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Decisions to engage in collaborative interactions require enduring considerable risk, yet provide the foundation for building and main-
taining relationships. Here, we investigate the mechanisms underlying this process and test a computational model of social value to
predict collaborative decision making. Twenty-six participants played an iterated trust game and chose to invest more frequently with
their friends compared with a confederate or computer despite equal reinforcement rates. This behavior was predicted by our model,
which posits that people receive a social value reward signal from reciprocation of collaborative decisions conditional on the closeness of
the relationship. This social value signal was associated with increased activity in the ventral striatum and medial prefrontal cortex, which
significantly predicted the reward parameters from the social value model. Therefore, we demonstrate that the computation of social
value drives collaborative behavior in repeated interactions and provide a mechanistic account of reward circuit function instantiating
this process.
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Introduction
Collaboration is essential to our social life, providing the founda-
tion for advancing our economic, technological, political, and
personal landscapes. One critical aspect of collaboration is the
construct of trust, which can be described as assuming mutual
risk with a relationship partner to attain an interdependent goal
(Simpson, 2007). However, collaborations are not just about at-
taining self-interested goals, but also about fostering interper-
sonal relationships. Relationships are intrinsically rewarding and
help to fulfill a basic social need to belong (Baumeister and Leary,
1995). Maintaining stable and close relationships promotes pos-
itive physical and mental health outcomes (Uchino, 2009), high-
lighting the importance of understanding the mechanisms
facilitating collaborations and sustaining relationships.

Modern behavioral economic models have made dramatic
improvements to classical economic theory in predicting collab-
orative behavior by incorporating social preferences such as con-
sidering other’s intentions (Rabin, 1993) or payoff outcomes
(Fehr and Schmidt, 1999). In addition, prior expectations can
bias our willingness to take collaborative risks such that we over-
weigh information consistent with expectations when deciding to

trust someone (Delgado et al., 2005; van’t Wout and Sanfey,
2008; Fareri et al., 2012a) in accordance with confirmation bias
(Doll et al., 2009). Importantly, these expectations appear to be
malleable and are updated after receiving feedback using a pre-
diction error computation (Chang et al., 2010) processed in the
ventral striatum (Fareri et al., 2012a).

It remains unclear, however, how collaborations might be in-
fluenced by strong priors based on years of repeated interactions.
One possibility is that continued collaboration with close others
may be driven by a strong prior expectation of reciprocation,
which would be associated with less prediction error and ventral
striatal activation after reciprocation (Fouragnan et al., 2013).
Alternatively, reciprocation may be desirable in close relation-
ships (Rilling et al., 2002; Phan et al., 2010) and may evoke a
larger reward signal as it strengthens an existing social bond. This
would imply that the social value of reciprocation might be mod-
ulated by aspects of the relationship; for example, degree of close-
ness or perceived trustworthiness.

We formalized and tested these competing hypotheses using a
computational modeling approach within the context of a repeated
trust game (Delgado et al., 2005) in which we manipulated the social
network status of participants’ partners (Fareri et al., 2012b). Par-
ticipants made investment decisions with a close friend
(in-network), a confederate (out-of-network), and a computer
(nonsocial control) while undergoing fMRI. We formalized an
expectation-learning model using a standard reinforcement-
learning (RL) model with strong prior expectations to test
whether participants’ decisions to invest with a close friend were
primarily motivated by a strong prior trustworthiness belief. We
compared this with a new social value model based on expected
value theory in which the value term is composed of a linear
combination of self-interested (i.e., financial) and social value
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(i.e., trustworthiness) signals and the probability term dynami-
cally updates with beliefs about the likelihood of partner recipro-
cation. This social value model tests whether participants’
decisions to invest with a close friend are primarily driven by a
social reward bonus feedback signal based on the subjective qual-
ity of the relationship as opposed to strong prior expectations.
We hypothesized the following: (1) that the social value model
would predict collaborative behavior better than the standard
expectation model and (2) that we would see a corresponding
social value signal in neural circuits of reward [e.g., striatum,
medial prefrontal cortex (mPFC)].

Materials and Methods
Participants
Twenty-nine sex-matched participant pairs (16 female) from Rutgers–
Newark and the surrounding area took part in this study. Three partici-
pant pairs were excluded from analysis due to excessive head motion/
image artifact, failure to attend to task due to sleeping, or never
experiencing one of the conditions during the task. Analyses were con-
ducted on the remaining 26 MRI participants (14 female; mean age �
21.36, SD � 3.67). All participants provided informed consent before
taking part in the experiment and all were screened for history of psychi-
atric illness and head trauma. This Institutional Review Board of Rutgers
University approved this study.

Experimental paradigm
We applied a social network manipulation (Fareri et al., 2012b; Fareri
and Delgado, 2014a) to an iterated economic trust game (Fig. 1a). MRI
participants interacted in this game with a same-sex close friend whom

they brought to the experimental session (in-network), a sex-matched
confederate (out-of-network), and a computer (nonsocial control). Be-
cause we expected MRI participants to feel close to their friend, we as-
sessed social closeness via a simple measure consisting of pairs of
overlapping circles, one labeled self and one labeled other using the In-
clusion of Other in Self Scale (IOS; Aron et al., 1992). Increased overlap
suggests increased closeness. MRI participants chose the pair of circles
that best characterized their relationship with their friend. Participant
pairs were then brought to the Rutgers University Brain Imaging Center
(RUBIC, Newark, NJ) and introduced to a sex-matched confederate who
was portrayed as an additional participant. In reality, the confederate was
a laboratory member whose identity was concealed until the end of the
session. Before the start of the scan session, we asked MRI participants to
make subjective ratings of trustworthiness for each partner using a
7-point Likert scale where 1 � not at all and 7 � a lot. While this was
being completed, a facial photograph was taken of the same-sex friend
and programmed into the task as a stimulus. We also asked them to fill
out the IOS with respect to the confederate and the computer.

The MRI participant, close friend, and confederate were subsequently
seated together in the control room and told that they would be playing
the investment game (i.e., an iterated trust game; Delgado et al., 2005;
Fareri et al., 2012a). The MRI participant was designated the investor and
told that s/he would play the game with one partner on each trial (Fig.
1a). MRI participants were endowed with $1.00 on each trial, which they
could keep, signaling the end of the trial, or share with their partner. A
choice to share was described as an investment, resulting in a tripling of
the money to $3.00 for the partner on a given trial (Berg et al., 1995;
Delgado et al., 2005); the respective partner could decide to keep all $3.00
or share it back evenly with the MRI participant ($1.50 each). Both MRI

Figure 1. Task schematic, manipulation check, and trust decisions. a, MRI participants played a trust game with three different partners: a close friend (in-network), a confederate (out-of-
network), and a computer (nonsocial control). Participants were endowed with $1.00 on each trial and chose whether to keep the money for themselves, leaving the partner with $0, or to
share/invest with that partner. Decisions to share resulted in the partner receiving a tripled amount of money ($3.00). After submitting their decision, a screen that said “waiting” appeared, during
which participants believed that they were waiting for their partner’s decision. Partners’ decisions to share resulted in an even split of the $3.00 investment, whereas decisions to keep resulted in
$0 being returned to the participant. b, Participants (n � 26) assessed each partner’s trustworthiness before (pre) and after (post) the task “How trustworthy is this partner?” c, Percentage of trials
in which participants shared on average across the experiment conditional on the partner context. Participants shared significantly more with their close friends compared with the confederate and
computer and more often with the confederate than the computer. **p � 0.0001; *p � 0.005 (�SEM).
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participants and their human partners underwent a series of practice
trials to ensure understanding of the task. Once the MRI participant was
situated in the scanner, however, the friend and confederate were in-
structed that they did not actually have to take part in the task: their
responses were preprogrammed to demonstrate equivalent reputation
during the task (see below).

Trials consisted of a decision and outcome phase (Fig. 1a). During the
decision phase (2 s), a photo of 1 of the 3 partners was presented on the
screen. MRI participants chose to keep or share via button presses on an
MRI-compatible fiber optic response pad (Current Designs). A jittered
interstimulus interval (ISI; 4 – 6 s) followed, during which the word
“waiting” was presented on the screen; MRI participants believed that
their decision was being transmitted to the computer in the control room
at which their partners were seated so that they would get the opportunity
to respond if the money was shared. Partner decisions were revealed
during the outcome phase (2 s) and all trials were separated by a jittered
intertrial interval (6 – 8 s). Missed trials (no response in the decision
phase) were indicated by a “#” symbol after the ISI. MRI participants
were compensated for their participation at a rate of $25/experimental
hour plus bonus payment based on realized outcomes of trials from two
randomly chosen task runs. Any missed trials that were included in these
runs were not eligible for bonus payment.

The task consisted of 72 trials in total, evenly distributed across six
functional runs. Trial order was counterbalanced across participants.
Twenty-four trials per partner condition were randomly administered
across these runs. Partner responses were preprogrammed: the reinforce-
ment schedule was set to be equivalent so that all partners reciprocated
on 50% of trials in which MRI participants chose to invest. This allowed
for an equivalent proportion of positive (i.e., reciprocation) and negative
(i.e., defection) outcomes to isolate the effects of the social partner on
neural representations of outcome value. MRI participants assessed part-
ner trustworthiness after the task on a 7-point Likert scale (1 � not at all,
7 � a lot). Participants were then debriefed and compensated. MRI
participants were paid as described above; their friends were paid at a rate
of $10/h.

Behavioral analysis
Subjective ratings. The IOS ratings and pretask/posttask trustworthiness
ratings for each partner served as a social network manipulation check.
IOS ratings were entered into a one-way repeated-measures ANOVA.
Pretask and posttask trustworthiness ratings were entered into a 2 (time:
pre/post) � 3 ( partner) repeated-measures ANOVA. A Greenhouse–
Geiser correction was applied to tests violating conditions of sphericity.
Post hoc comparisons were conducted and corrected for multiple com-
parisons via the sequential Bonferroni method (Holm, 1979; Rice, 1989).

Trust decisions. We examined MRI participants’ decisions to keep or
share as a function of partner using a mixed-effects logistic regression
with randomly varying slopes and intercepts. We also probed differences
in log-transformed reaction times as a function of decision and partner
via a mixed-effects linear regression with randomly varying intercepts.
These analyses were conducted using the lmerTest (Kuznetsova et al.,
2014) and LME4 (Bates et al., 2014) packages in the R statistical language.
Post hoc comparisons were conducted using the sequential Bonferroni
method (Holm, 1979; Rice, 1989).

Computational models. We used computational models to test specific
cognitive mechanisms that might facilitate observed behavioral effects.
This analytic approach has been applied successfully to investigations of
social learning (Behrens et al., 2008; Chang et al., 2010; Jones et al., 2011;
Kishida and Montague, 2012) and we have demonstrated previously that
people appear to use prediction error learning (Schultz et al., 1997; Sut-
ton and Barto, 1998) to update dynamically their beliefs about a relation-
ship partner’s trustworthiness during repeated interactions (Chang et al.,
2010; Fareri et al., 2012a). We formalized and tested three main compu-
tational models: (1) a baseline expected value model with no learning
components, (2) a RL model with prior expectations, and (3) a social
value model of collaborative behavior. We also tested three additional
control models to examine potential alternative interpretations of our
data: (1) a partner reciprocation value model, (2) a loss– gain RL model

(Fareri et al., 2012a), and (3) a loss– gain RL partners model (Fareri et al.,
2012a).

Main models
Expected value model. We used a decision theory framework to formalize
a baseline model, which posits that participants make their decisions by
maximizing their expected value. The expected value (EV ) for an invest-
ment (i.e., share) decision on trial t for a given partner context c (e.g.,
in-network, out-of-network, computer) was represented as the value
received from a partner reciprocating scaled by the likelihood of the event
occurring (Pc) as follows:

EVc�t� � Pc�t� � �1.5� (1)

For the baseline expected value model, we fixed Pc(t) to be 0.5, which
reflected the actual probability of reinforcement despite this being un-
known to the participants. The expected value (EVc) was then placed into
a softmax function to calculate the probability of a participant investing
with a given partner (IPc) as follows:

IPc�t� �
e

EVc�t�

�

e
EVc�t�

� � e
1

�

(2)

Where � varies between 0 and 1 and reflects whether a participant is more
likely to behave in a more explorative (e.g., varying choices) or exploit-
ative (e.g., attempting to act in the most advantageous manner, not sam-
pling alternative options). The probability of a participant not investing
is equivalent to 1 � IPc.

Expectation-learning model. We formalized the expectation-learning
model using Equation 1. However, because participants were unaware
that the likelihood of partner reciprocation was fixed at 50%, we used a
Rescorla–Wagner prediction error (delta) rule (Sutton and Barto, 1998)
to update participants’ expectations Pc after the partner’s behavior �c for
a given trial t, where �c � 1 when the partner shares and �c � 0 when the
partner keeps. The update rule was formalized as follows:

Pc�t � 1� � Pc�t� � � � ��c�t� � Pc�t�� (3)

Where � is a free parameter indicating a participant’s learning rate, which
is bounded between 0 and 1. To account for differing prior expectations
based on the established relationship with an in-network partner, we
initialized participants’ expectations of partner reciprocation (Pc) using
their initial trustworthiness ratings for each partner, normalized by the
maximum possible trustworthiness rating (7), and scaled by a free pa-
rameter �, where 0 � � � 5, as follows:

Pc�t � 1� � min�	 �
Tc

max�Tc�
, 1� (4)

This formulation provides a strong test of the prior expectations based on
idiographic beliefs about the likelihood of each partner reciprocating
(Chang et al., 2010).

Social value model. We predicted that, in collaborative interactions,
people may receive a social reward bonus after reciprocation that is in-
dependent of any monetary outcomes. Therefore, in this model, we ex-
tend the standard expected value calculation by adding an additional
“social value” term to the value function. Social value was simply repre-
sented as the normalized initial perceived trustworthiness of the partner
(e.g., pretask trust ratings) Tc/max(rating), scaled by a free parameter 	,
where 0 � 	 � 5, as follows:

EVc�t� � Pc�t� � �1.5 � �	 �
Tc

max�Tc�
�� (5)

Similar to the expectation-learning model described above, the social
value model also allows the probability term Pc to update dynamically as
evidence accumulates about the likelihood of a partner reciprocating
(Eq. 3). The expected probabilities for each partner Pc were initialized at
0.5 to allow for maximal uncertainty. The expected value was then
placed into a softmax function to calculate the probability of a par-
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ticipant investing with a given partner (Eq. 2) and model parameters
were estimated for each participant. Therefore, this model differs
critically from the expectation model in that collaborative behavior is
not driven by prior expectations, but instead by a modified value
function in which participants receive a social value bonus at the time
of reciprocation.

Control models
Partner reciprocation value model. Our social value model postulates that
participants will experience a social reward signal upon reciprocation
that is proportional to the subjective quality of the relationship. How-
ever, other social preference models make differing predictions regarding
possible motivations for collaborative behavior, such as concerns for
social efficiency (Hsu et al., 2008) and concerns for others’ payoffs (Char-
ness and Rabin, 2002). For example, if people have a general preference
for the welfare of a partner, they might opt to make the decision that is
associated with the highest total monetary efficiency for all parties re-
gardless of the relationship with the partner. However, our social value
model predicts that concern for another’s welfare might be modulated by
the type of relationship (e.g., in-network vs out-network). To address
this, we formulated a model similar to our social value model such that
the expected value of sharing with a partner was equivalent to the ex-
pected probability of a partner reciprocating, the received financial out-
come, and a concern for other value (	), which we estimated separately
for each partner as follows:

EVc�t� � Pc�t� � �1.5 � �	c�� (6)

This partner reciprocation value model differs from the original social
value model in that: (1) it does not take into account the trustworthiness
ratings as part of the bonus calculation and (2) theta can vary across
partners. If the estimated theta parameters are greater than zero but
similar across partners, then this would provide evidence supporting the
general other-regarding preference hypothesis. However, if the theta val-
ues vary as a function of a partner such that 	in-network 
 	out-network 

	computer, then this would provide further support for the social value
interpretation.

Loss– gain RL model. We also tested our previously reported three-
parameter RL model, which updates beliefs about the likelihood of part-
ner reciprocation separately in the context of gains and losses (for details,
see Fareri et al., 2012a). We have demonstrated previously that, in the
context of fictional partners whom participants gained initial prior expe-
rience with via direct social experience, participants rely more strongly
on positive (reciprocation) compared with negative (defection) out-
comes during a repeated trust game to update beliefs about their part-
ners. Therefore, we tested whether participants’ behavior would be
captured in this manner regardless of prior expectations or a social value
bonus signal.

Loss– gain RL partners model. Finally, as a supplemental analysis, we
tested a computational model to explore whether participants were dis-
counting negative outcomes (e.g., partner defection) experienced within
the context of a close friend differently compared with other partners
(confederate, computer) (Fareri et al., 2012a). We applied an adapted
version of the three-parameter RL model reported previously, which
explicitly modeled separate learning rates for positive and negative out-
comes (Eq. 6) and separate softmax temperature parameters (Eq. 7) for
each partner context as follows:

Pc�t � 1� � Pc�t� � �gainc
� max�� � Pc�t�, 0�

� �lossc
� min�� � Pc�t�, 0� (7)

IPc�t� �
e

EVc�t�

�c

e
EVc�t�

�c � e
1

�c

(8)

Parameter estimation
Parameters for all models were estimated in MATLAB using the fmincon
optimization function separately for each participant by maximizing the
log-likelihood of the observed data under the model on a trial-by-trial

basis. We reduced the likelihood of the model converging on a local
minimum using the rmsearch function and selecting 100 random start
locations. Log-likelihood estimates were calculated for each participant
by maximizing the following function:

LLE � �t�1

n
log�IPc, j�t�� (9)

Where c represents the partner, j represents a participant’s decision to
invest or keep, t represents the trial, and n is the total number of trials.
Software for performing model estimation is freely available at
http://cosanlab.com/resources.

Model comparisons
Model fits for all models were calculated using the Akaike Information
Criterion (Akaike, 1974), which applies a penalty for increased number
of free parameters, thus rewarding more parsimonious models. Model
fits were compared using a nonparametric Wilcoxon signed-rank test
due to deviations from normality as a consequence of noisy estimations.
Differences in model-derived outcome bonus parameters in the social
value model, the partner reciprocation value model, and the loss– gain
RL partners models as a function of partner were examined using
repeated-measures ANOVA. Post hoc t tests were conducted to probe
resulting significant effects. We additionally calculated a measure of per-
cent variance explained via a pseudo R 2 (
 2) measure modeled after
Camerer and Ho (1999). We calculated a random choice model to fit
participant data and used that as a comparison model for the pseudo R 2

calculation as follows:


2 �
AICrandom choice � AICmodel

AICrandom choice
(10)

Parameter recovery
An additional method to evaluate model performance is to calculate how
well the estimated model parameters can be recovered using simulations.
Importantly, this allows us to assess whether we have a sufficient amount
of data to estimate the model parameters reliably. To perform parameter
recovery, we simulated data for all models (except the loss– gain RL part-
ners model, which served as a supplemental analysis) for each participant
50 times using the model formulations and original parameters esti-
mated from the behavioral data. For the expectation-learning and social
value models, we also used each participant’s initial trustworthiness rat-
ings. Decisions to share were determined if the softmax probability to
share exceeded p � 0.5. For each iteration of the simulation, we refit the
model using 10 random start locations to minimize the possibility of the
algorithm getting stuck in a local minimum. We then assessed the degree
to which the parameters could be recovered by calculating the similarity
between the parameters estimated from the behavioral data and the pa-
rameters estimated from the simulated data using a Pearson correlation.
We report the means and SDs of the similarity (r) for all models except
the loss– gain RL partners model across the 50 simulations (Table 1).

fMRI acquisition and analysis. Images were acquired at RUBIC on a 3T
Siemens Magnetom Trio whole-body scanner. Anatomical images were
collected with a T1-weighted MPRAGE sequence (256 � 256 matrix;
FOV � 256 mm; 176 1 mm sagittal slices). Functional images were ac-
quired with a single shot gradient EPI sequence (TR � 2000 ms, TE � 30
ms, FOV � 192, flip angle � 90°, bandwidth � 2232 Hz/Px, echo spac-
ing � 0.51) comprising 33 contiguous oblique-axial slices (3 � 3 � 3 mm
voxels) parallel to the anterior–posterior commissure line. Data were
preprocessed and analyzed with BrainVoyager QX version 2.6 (Brain
Innovation). Standard preprocessing steps were applied: 3D motion cor-
rection (six parameters), slice-scan time correction (cubic spline inter-
polation), 3D Gaussian spatial smoothing (4 mm FWHM), voxelwise
linear detrending, and temporal high-pass filtering of frequencies (3
cycles per time course). Structural and functional data were trans-
formed to standard Talairach stereotaxic coordinate space (Talairach
and Tournoux, 1988).

Our primary neural hypothesis concerned whether neural representa-
tions of outcome value would vary as a function of the partner contexts
created by our social network manipulation. We constructed a random-
effects general linear model (GLM) to examine the outcome phase of the
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task by modeling reciprocation and defection experienced with each
partner (six regressors). The variance associated with the decision phase
was modeled with one regressor agnostic to partner and decision type.
Six motion parameters, missed trials, and outcomes of keep decisions
were included as confound regressors. Regressors of interest, missed
trials, and keep decision/outcome regressors were z-transformed at
the single-participant level and convolved with a double-gamma he-
modynamic response function. A whole-brain probabilistic group
mask excluding the skull based on the functional coverage of the data
collected in our sample was applied to all whole-brain analyses.

Based on previous work (Fareri et al., 2012b) in which we observed
social network modulation of BOLD responses during receipt of mone-
tary rewards, our a priori neural hypothesis was that enhanced BOLD
responses would emerge to reciprocation from a close friend compared
with other outcomes. We tested this via a balanced contrast of friend
reciprocate 
 all other outcomes. For completeness, a contrast of friend
defect 
 all other outcomes was also conducted.

To explore whether participants were learning and adapting expected
value via prediction error at the neural level, we constructed an addi-
tional random-effects GLM using parameters derived from our compu-
tational model at the whole-brain level. This GLM included four
regressors of interest, including one general decision phase regressor, one
general outcome phase regressor, and two regressors coding for model-
derived parameters reflecting the probability of sharing on each trial and
trial-by-trial prediction error values. Probability values were log trans-
formed and then standardized within conditions across runs at the
single-subject level. Prediction error values were standardized across
runs and conditions at the single-subject level. All regressors of interest
were convolved with a double-gamma hemodynamic response function.
Six motion parameters were also included as regressors of no interest in
this model. A whole-brain probabilistic mask excluding the skull based
on functional coverage of the data collected in our sample was applied for
group whole-brain analysis. We were primarily interested in determining
what neural regions correlated with prediction error learning. At the
group level, we conducted a simple t test of the parametric prediction
error regressor (vs implicit baseline) to highlight regions linearly tracking
prediction error across participants.

All statistical parametric maps (SPMs) were set to an initial uncor-
rected height threshold of p � 0.001. We corrected for multiple compar-
isons at the whole-brain level using the cluster level statistical estimator
in BrainVoyager. This method of correction (Forman et al., 1995; Goebel
et al., 2006) runs a series of Monte Carlo simulations on a given SPM to
determine the likelihood that observed clusters of activation are signifi-
cant and not false positives, resulting in a whole-brain corrected thresh-
old of p � 0.05. All SPMs were corrected to a threshold of 17 contiguous
voxels (459 mm 3).

Brain-model relationships. We tested whether the observed neural ac-
tivation to reciprocation was related to the computationally derived so-
cial reward bonus parameters from the social value model. Mean
parameter estimates from the whole-brain contrast of friend reciproca-
tion 
 all other outcomes were extracted from resulting clusters in the
SPM. We examined whether parameter estimates reflecting reciproca-

tion for each partner predicted model-derived bonus parameters with a
mixed-effects regression using the lmerTest and LME packages in R.

Results
Social closeness is associated with increased ratings
of trustworthiness
Subjective ratings of social closeness (IOS; Aron et al., 1992) and
partner trustworthiness were collected and analyzed as a manip-
ulation check regarding social network. A one-way repeated-
measures ANOVA on MRI participants’ responses on the IOS
revealed a significant main effect of partner (F(1.62, 40.47) � 25.06,
p � 0.001): participants reported increased levels of closeness
with their friends compared with both the confederate (t(25) �
7.70, p � 0.001), and the computer (t(25) � 6.37, p � 0.001). A 3
(partner) � 2 (time) repeated-measures ANOVA on partici-
pants’ presession and postsession trustworthiness ratings (Fig.
1b) revealed a significant main effect of partner (F(1.63, 40.77) �
37.91, p � 0.001) such that MRI participants rated their friends as
significantly more trustworthy than both the confederate (t(25) �
8.67, p � 0.00001) and the computer (t(25) � 7.87, p � 0.00001).
Participant ratings of confederate trustworthiness were approaching
a trend toward being higher than those of the computer (t(25) � 1.67,
p � 0.11). We did not observe a main effect of time (F(1,25) � 0.61,
p 
 0.40) or an interaction (F(2,50) � 1.62, p 
 0.20).

Social network modulates collaborative decisions
The key behavioral measure of interest was whether participants’
decisions to trust would vary as a function of the partner context
created by our social network manipulation. A mixed-effects lo-
gistic regression of partner context on decision (i.e., share/keep)
revealed that participants were more likely to share with their
close friend (� � 1.13, SE � 0.22, z � 5.24, p � 0.0001) and the
confederate (� � 0.71, SE � 0.21, z � 3.35, p � 0.001) compared
with the computer (Fig. 1c). Participants were also more likely to
share with their close friend compared with the confederate (� �
0.42, SE � 0.14, z � 2.90, p � 0.005). Critically, this behavioral
pattern was observed despite all partners reciprocating at the
same 50% rate during the trust game. Corroborating partici-
pants’ decision patterns were the reaction time data, which indi-
cated more rapid responses when choosing to share with a close
friend (� � �0.15, SE � 0.042, t � �3.47, p � 0.001) and the
confederate (� � �0.11, SE � 0.04, t � �2.72 p � 0.01) com-
pared with the computer.

Computation of social value drives collaboration
Our primary hypothesis concerned whether participants’ deci-
sions to collaborate with a close friend are driven by a strong prior

Table 1. Model parameters

Model � (SE) � gain (SE) � loss (SE) ß (SE) � (SE) 	 (SE) AIC (SE) 
R 2 (SE) Recov. (SE)

Expected value NA NA NA 0.98 (02) NA NA 106.34 (1.18)*** 0.23 (0.02) 0.04 (0.03)
Expectation 0.02 (0.01) NA NA 0.35 (0.04) NA 1.85 (0.15) 80.07 (4.18)* 0.42 (0.03) 0.89 (0.01)
Social value 0.21 (0.04) NA NA 0.59 (0.08) 2.64 (0.29) NA 77.73 (3.80) 0.44 (0.03) 0.70 (0.01)
LG-RL NA 0.79 (0.04) 0.10 (0.01) 0.37 (0.05) NA NA 80.50 (3.61)** 0.42 (0.03) 0.75 (0.01)
LG-RL partners NA F: 0.89 (0.04) F: 0.08 (0.02) 0.31 (0.16) NA NA 84.71 (3.75)** 0.39 (0.03) NA

C: 0.79 (0.05)†† C: 0.09 (0.02)
CP: 0.61 (0.07)* CP: 0.16 (0.03)†

Partner recip 0.23 (0.04) NA NA 0.63 (0.08) F: 2.36 (0.33) NA 78.13 (4.08) 0.44 (0.03) 0.48 (0.01)
C: 1.94 (0.27)*

CP: 1.25 (0.19)**

LG-RL Partners: F, Friend; C, Confederate; CP, Computer. Comparison Condition for LG-RL Partners: Friend.
†p � 0.10, ††p � 0.05, *p � 0.05, **p � 0.001, ***p � 0.0001; Comparison Model: Social Value.
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expectation of reciprocation or by an enhanced social value to
reciprocation. Nonparametric Wilcoxon signed-rank tests (Fig.
2b, Table 1) revealed that the social value model fit participants’
data significantly better than the expected value model (z � 4.46,
p � 0.00001) and the expectation-learning model (z � 1.97, p �
0.05). Parameter recovery exercises demonstrated that the num-
ber of trials did not adversely affect parameter estimation because
we were able to recover the parameters used to simulate data in
the social value and expectation-learning models with a relatively
high accuracy (Table 1).

Given that the social value model provided the best fit to par-
ticipants’ data, we further investigated whether the social reward
bonus parameters computed in this model varied as a function of
partner. A repeated-measures ANOVA (Fig. 2c) revealed a signif-
icant effect of partner (F(2,50) � 12.90, p � 0.0001) on social
reward bonus parameters computed in the social value model
such that participants assigned increased social value to recipro-
cation from a close friend (in-network) compared with an out-
of-network (t(25) � 4.84, p � 0.0001) or nonsocial (t(25) � 4.62,
p � 0.001) partner. No significant differences emerged between
the social reward bonus attributed to the out-of-network partner
and the computer (t(25) � 0.03, p 
 0.97).

Control models support social value model
We ran three additional control models to evaluate whether par-
ticipants’ decisions were driven by a general other-regarding
preference (partner reciprocation value model), a sensitivity to
reciprocation compared with defection generally (loss– gain RL
model) or preferential discounting of negative outcomes (i.e.,
defection) experienced with their friends compared with other
partners (loss– gain RL partners model).

First, the social value model and partner reciprocation
value model did not significantly differ in terms of model fit
(z � 1.13, p � 0.26). Importantly, estimating a separate theta
for each partner in the partner reciprocation value model re-
vealed a significant effect of partner (F(2,50) � 12.32, p �
0.0001) such that sharing with a friend carries increased value
compared with the confederate (t(25) � 1.79, p � 0.05, one-
tailed) or computer (t(25) � 4.68, p � 0.00005, one-tailed).
Although this result is not inconsistent with the preference for
efficiency hypothesis, we believe that it is more consistent with
the social value model because the degree of concern for effi-
ciency was moderated by whether the partner was a friend or
stranger.

Second, the social value model fit participants’ data signifi-
cantly better than the loss– gain RL model (z � 3.14, p � 0.002).
In addition, the supplemental loss– gain RL partners model re-
vealed that, although we observed a main effect of partner in how
participants learned from negative outcomes in the loss– gain RL
partners model (F(2,50) � 4.01, p � 0.05), this was primarily
driven by enhanced learning rates for the computer compared
with the friend (t(25) � 2.43, p � 0.05) and the confederate (t(25)

� 1.94, p � 0.06, trend). We found no evidence that participants
were selectively discounting learning from negative outcomes
with a friend compared with a confederate (t(25) � �0.53, p 

0.5). Interestingly, a main effect of partner also emerged in the
domain of positive outcomes (F(2,50) � 3.25, p � 0.0001) because
participants appeared to weight positive outcomes resulting from
interactions with friends more strongly than the confederate
(t(25) � 2.01, p � 0.06, trend) or the computer (t(25) � 3.91, p �
0.001), which is also consistent with the predictions of the social
value model. Parameter recovery exercises demonstrate that the

Figure 2. Computational model results. a, Model simulations of the likelihood of sharing with a partner on a given trial for one randomly selected participant’s experimental data. We compared
the ability of the social value model (bottom) to explain collaborative behavior with a standard expected value model (top), which assumes that participants maximize expected value based solely
on self-interested financial value and a 50% reinforcement rate, and an expectation-learning model incorporating strong priors, in which participants update their beliefs about partner reciprocation
from both positive and negative outcomes (middle). b, Average model fits penalizing for the number of free parameters using the Akaike Information Criteria (AIC). The social value model provided
the best fit to participant behavior (n � 26). c, Average social value bonus (theta * normalized trustworthiness ratings) for each partner. ***p � 0.0001; **p � 0.001; *p � 0.05 (�SEM).
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number of trials did not adversely affect parameter estimation
because we were able to recover the parameters used to simulate
data in the partner reciprocation value, and loss– gain RL models
(Table 1).

Together, these results suggest that increased decisions to
trust a close friend may be driven by the enhanced social value of
in-network reciprocation as opposed to a general preference for
efficiency in social interactions or selectively ignoring defection
from a friend (e.g., compared with the confederate).

Social value recruits neural circuitry of reward
After our modeling results, we next sought to determine whether
a social value signal would emerge in the brain corresponding to
reciprocation from a close friend. A balanced contrast of friend
reciprocate 
 all other outcomes revealed robust activation
within putative reward circuitry (Fig. 3a–c, Table 2) including
ventral striatum bilaterally (left: x, y, z � �19, 7, �6; right: x, y,
z � 11, 16, 3), and medial prefrontal cortex (BA9/10: x, y, z � �1,
55, 15). No regions demonstrated stronger activation to friend
defect 
 all other outcomes in a separate analysis (Table 3). In
addition, we correlated model-derived trial-by-trial prediction
error values at the whole-brain level and replicated our previous
finding that the ventral striatum (x, y, z � �10, 1, �9) tracks a
prediction error learning signal within a social context (Fareri et
al., 2012a; Fig. 4, Table 4). Together, these results illustrate that
the ventral striatum processes independently computations
associated with both social value and socially relevant error
signals used for updating beliefs about the likelihood of a
partner reciprocating.

Magnitude of neural response to reward predicts model-
derived social value
Although both the modeling and neuroimaging results indicate
increased social value for reciprocation from close friends com-
pared with other partners, these results do not imply a direct link
between the model-derived value and the brain regions associ-
ated with social value. Therefore, we next examined the relation-
ship between the model-derived bonus values for each condition
and the outcome-related BOLD activation. Mean parameter es-
timates were extracted from the bilateral ventral striatal clusters
defined by the contrast of friend reciprocate 
 all other condi-
tions. A mixed-effects regression demonstrated that the average
ventral striatal response at outcome for reciprocation signifi-
cantly predicted the model-derived outcome bonus parameters
(� � 13.74, SE � 6.79, t � 2.02, p � 0.05; Fig. 3e). The same
analysis using extracted mean parameter estimates from the me-
dial prefrontal cortex cluster also revealed a significant predictive
relationship (� � 10.71, SE � 5.27, t � 2.03, p � 0.05; Fig. 3d)
and no relationship for a visual cortex cluster (� � �0.17, SE �
0.57, t � �0.29, p 
 0.70), suggesting some degree of specificity
for this computation within putative reward circuitry.

Association between social closeness and neural response
to reward
Based on our previous work demonstrating an association be-
tween social closeness and reward-related ventral striatal activa-
tion during a shared monetary reward task (Fareri et al., 2012b),
we probed relationships between social closeness with a partner
and neural responses to reciprocation in the present task. Mixed-
effects linear regression revealed that self-reported social close-
ness with a partner significantly predicted BOLD responses to
reciprocation in both ventral striatum (� � 0.02, SE � 0.006, t �
3.39, p � 0.005) and mPFC (� � 0.03, SE � 0.007, t � 3.95, p �

0.0005). These results further suggest that interpersonal aspects
of a relationship can affect neural representations of reward value
during social interactions.

Discussion
Collaboration facilitates the establishment and maintenance of
trusting, meaningful personal relationships. This study sought to
characterize the computational and neural mechanisms facilitat-
ing collaborative decisions. We hypothesized that people: (1) act
to maximize their expected value, (2) update their expectations
about partner trustworthiness using reinforcement learning, and
(3) receive social value from positive interactions that drives fu-
ture collaborations. To test these formal hypotheses, we manip-
ulated the social network status of participants’ partners (e.g.,
close friend or stranger) in the context of a repeated trust game.
An important design feature of our study is that all partners re-
ciprocated with a fixed 50% probability, ensuring that behavioral
differences would primarily be due to factors such as the subjec-
tive quality of a relationship with one’s interaction partners or
prior expectations (e.g., perceived partner trustworthiness).
Consistent with this idea, participants trusted their close friend
more than a stranger or a computer despite equal reinforcement
rates, a phenomenon that was driven by the computation of
higher social reward for reciprocation from a close friend. Fur-
thermore, we validated our social value model of collaboration
by showing a selective relationship between model-derived
outcome bonus parameters and both ventral striatal and
mPFC activation at outcome and ruled out alternative expla-
nations such as a strong prior expectation of reciprocation.
The combination of these behavioral, computational, and im-
aging results highlights social value as the mechanism driving
interpersonal collaboration.

Decisions to engage in collaborative behavior can be influ-
enced strongly by expectations about others. Expectations for
those with whom we have no experience may be based on as-
sumed knowledge about their social group (Stanley et al., 2011,
2012), perceived trustworthiness based on facial characteristics
(van ’t Wout and Sanfey, 2008), or instructed knowledge regard-
ing their moral character (Delgado et al., 2005). Such expecta-
tions about new partners can interact with actual experience and
be updated dynamically (Chang et al., 2010; Fareri et al., 2012a).
Our data indicate that expectations appear to guide behavior less
so when considering established relationships. Instead, the con-
text created by close relationships suggests that collaboration is
driven by a social value signal in which reciprocation is more
valued when coming from a close friend compared with someone
unknown. This enhanced social value may serve to reaffirm and
maintain the relationship, thus satisfying a need to belong
(Baumeister and Leary, 1995).

Our neural results synthesize two hypotheses that have been
posited regarding the role of the ventral striatum in collaborative
interactions. The first hypothesis is that ventral striatal activity
supports the process of learning a partner’s reputation during
iterated trust games (Delgado et al., 2005; King-Casas et al., 2005;
Fareri et al., 2012a). Ventral striatal activation at the time of social
outcome has been shown to correlate directly with model-
derived prediction error learning signals (Fareri et al., 2012a) and
appears to propagate to the earliest predictor of trust after re-
peated reciprocation, which is consistent with temporal differ-
ence learning (King-Casas et al., 2005; for review see Kishida and
Montague, 2012). Consistent with this hypothesis, our model
proposed that, within collaborative interactions, expectations
about a partner will be updated based on experienced outcomes
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via RL (Rescorla and Wagner, 1972). We indeed found that par-
ticipants dynamically updated expectations via prediction error
learning because behavior was better explained by models account-
ing for learning than those positing no learning and model-derived

prediction errors significantly correlated with ventral striatal activa-
tion. This replicates previous findings implicating the ventral stria-
tum in signaling prediction errors (Garrison et al., 2013) and in
coding social learning signals (Fareri et al., 2012a; Fouragnan et al.,
2013).

Figure 3. Neural representations of social value. a, A whole-brain balanced contrast of friend reciprocate 
 all other outcomes revealed significant clusters of activation within putative reward
circuitry, including ventral striatum, bilaterally (left: x, y, z ��19, 7, �6; right: x, y, z � 11, 16, 3) and medial prefrontal cortex (BA9/10: x, y, z ��1, 55, 15). Results are depicted at p � 0.001,
whole-brain cluster corrected to p � 0.05 (n � 26). b, c, Plot of extracted mean parameter estimates depicting the average mPFC (x, y, z ��1, 55, 15; b) and ventral striatal (left: x, y, z ��19,
7, �6; right: x, y, z � 11, 16, 3; c) response identified via the contrast of friend reciprocate 
 all other outcomes (�SEM). d, e, Scatterplots depicting the relationship between model-derived bonus
values (theta * normalized trustworthiness ratings) and average mPFC (d) and ventral striatal (e) activity. Participants’ means of the bonus parameter have been removed to be consistent with the
mixed-effects regression analysis.

Table 2. Friend reciprocate > all other conditions (balanced)

Region of activation
(peak)

Brodmann
area Laterality

Talairach
coordinates(peak)

t-stat
# Voxels
(mm 3)x y z

Fusiform gyrus BA19 R 23 �56 �9 8.39 51654
Caudate nucleus R 11 16 3 5.21 460
Medial frontal gyrus BA9/10 L �1 55 15 5.74 4345
Ventral striatum L �19 7 �6 6.03 871

Table 3. Friend defect > all other outcomes (balanced)

Region of activation
(peak)

Brodmann
area Laterality

Talairach
coordinates(peak)

t-stat
# Voxels
(mm 3)x y z

Postcentral gyrus BA43 R 65 �17 18 �6.12 1718
Superior frontal gyrus BA10 R 38 49 18 �4.97 670
Cuneus BA18 R 5 �92 9 �5.96 7209
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A second hypothesis is that ventral
striatal responses to reciprocated trust
reflect a reward signal that drives future
collaborative decisions. This hypothesis
has primarily been observed in Prisoner’s
dilemma (Rilling et al., 2002, 2004) and
trust (Phan et al., 2010) games. In these
studies, the ventral striatum codes for out-
comes achieved via mutual collaboration
(Rilling et al., 2002), specifically with hu-
man partners (Rilling et al., 2002, 2004)
who have a reputation for reciprocity
(Phan et al., 2010). Our model proposes
that participants receive value from recip-
rocation, but that this value is composed
of both self-interested financial value and
social value. Consistent with this second
hypothesis, we observed increased activation in the ventral stria-
tum to reciprocation from a close friend.

The present study furthers our understanding of the mecha-
nisms supporting collaboration by building on these hypotheses
in two critical ways. First, our findings synthesize proposed
roles of the ventral striatum in reputation learning and coding
reciprocated trust as reward, suggesting that both processes
are necessary to support collaboration simultaneously. Sec-
ond, we highlight a social value model that accounted for
participant behavior. The magnitude of the social reward bo-
nus signal predicted by the model was associated with the
strength of ventral striatal and mPFC BOLD responses to re-
ciprocation. In conjunction with results indicating that the
degree of social closeness between partners was also associated
with the neural response to reciprocation, our findings pro-
vide a mechanistic account of reward circuit function during
collaborative interactions.

The mPFC is known to play a significant role in processing
socially relevant information, and signals reflecting valuation
processes (for review, see Amodio and Frith, 2006; Bartra et al.,
2013; Fareri and Delgado, 2014b). Representations of the self and
of close others recruit mPFC (Heatherton et al., 2006; Mitchell et
al., 2006; Krienen et al., 2010) and, within social interactions,
distinct regions of mPFC represent cooperative human partners
(McCabe et al., 2001), volatility of the social environment (Beh-
rens et al., 2008), and strategic processing of outcomes/mentaliz-
ing about another’s actions (Hampton et al., 2008; Fareri and
Delgado, 2014a). Our results showing mPFC BOLD responses
to reciprocation predicting model-derived outcome bonus pa-
rameters merges with the extant literature by demonstrating
that, within collaborative interactions, mPFC may work with
the ventral striatum to perform computations that incorpo-
rate both social and outcome-related information that drive
future collaborations.

An alternative interpretation of our results is that participants
ignore negative outcomes (e.g., partner defection) when they
have a strong prior feeling about a partner, failing to update their
expectations in the face of inconsistent information. We believe
that this is an unlikely interpretation of our data. Because this is
essentially a variation on prediction error learning, it would fol-
low that the ventral striatal activity should be strongest for the
stranger condition after reciprocation, lowest for the friend con-
dition when they choose to keep, and no response when their
friend chose to share because this would have be predicted pre-
viously by their prior expectation. There is no evidence of this
pattern of activity in our study. Further, although our social value

model cannot test directly whether participants weighted nega-
tive outcomes differentially as a function of partner, the behav-
ioral analysis, which separately modeled learning rates for
positive and negative outcomes as a function of partner, did not
reveal a discounting of negative outcomes unique to the close
friend condition. It is possible that learning about reputations via
descriptive means (Delgado et al., 2005; Fouragnan et al., 2013)
modulates striatal signaling during collaborative interactions via
prefrontal mechanisms as in nonsocial contexts, decreasing the reli-
ance on trial-by-trial updating (Li et al., 2011). Although we cannot
completely rule out this possibility, we believe that our results speak
more to the assignment of added social value to reciprocation from a
close friend, which subsequently drives collaborative behavior in
close relationships, as opposed to a unique discounting of negative
outcomes experienced with a close friend.

A second alternative interpretation of our data is that par-
ticipants’ decisions to collaborate are driven by general con-
cerns for efficiency or social welfare in interactions regardless
of the influence of a relationship. Individuals are often motivated
by other-regarding preferences, acting to minimize situations of
unfairness (Charness and Rabin, 2002; Hsu et al., 2008; Tricomi
et al., 2010) and ensuring more equitable distributions of out-
comes. Further, the striatum has been implicated in coding a
utility signal representing both efficiency and social welfare dur-
ing social decision making (Hsu et al., 2008). Our partner recip-
rocation value model provides some support against solely an
efficiency hypothesis because theta was significantly different for
each partner and greatest for the friend. Our data are thus con-
sistent with a framework of other-regarding preferences motivat-
ing behavior in social interactions, but future studies may aim to
disentangle contributions of concerns for efficiency, other-
regarding preferences, and the social value of a relationship as
motivation for collaborative decisions.

The combination of a neuroeconomic approach to investigat-
ing the effect of social network on decision making with compu-

Figure 4. Neural correlates of prediction error. A whole-brain analysis using model-derived prediction error values from the
social value model showed enhanced prediction-error-related activation in the bilateral striatum, including left ventral striatum (x,
y, z ��10, 1, �9) and right caudate nucleus extending to the ventral striatum (x, y, z � 14, 16, 3) and posterior cingulate (x, y,
z � �1, �35, 30), among other regions. Results are depicted at p � 0.001 whole-brain cluster corrected to p � 0.05.

Table 4. Regions tracking prediction error

Region of activation
(peak)

Brodmann
area Laterality

Talairach
coordinates(peak)

t-statistic
# Voxels
(mm 3)x y z

Precuneus BA19 R 29 �62 39 5.29 2066
Cuneus BA18/17 L �4 �86 12 10.13 67230
Caudate nucleus R 14 16 3 6.04 1477
Cingulate gyrus BA31 L �1 �35 30 4.98 782
Ventral striatum L �10 1 �9 5.35 546
Middle occipital gyrus BA37 L �46 �68 �6 6.03 1011
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tational modeling techniques is an exciting direction for social
neuroscience and one that has garnered much recent interest
(Stanley and Adolphs, 2013). To date, however, only a handful of
investigations have used this technique in the social domain
(Behrens et al., 2008; Hampton et al., 2008; Chang and Sanfey,
2013; Fareri et al., 2012a; Fouragnan et al., 2013; Xiang et al.,
2013). This approach allows us to test mechanistic hypotheses
regarding social behavior and motivates specific predictions for
how such socially relevant computations may be represented at
the neural level. Importantly, this approach allowed us to syn-
thesize interpretations in the literature regarding the role of
the ventral striatum in collaborative behavior and provide
strong support for the underlying psychological and neural
mechanisms sustaining decisions to cooperate within close
interpersonal relationships.
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