (Fig. 4A), the response r(t) is generated by
thresholding a Gaussian process v(t) with zero mean and variance

v

2 at each time step to create binary spike trains (Eq. 1):

r�t� � � 1 if v�t� 	 1
0 else

For a pair of neurons with the same input variance 
v
2, the prob-

ability of any particular joint binary response is determined by 
v
2

Figure 3. The impact of nonlinear correlation transfer depends on cortical state. A, The spectrogram of a speech sound. B, Raster plots showing the responses of typical A1 populations in
desynchronized and synchronized states on three successive trials. Each row in the raster plot shows the spiking of one cell. C–E, The distributions of SNR, signal correlations, and noise correlations
in the spiking of neurons in synchronized (green) and desynchronized (purple) A1. The median values are indicated by the arrows. All differences in population medians were significant with p �
0.001 (Wilcoxon rank-sum test). F, The spiking signal and noise correlations in the responses of simultaneously recorded pairs of neurons to speech in desynchronized and synchronized A1, with dots
colored according to the geometric mean of the spiking SNR for each pair. G, Partial correlation coefficients between different spiking properties in responses of desynchronized and synchronized A1
to speech. The partial correlation between each possible pairing of SNR, signal correlation, and noise correlation was computed after factoring out the influence of the third quantity, as well as the
influence of mean spike rate. All partial correlations were significant with p � 0.001.
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and the correlation between the inputs �v. This is illustrated in
Figure 4B, which shows a bivariate Gaussian probability distribu-
tion with a positive correlation and the fractions of probability
density corresponding to the four possible joint binary responses.

To capture signal and noise correlations, we extended the DG
model (Fig. 4C) to have separate signal and noise inputs (Eq. 2):

r�t� � � 1 if s�t� � n�t� 	 1
0 else

with signal input s(t) with zero mean and variance 
s
2 assumed to

be the same on each trial, noise input n(t) with zero mean and

variance 
n
2 assumed to be different on each trial, and correlations

�s and �n between the signal and noise inputs.
We replicated our physiological experiments by examining

the changes in the correlations of the extended DG model spiking
that resulted from changes in different input properties. As
shown in Figure 4D–F, spiking generated by the DG model
showed the same interactions between signal and noise inputs
that we observed in real neurons: changing input signal variance
had opposing effects on output signal and noise correlations (Fig.
4D), as did changing input SNR (Fig. 4E), while increasing input
signal correlation resulted in an increase in both output signal

Figure 4. Nonlinear transfer of signal and noise correlations in a simple model. A–C, Schematic diagrams illustrating the DG model; see text for a detailed description. D, The output signal
correlations (top) and noise correlations (bottom) in DG model spiking as a function of input signal variance. Each colored line shows the output signal correlations for a different input signal
correlation (top) or the output noise correlations for a different input noise correlation (bottom). Values are shown as percentage change relative to those for the smallest input signal variance tested.
The values of the input properties that were fixed are shown on each panel. E, F, The output signal and noise correlations in DG model spiking as a function of input SNR and input signal correlation,
plotted as in D.
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and noise correlations (Fig. 4F). While these results do not ex-
plicitly rule out contributions from other nonlinear processes in
real neurons, they do demonstrate that thresholding alone is suf-
ficient to account for the interactions between signal and noise
correlations that we observed.

Nonlinear transfer of signal and noise correlations across
different timescales
Our experiments and analysis thus far have focused on correla-
tions measured over relatively short timescales (50 ms time bins
for physiological experiments, or single time bins for the DG
model). However, there are many regimes in which activity in
cortical networks is correlated over much longer timescales. For
example, in a temporal coding regime with precise spike timing,
the relevant timescale for signal correlations may be short, but in
a rate coding regime, the relevant timescale for signal correlations
may be as long as several seconds. The relevant timescale for noise
correlations can also vary over a wide range, depending on
whether, for example, the cortex is in a synchronized state, with
activity dominated by slow global fluctuations, or is in a desyn-
chronized state, in which these fluctuations are suppressed.

To examine the nonlinear transfer of signal and noise corre-
lations across a range of timescales, we used a LIF model, where
the membrane potential v(t) at each time step is given by the
following (Eq. 3):

�m

dv�t�

dt
� �v�t� � s�t� � n�t�

and generated binary spike trains as in the following DG model
(Eq. 4):

r�t� � � 1 if v�t� 	 1
0 else

We used a membrane time constant �m � 10 ms and added
temporal correlations to the signal and noise inputs so that input
signal s had autocorrelation e�t/�s and cross-correlation �se

�t/�s,
and the input noise n had autocorrelation e�t/�n and cross-
correlation �ne�t/�n. We found that the two main effects of non-
linear interactions between signal and noise inputs that we have
focused on—the opposing changes in output signal and noise
correlations resulting from a change in input SNR, and the in-
crease in output noise correlation resulting from an increase in
input signal correlation—were evident across all input signal and
noise correlation timescales, as well as across all response time-
scales �r (the number of bins over which spike counts were
summed before computing output correlations).

Figure 5 shows the changes in output correlations that re-
sulted from changing input SNR or input signal correlation for
different signal, noise, and response timescales. The top and mid-
dle rows show changes in output signal and noise correlations as
a function of input SNR (Fig. 4E). The change in output signal
correlation with increasing input SNR was always positive, while
the change in output noise correlation was always negative. The
strength of these effects was the same across all noise timescales in
a temporal coding regime with fast signal and response time-
scales; however, in a rate coding regime with slow signal and

Figure 5. Nonlinear transfer of signal and noise correlations across different timescales. Top and middle rows, Output signal and noise correlations in the spiking of an LIF model as a function of
input SNR for different input signal, noise, and response timescales, plotted as in Figure 4E. Bottom row, Output noise correlation in the spiking of an LIF model as a function of input signal correlation
for different input signal, noise, and response timescales, plotted as in the bottom panel of Figure 4F.
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response timescales, the strength of the changes in output signal
correlation with changing input SNR increased with increasing
noise timescale, while the strength of the changes in output noise
correlation decreased (though this decrease was only evident for
inputs with weak signal correlation). The bottom row of Figure 5
shows the changes in output noise correlation with increasing
input signal correlation (Fig. 4F, bottom), which were always
positive. The strength of the effects of input signal correlation on
output noise correlation increased with increasing input signal
and response timescale, but was independent of the input noise
timescale. These results, while confirming that the effects of spike
threshold on the transfer of signal and noise correlations are qual-
itatively similar across all input and output timescales, also dem-
onstrate that the strength of the effects may be timescale
dependent.

The impact of nonlinear correlation transfer on the coding of
sensory information
We have shown that the nonlinear transfer of signal and noise
correlations is a general phenomenon with similar effects in
many different contexts, but we have not yet examined its impact
on sensory coding. To measure the efficiency of coding, we cal-
culated the mutual information between the input signal and
output spiking of the extended DG model (Eq. 2), which quanti-
fies the degree to which the observation of output spiking reduces
uncertainty about the value of the input signal. We consider first
the effects of a change in input SNR on output signal and noise
correlations. Because a change in input SNR causes opposing
changes in output signal and noise correlations, the overall im-
pact of these changes on information is difficult to predict. With-
out nonlinear correlation transfer, changes in input SNR would
have no effect on output correlations. Thus, to measure the im-
pact of the dependence of output correlations on input SNR, we
can vary the input SNR and compare the information in output
spiking under normal conditions (i.e., when output correlations
change with input SNR) with the information in output spiking
when output correlations are artificially fixed. This comparison
cannot be made with experimental data, as there is no way to
decouple input SNR and output correlations in real neurons;
however, it can be made using the DG model, as the SNR and
correlations in the output spiking of the model can be manipu-
lated independently (this is achieved not by removing the effects
of nonlinear correlation transfer from the model, but rather by
compensating for them; see Materials and Methods).

The red line in Figure 6A shows the information in single time
bins (equivalent to the information in the PSTH; Brenner et al.,
2000) as a function of input SNR with fixed input signal and noise
correlations. As expected, information increased strongly with
increasing input SNR. However, without the effects of nonlinear
correlation transfer, when output correlations were artificially
fixed at their values for the lowest input SNR (black line), the
increase in information with increasing input SNR was even
stronger. Thus, the changes in output signal and noise correla-
tions with increasing input SNR due to nonlinear correlation
transfer reduce information.

To gain further insight into how the effects of input SNR on
output correlations affect information, we can break the total
information down into separate components related to signal
and noise correlations (Pola et al., 2003). The contribution of
signal correlation to the information is shown in Figure 6B (note
that this contribution is always negative, as signal correlation can
only be a source of redundancy). At the lowest input SNR, the
contribution of signal correlation to the information is small

(because the output signal correlation is small). The negative
impact of signal correlation increases when output signal corre-
lation increases with increasing SNR (red), but not when output
correlations are fixed (black).

The contribution of noise correlation to the total information
is shown in Figure 6C. This contribution is negative when output
correlations change with increasing input SNR (red), and posi-
tive when output correlations are fixed (black). Thus, the de-
crease in output noise correlation with increasing input SNR is
accompanied by a decrease in information. This result may seem
surprising; since noise correlations are often thought to be detri-
mental to coding, one might expect a decrease in noise correlation
to result in an increase in information. However, the impact of
noise correlations on coding is not necessarily straightforward, as
noise correlations can have both stimulus-independent and
stimulus-dependent components. The contribution of stimulus-
independent noise correlations to information can be either pos-
itive or negative: if signal and noise correlations have opposite
signs, this contribution will be positive, whereas if signal and
noise correlations have the same sign, this contribution will be
negative (Panzeri et al., 1999). Since we consider only positive
signal and noise correlations, the stimulus-independent contribu-
tion of noise correlations to information is always negative. As
shown in Figure 6D, the negative impact of stimulus-independent
noise correlation increases when output correlations change with
increasing input SNR (red), but not when output correlations are
fixed (black).

The stimulus-dependent contribution of noise correlation to
the total information is shown in Figure 6E. This contribution
can only be positive (differences in the noise correlations associ-
ated with different stimuli help to distinguish the responses to
those stimuli). The contribution of stimulus-dependent noise
correlation to information remains constant as output correla-
tions change with increasing input SNR (red), but increases with
increasing input SNR when output correlations are fixed (black).
The positive impact of stimulus-dependent noise correlations
when input SNR increases and output correlations are fixed is
due to the fact that, although the average output noise correlation
over all stimuli does not change, the range of output noise corre-
lations for individual stimuli, and, consequently, the stimulus
dependence of noise correlations, increases as the input signal
variance is increased; when output noise correlations are not fixed
and decrease with increasing SNR, this effect is offset. The results in
Figure 6A–E show that information is decreased by the changes in
output correlations with increasing input SNR through a combina-
tion of effects related to changes in signal correlation, stimulus-
independent noise correlation, and stimulus-dependent noise
correlation.

The same approach can be used to measure the impact of
the effects of input signal correlation on output noise correla-
tion. Without nonlinear interactions between signal and noise
inputs, changes in input signal correlation would have no ef-
fect on output noise correlation. Thus, to measure the impact
of the dependence of output noise correlation on input signal
correlation, we can vary the input signal correlation and com-
pare the change in information in output spiking under nor-
mal conditions (i.e., when output noise correlation changes
with input signal correlation) with the change in information
in output spiking when output noise correlation is artificially
fixed.

The red line in Figure 6F shows the information in DG model
spiking as a function of input signal correlation with fixed input
SNR and input noise correlation. Information decreased strongly
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with increasing signal correlation, as expected, but the effects of
removing nonlinear interactions between signal and noise in-
puts by artificially fixing the output noise correlation at its
value for the lowest input signal correlation (black line) were
relatively small. The change in output noise correlation with
increasing input signal correlation was relatively large (from
0.25 for lowest input signal correlation to 0.45 for the highest
input signal correlation), so it may seem surprising that fixing
the output noise correlation resulted in only a small change in
information; however, breaking down the information into
separate components related to signal and noise correlations
revealed relatively large, but offsetting, changes in different
components.

Because the negative impact of signal correlation is indepen-
dent of the output noise correlation (Fig. 6G), the differences in
information with and without the effects of input signal correla-
tion on output noise correlation are due exclusively to the con-
tribution of noise correlation (Fig. 6H). The negative impact of
stimulus-independent noise correlation (Fig. 6I) increases more
rapidly when output noise correlation increases with increasing
input signal correlation (red) than when output noise correlation
is fixed (black), while the positive impact of stimulus-dependent
noise correlation (Fig. 6J) increases slightly as output noise cor-
relation increases with increasing input signal correlation (red),
but decreases with increasing input signal correlation when out-
put noise correlation is fixed (black). Thus, the effects of input
signal correlation on output noise correlation have a relatively
small impact on the total information because the changes in the
contributions of stimulus-dependent and stimulus-independent
noise correlations due to these effects have opposing signs and, thus,
offset each other. Together, the results in Figure 6 demonstrate that
spike threshold plays a major role in shaping both stimulus-
independent and stimulus-dependent noise correlations, and that
the interactions between these different forms of noise correlation
can have important consequences for sensory coding.

The origin of nonlinear correlation transfer
Finally, we can use the DG model to gain insight into how the
changes in correlations from membrane potential to spiking
arise. Figure 7A shows the nonlinear relationship between input
and output correlation that is characteristic of correlation gain;
assuming positive correlations, the output correlation increases
supralinearly as the input correlation is increased. We can gain
insight into the origin of correlation gain by analyzing the factors
that determine the transfer of correlation from input to output
within the standard DG model (Eq. 1). If we consider two neu-
rons a and b with the same input variance 
v

2 and positive input
correlation �v, then the output correlation �r can be written in
terms of Gaussian CDFs (Eq. 5):

Figure 6. Theimpactofnonlinearcorrelationtransferonthecodingofsensoryinformation.A,The
information in DG model spiking as a function of input SNR with (red) and without (black) the effects
of input SNR on output correlations. The red line was obtained by measuring the information in DG
model spiking for different input SNRs with the input signal and noise correlations fixed at the values
indicatedonthepanel.TheblacklinewasobtainedbymeasuringtheinformationinDGmodelspiking
for different input SNRs with the input signal and noise correlations varied to compensate for changes
in input SNR such that the output correlations remained fixed at their values for the lowest input SNR.
B–E,Thecontributionofsignalcorrelation,noisecorrelation,stimulus-independentnoisecorrelation,
and stimulus-dependent noise correlation to the information in DG model spiking with (red) and

4

without (black) the effects of input SNR on output correlations, plotted as function of input SNR.
F, The information in DG model spiking as a function of input signal correlation with (red) and
without (black) the effects of input signal correlation on output noise correlation. The red line
was obtained by measuring the information in DG model spiking for different input signal
correlations with the input SNR and noise correlation fixed at the values indicated on the panel.
The black line was obtained by measuring the information in DG model spiking for different
input signal correlations with the input noise correlation varied to compensate for changes in
input signal correlation such that the output noise correlation remained fixed at its value for the
lowest input signal correlation. G–J, The contribution of signal correlation, noise correlation,
stimulus-independent noise correlation, and stimulus-dependent noise correlation to the in-
formation in DG model spiking with (red) and without (black) the effects of input signal corre-
lation on output noise correlation, plotted as function of input signal correlation.
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2 �. � is the

value of a univariate Gaussian CDF with zero mean and variance

v

2 evaluated at �1, which is equivalent to the probability that a
sample from the distribution has a value �1 (i.e., the probability
of an individual neuron spiking in a single time bin). �2 is the
value of a bivariate Gaussian CDF with zero mean and covariance
�v evaluated at �1, which is equivalent to the probability that a
sample from the distribution has a value �1 on both dimensions
(i.e., the probability of both neurons spiking together in a single
time bin).

A change in the input correlation �v will change the �2 term in
Eq. 5, but will have no effect on the � terms. Thus, the supralinear
correlation gain must result from the fact that each increase in �v

results in successively larger increases in �2 and, thus, succes-
sively larger increases in the output correlation �r. Figure 7B, left,
shows a bivariate Gaussian distribution with a weak correlation
(�v � 0.1). This distribution is nearly circular and only a relatively
small fraction of probability density is above the threshold of 1 on
both dimensions (�2 � 0.05). When the correlation is increased
to �v � 0.5, as shown in the middle panel, the distribution be-
comes slightly elongated and the fraction of probability density
above threshold on both dimensions increases to �2 � 0.09 (a
change of 0.04). When the correlation is increased again by the
same amount to �v � 0.9, as shown in the right panel, the distri-
bution becomes more elongated and the fraction of probability
density above threshold on both dimensions again increases;
however, this increase to �2 � 0.15 (a change of 0.06) is 50%
larger than the previous increase in �2, even though the change in
the correlation �v was the same. This effect, which underlies cor-
relation gain, results from the fact that each successive elongation

of the probability distribution results in successively more central
parts of the distribution being above threshold.

We can use the same approach to gain insight into the origin
of variance gain. The nonlinear relationship between input vari-
ance and output correlation that is characteristic of variance gain
is shown in Figure 7C; the output correlation �r increases as the
input variance 
v

2 is increased, even when the input correlation �v

is constant. Variance gain can be understood by comparing the
�2 and � terms in Equation 5. Figure 7D shows univariate Gauss-
ian distributions with increasing variance (
v

2 � 1, 2, 3) and the
corresponding fractions of probability density above threshold
(� � 0.16, 0.24, 0.28, a change of 50% from 
v

2 � 1 to 
v
2 � 2, and

a change of 16% from 
v
2 � 2 to 
v

2 � 3). Figure 7E shows bivariate
Gaussian distributions with the same three variances and the
corresponding fractions of probability density above threshold
(�2 � 0.06, 0.11, 0.14, changes of 83 and 27%). Because the
impact of an increase in the variance 
v

2 on the �2 term is rela-
tively larger than the impact on the � terms, the output correla-
tion �r increases. This effect, which underlies variance gain, arises
from the elongation of the bivariate distribution caused by the
positive correlation, which results in the same increase in vari-
ance shifting more probability density above threshold for the
bivariate distribution than for the univariate distribution. Note
the sublinearity of variance gain: each successive increase in input
variance causes a smaller increase in output correlation.

The same approach can also be used to gain insight into the
origin of the nonlinear interactions between signal and noise
inputs that affect the transfer of signal and noise correlations in
the extended DG model (Eq. 2). If we consider two neurons a and
b with the same input signal and noise variances 
s

2 and 
n
2, and

input signal and noise correlations �s and �n, then the output total
correlation �r

tot can be written in terms of Gaussian CDFs similar
to those in Equation 5 (Eq. 6):

�r
tot �

cov�ra, rb�

�var�ra�var�rb�
�

�2��1, �tot� � ���1, 
s
2 � 
n

2�2
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Figure 7. The origin of nonlinear correlation transfer. A, A schematic diagram of correlation gain. B, Schematic diagrams of the change in a bivariate Gaussian probability distribution with
changing correlation. The probability that a sample from the distribution takes on a value �1 on both dimensions (�2) is indicated on each panel, along with the change in this probability relative
to that corresponding to the next lowest correlation. C, A schematic diagram of variance gain. D, A schematic diagram of the change in a univariate Gaussian probability distribution with changing
variance. The probability that a sample from the distribution takes on a value �1 (�) is indicated on each panel, along with the change in this probability relative to that corresponding to the next
lowest variance. E, Schematic diagrams of the change in a bivariate Gaussian probability distribution with changing variance. The probability that a sample from the distribution takes on a value �1
on both dimensions (�2) is indicated on each panel, along with the change in this probability relative to that corresponding to the next lowest variance.
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Since we consider only changes in signal and noise inputs that do not
affect the total variance 
v

2, we can ignore the variance term in the de-
nominator and restrict our focus to the � and �2 terms in the
numerator.

The output signal correlation, which we define as the correla-
tion between spiking recorded on different trials, can be written
as follows (Eq. 7):
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where cov � denotes the covariance between spiking recorded on

different trials and �sig � � 
s
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2 � 
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2 �. The only dif-

ference between Equations 6 and 7 is in the off-diagonal elements
of the covariance matrices in the �2 terms; because noise inputs
on different trials are uncorrelated (i.e., �n � 0), the 
n

2�n term in
�tot is absent from �sig. The output noise correlation, which we
define as the difference between the total correlation and the
signal correlation, can then be written as follows (Eq. 8):

�r
noise � �r

tot � �r
sig �

�2��1, �tot� � �2��1, �sig�

var�ra�

Using Equations 7 and 8, we can examine the effects of changes in
the signal and noise inputs on output signal and noise correla-
tion. The two main effects of nonlinear interactions between sig-
nal and noise inputs that we have focused on have been the
opposing changes in output signal and noise correlations result-
ing from a change in input SNR, and the increase in output noise
correlation resulting from an increase in input signal correlation.
The origin of the effects of a change in input signal correlation on
output noise correlation can be seen in Equation 8. If the input
signal correlation �s is increased, the off-diagonal elements of the
�tot and �sig terms will increase by the same amount. However,
assuming the input noise correlation �n is positive, the off-
diagonal elements of �tot will be larger than those of �sig to start
with, so the resulting increase in the first �2 term in Equation 8
will be larger than that in the second �2 term because of correla-
tion gain (i.e., for the same reasons described in the discussion of
Fig. 7B above). Thus, because an increase in input signal correla-
tion increases the first �2 term more than the second �2 term, the
output noise correlation, which is proportional to the difference
between them, will increase.

The origin of the effects of a change in input SNR on output
signal correlation can be seen in Equation 7. Assuming positive
input signal and noise correlations �s and �n, if the input SNR is
increased by increasing 
s

2 and decreasing 
n
2 such that the total

input variance 
s
2 � 
n

2 does not change, the off-diagonal ele-
ments of �sig in Equation 7 will increase while the diagonal ele-
ments will remain the same. Consequently, the �2 term in
Equation 7 will increase while the � term stays the same and,
thus, the output signal correlation �r

sig will increase.
The origin of the effects of a change in input SNR on output

noise correlation can be seen in Equation 8. In addition to chang-
ing the off-diagonal elements of �sig, the increase in input SNR
will also change the off-diagonal elements of �tot. However, be-
cause the increase in input SNR is achieved in part through a
decrease in the noise variance 
n

2, the change in the off-diagonal
elements of �tot, which include 
n

2, can never exceed the change in
the off-diagonal elements �sig, which do not. Thus, the change in

the second �2 term of Equation 8 that results from an increase in
input SNR will be greater than the corresponding change in the
first �2 term, and the output noise correlation will decrease.

Discussion
Taken together, our in vitro, in vivo, and modeling results suggest
that the threshold nonlinearity associated with spike generation
can significantly transform the signal and noise correlations in
cortical networks during sensory processing. Previous studies
have shown that changes in input strength can affect output cor-
relation, imposing a dependency between mean spike rate and
total spiking correlation (de la Rocha et al., 2007). We have
shown that even when total input strength is constant, the corre-
lations in spiking can vary dramatically with changes in other
input properties, with changes in the signal component of inputs
affecting the noise component of outputs and vice versa. We
found that changes in input SNR resulted in opposing changes in
output signal and noise correlations, while increasing input sig-
nal correlations increased both output signal and noise correla-
tions. These effects are due to nonlinear interactions between
signal and noise inputs that could not be predicted by considering
the effects of thresholding each input separately. Our modeling
results demonstrate that a simple threshold nonlinearity is suffi-
cient to reproduce the effects that we observed in vitro and in vivo,
and that the effects of spike thresholding on signal and noise
correlations are qualitatively (and, often, quantitatively) similar
across a wide range of input and output timescales.

Our analysis of the information in DG model spiking suggests
that the nonlinear transfer of signal and noise correlations has a
significant impact on sensory coding, and that this impact is me-
diated through effects on both stimulus-independent and
stimulus-dependent noise correlations. We found that the de-
crease in output noise correlation that accompanies an increase
in input SNR reduces information, while the change in output
noise correlation that accompanies a change in input signal cor-
relation has little impact. These results may seem counterintui-
tive, as it is often reported that if both signal and noise
correlations are positive (as in our study), noise correlation de-
creases information (Oram et al., 1998; Panzeri et al., 1999; Aver-
beck and Lee, 2006). This decrease is evident when considering
the impact of noise correlation on the benefit achieved from av-
eraging across responses to an input signal; in the extreme case in
which all responses have identical noise, averaging has no effect at
all. However, it is only stimulus-independent noise correlation
that has the potential to be detrimental. In contrast, stimulus-
dependent noise correlation (i.e., noise correlation that changes
when the input signal is changed) can only be beneficial; any
change in the responses to different input signals can be used to
distinguish those signals and, thus, provides information (Pola et
al., 2003).

To separate the contributions of stimulus-independent and
stimulus-dependent noise correlations to our results, we used an
information breakdown approach (Pola et al., 2003). We found
that the changes in output correlations that accompanied an in-
crease in input SNR reduced information because of changes in
both stimulus-independent and stimulus-dependent noise cor-
relations, while the changes in output noise correlation that ac-
companied a change in input signal correlation had little impact
on information because the changes in the contributions of
stimulus-dependent and stimulus-independent noise correla-
tions offset each other. These results demonstrate that the thresh-
old nonlinearity associated with spike generation can serve as a
source of strong stimulus-dependent noise correlation.
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Several theoretical studies have considered the impact of
stimulus-dependent noise correlation on sensory coding in gen-
eral (de la Rocha et al., 2007; Shea-Brown et al., 2008), but exper-
imental studies have been limited to the visual and motor systems
(Maynard et al., 1999; Montani et al., 2007; Ponce-Alvarez et al.,
2013). Given that spike thresholding is a ubiquitous property of
sensory systems, our results suggest that the impact of stimulus-
dependent noise correlation may be widespread and that further
investigation in other systems and contexts is warranted. While
our analysis was focused on neuronal pairs, investigation of the
consequences of nonlinear correlation transfer for coding in
larger populations where signal and noise correlations are pre-
dominantly positive, as in auditory cortex (Luczak et al., 2009;
Pachitariu et al., 2015), is likely to reveal effects that are consistent
with those we observed. However, the consequences of nonlinear
correlation transfer in populations in which many pairs have
signal and noise correlations that are negative, such as in motor
cortex (Averbeck and Lee, 2006) and visual cortex (Ecker et al.,
2014), may be more difficult to predict and require further study.

Many of the covariations in spiking properties that we ob-
served have also been observed in other studies. Most studies of
signal and noise correlations across cortical areas report a positive
dependency, i.e., noise correlation tends to increase with increas-
ing signal correlation (Bair et al., 2001; Averbeck and Lee, 2003;
Kohn and Smith, 2005; Ecker et al., 2014) and, while it is generally
assumed that this dependency reflects a corresponding depen-
dency in input signal and noise correlations, our results demon-
strate that this is not necessarily the case; we observed that an
increase in input signal correlation caused an increase in both
output signal and noise correlations, even when input noise cor-
relation was constant. We also observed dependencies between
SNR and correlations that are consistent with phenomena that
have been reported in previous studies: for example, concurrent
decreases in spiking trial-to-trial variability and noise correla-
tions have been observed with changes in attention in V4 (Cohen
and Maunsell, 2009; Mitchell et al., 2009) and with adaptation
and changes in contrast and in V1 (Kohn and Smith, 2005). Our
results indicate that nonlinear interactions between signal and
noise inputs due to spike threshold may play a significant role in
creating these dependencies.

Our results also show that, because the effects of variance gain
decrease with increasing SNR and the effects of correlation gain
increase with increasing noise correlation, the impact of spike
threshold on signal and noise correlations depends strongly on
brain state. We found that both the opposing dependencies of
signal and noise correlations on SNR, and the positive depen-
dency of noise correlation on signal correlation, were stronger in
the synchronized state than in the desynchronized state. While
both synchronized and desynchronized states are apparent in
awake animals, the cortex often transitions to a desynchronized
state during active processing (Crochet and Petersen, 2006;
Greenberg et al., 2008; Poulet and Petersen, 2008; Xu et al., 2012;
Luczak et al., 2013; Polack et al., 2013; Sachidhanandam et al.,
2013; Tan et al., 2014; Zhou et al., 2014). In addition to increasing
SNR and decreasing noise correlations, this transition appears to
also decrease the nonlinearity of correlation transfer, making the
correlation structure in cortical networks more robust to changes
in input strength and, therefore, better able to faithfully encode
correlations in sensory stimuli. Changes in brain state are not the
only source of variation in the mean spike rates, trial-to-trial
variability, and signal and noise correlations in cortical networks;
the properties of sensory responses can also vary across a wide range
due to changes in stimulus properties (Kohn and Smith, 2005; Hofer

et al., 2011), adaptation (Gutnisky and Dragoi, 2008), or attention
(Cohen and Maunsell, 2009; Mitchell et al., 2009). Thus, it may be
critical to evaluate directly the role of spike threshold in shaping
correlations in any given experimental context.
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