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Network Anisotropy Trumps Noise for Efficient Object
Coding in Macaque Inferior Temporal Cortex
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How neuronal ensembles compute information is actively studied in early visual cortex. Much less is known about how local ensem-
bles function in inferior temporal (IT) cortex, the last stage of the ventral visual pathway that supports visual recognition. Previous
reports suggested that nearby neurons carry information mostly independently, supporting efficient processing (Barlow, 1961). How-
ever, others postulate that noise covariation effects may depend on network anisotropy/homogeneity and on how the covariation relates
to representation. Do slow trial-by-trial noise covariations increase or decrease IT’s object coding capability, how does encoding capa-
bility relate to correlational structure (i.e., the spatial pattern of signal and noise redundancy/homogeneity across neurons), and does
knowledge of correlational structure matter for decoding? We recorded simultaneously from �80 spiking neurons in �1 mm 3 of
macaque IT under light neurolept anesthesia. Noise correlations were stronger for neurons with correlated tuning, and noise covariations
reduced object encoding capability, including generalization across object pose and illumination. Knowledge of noise covariations did
not lead to better decoding performance. However, knowledge of anisotropy/homogeneity improved encoding and decoding efficiency by
reducing the number of neurons needed to reach a given performance level. Such correlated neurons were found mostly in supragranular
and infragranular layers, supporting theories that link recurrent circuitry to manifold representation. These results suggest that redun-
dancy benefits manifold learning of complex high-dimensional information and that subsets of neurons may be more immune to noise
covariation than others.
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Introduction
How correlations affect neural coding efficiency is important for
theories and models of brain processing. It is actively debated
whether and how signal correlations (“rsignal,” similarity in stim-
ulus tuning) and noise correlations (“rSC,” trial-by-trial fluctua-
tions in spike count in simultaneously recorded activity) affect
coding efficiency. Previous reports suggested that nearby neu-

rons are mostly independent (i.e., low rSC) (Gawne and Rich-
mond, 1993; Zohary et al., 1994; Vinje and Gallant, 2000; Kohn
and Smith, 2005; Mitchell et al., 2007), and it has been postulated
that decorrelation (sparseness) supports efficient processing by
maximizing the information encoded by a population of neurons
(Barlow, 1961; Olshausen and Field, 1996; Bell and Sejnowski,
1997). However, it is conjectured that noise correlations may
have more complex effects on population coding, depending on
the specific relationship between signal and noise correlation and
on population homogeneity and anisotropy (Abbott and Dayan,
1999; Wu et al., 2002; Averbeck et al., 2006; Renart et al., 2010;
Cohen and Kohn, 2011; Ganmor et al., 2011; Berens et al., 2012;
Shamir, 2014; Okun et al., 2015; Panas et al., 2015). By anisot-
ropy, we mean the variation in functional excitability and func-
tional interactions across a population, as described previously
(Hung et al., 2014; Lin et al., 2014; Okun et al., 2015) and as
modeled by Panas et al. (2015). In theory, both positive and neg-
ative associations between signal and noise correlation may in-
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Significance Statement

How noise affects neuronal population coding is poorly understood. By sampling densely from local populations supporting
visual object recognition, we show that recurrent circuitry supports useful representations and that subsets of neurons may be
more immune to noise covariation than others.
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crease or decrease coding efficiency, with possibly different
results for encoding versus decoding, depending on how the cor-
relations affect redundancy and depending on the population’s
size, homogeneity, correlational structure, and how these relate
to the representation. Addressing this debate requires dense sam-
pling of many neurons per cortical column in response to natu-
ralistic stimuli, to measure how coding efficiency depends on
local correlational structure.

We previously showed that inferior temporal (IT) popula-
tions carry generalizable object information that can be read out
by downstream neurons via pooling of weighted synaptic inputs,
as measured by a linear classifier (Hung et al., 2005). We recently
boosted the homogeneity and density of the sampled population,
to record cells that have overlapping tuning, by inserting 64-
contact multidepth arrays in neighboring cortical columns (�80
neurons within 1 mm 3). We reported that, contrary to the cur-
rent view that decorrelation supports efficient coding, correlated
(similarly tuned) neurons have better object coding capability
(Hung et al., 2014; Lin et al., 2014). Here, we reanalyzed these
data on a trial-by-trial basis. We hypothesized that noise covari-
ation reduces object encoding and decoding capability in larger
and more homogeneous populations in IT.

Materials and Methods
Methods. All procedures adhered to the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and were approved by
the Institutional Animal Care and Use Committee of National Yang-
Ming University. The methods and recordings were previously described
(Lin et al., 2014). Briefly, we recorded spiking activity from right lateral
surface of anterior IT (AP16) of 3 Macaca cyclopis monkeys (1 male and
2 females) under light neurolept anesthesia (0.9 �g/kg/h i.v. fentanyl,
70%/30% N2O/O2, 0.3%– 0.5% isoflurane, 0.25 mg/kg i.m. droperidol)
(Fujita et al., 1992; Wang et al., 1996; Brown et al., 2011; Sato et al., 2013)
and muscle relaxation (rocuronium bromide).

We inserted dense arrays (8 shanks, 8 contacts per shank, spanning
1.4 � 1.4 mm at 0.2 � 0.2 mm spacing horizontally and in depth, A8x8 –
5mm–200 –200 – 413, Neuronexus Technologies) across 5 recording ses-
sions, one array insertion per session. Arrays 2, 4, and 5 were recorded
across 3 sessions from the same monkey at locations �3 mm apart (these
were mislabeled in our previous report). Spikes (400 –5000 Hz) were
filtered (48 dB/octave) and continuously digitized at 24.4 kHz (RZ2,
Tucker-Davis Technologies). Spikes were detected as voltage threshold
crossings (“hash MUA”), or isolated (WaveClus_2.0) as single-unit ac-
tivity (SUA) and then grouped as multiunit activity (MUA, �1–2 SUAs
each) (Lin et al., 2014). Most analyses were based on SUA, but results
were similar for SUA, MUA, and hash MUA (see Figs. 4, 5, 6). Although
spike sorting has been postulated to bias toward weaker rSC, it avoids a
possible bias of hash MUA toward more active and correlated neurons
(Manning et al., 2009). We excluded units with �2000 spikes (�4 Hz)
and rare units with slow (�0.1 Hz) rate fluctuations. We excluded mul-
tiple detection of the same unit across contacts via coincidence detection.
Even-versus-odd trial consistency and consistency of tuning selectivity
(“sparseness”) across stimulus sets were previously reported (Lin et al.,
2014). All data will be uploaded to www.crcns.org.

We measured cortical depth by visually tracking individual contacts as
they disappeared into the brain during insertion and, because of the small
footprint of the shanks (15 � 33 �m), tracking individual units as they
transitioned from the deepest to the most superficial contacts. Recording
directly from the lateral surface avoids distortions from electrode bend-
ing, cortical compression, uneven sampling, and fine blood vessel dam-
age. We estimate that the deviation of the array from vertical was �8 deg
(�0.2 mm horizontal offset at the deepest site) because we could see and
hear spikes at the beginning of array insertion on all 8 shanks (contacts 8,
16,…64). Deviation in the orthogonal plane would have resulted in
depth-specific correlation, whereas we observed correlation between the
most superficial and deepest depths (Lin et al., 2014). Sectioning con-
firmed that the arrays were at a flat part of lateral cortex (i.e., depth was

not distorted by cortical curvature). Histological confirmation was im-
possible due to damage from later sessions. Layers were estimated from
cortical depth, based on our previous results (cytochrome oxidase stain-
ing, current source density, and temporal frequency analysis) in V1 with
the same arrays (Chu et al., 2014; their Fig. S1).

Visual stimuli. Objects �10° wide were shown monocularly to the left
eye, which was focused via contact lens upon a CRT monitor 57 cm away.
Objects were positioned foveally via alignment of the optic disc. We used
rapid serial visual presentation at 5 Hz (94 ms ON, 106 ms OFF), inter-
leaved with the gray background. Stimuli were shown in pseudorandom
order (10 repetitions, i.e., all objects in random order, followed by the
same objects in a different order, etc.) and consisted of a block of 240
grayscale rendered 3D objects (no color/texture) at center pose and illu-
mination, then a block to test generalization of 10 preferred objects
across 25 variations in pose and illumination (see Fig. 3A). Stimuli be-
longed to a broad variety of categories, including but not limited to
animals, faces, plants, foods, tools, vehicles, appliances, and furniture.
The monkeys had never seen these images.

Classifier analysis. We tested classifier readout via a linear support
vector machine classifier (MATLAB bioinformatics toolbox, The Math-
Works). The effect of noise correlation was similar across a wide range of
soft margins (c � 1 to 10 �8), and results are based on c � 10 �8 to avoid
overfitting. For all analyses except the binned analyses, the classifier input
was based on the z-normalized spike count between 100 and 300 ms after
stimulus onset, where z-normalization was across stimuli for each unit.

For within-category generalization (see Fig. 1B), we trained 8 one-
versus-all binary classifiers to choose among 8 categories via a winner-
take-all strategy. The classifiers were trained on 8 objects per category
(randomly chosen from 13 to 21 objects per category) and then tested on
5 other objects per category. Chance is 12.5% for 8 categories. The input
matrix for classifier training was 640 trials (8 categories � 8 objects � 10
trials) � up to 306 units and was either unshuffled (simultaneously re-
corded) or trial-shuffled within each object and unit, to mimic noise-
independent units. Classifier testing was based on 5 other objects per
category, and the input matrix for the classifier was 400 trials (8 catego-
ries � 5 objects � 10 trials) � up to 306 units, also shuffled or unshuffled.

For object identification (see Fig. 2), we trained 240 binary classifiers
on responses in 5 trials to 240 objects and tested their ability to identify
these objects based on responses in the other 5 trials. Chance is 0.42% for
240 objects. The input matrix for classifier training was based on the
binned spike count in the 100:300 ms window after stimulus onset (i.e.
(240 objects � 5 trials) � 306 units, and the input for classifier testing
was the same matrix for the remaining 5 trials. Figure 2 shows the per-
formance of the best bin for each bin size (e.g., for 150:175 ms at 25 ms
bin size).

Generalization across object pose and illumination was analyzed
separately for arrays 2 and 4 (see Fig. 3). Object pose/illumination
generalization was not tested for other arrays because their recording
blocks for pose/illumination generalization contained slow (�0.1
Hz) firing rate fluctuations, likely from anesthetic accumulation in
these later blocks. Such rate fluctuations were absent in arrays 2 and 4
and in the initial 240-object recording block in all arrays. The classi-
fier was trained on random subsets of 4 variations in pose or illumi-
nation (all illuminations of each pose, or all poses of each
illumination) and then tested on generalization to the remaining
pose/illumination (all illuminations of one pose, or all poses of one
illumination). Chance was 10% for choosing among 10 preferred
objects per array. Thus, the matrix for classifier training was 2000
trials (4 variations � 5 subvariations � 10 objects � 10 trials) � N
units and the matrix for classifier testing was 500 trials (1 variation �
5 subvariations � 10 objects � 10 trials) � N units. N was all SUAs in
each array (75 units for array 2, 25 units for array 4).

For categorization (see Fig. 4), we trained 8 classifiers as before, except
that stimulus repetitions were randomly divided into 5 “training” trials
and 5 “test” trials. The input for classifier training was a matrix of 520
training trials (8 categories � 13 objects per category � 5 trials) � up to
306 SUA units and was either unshuffled or trial-shuffled within each
object and unit. Classifier testing was based on the same matrix using the
remaining 5 trials, also shuffled or unshuffled. For time course analysis,
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we binned the spike counts and trained/tested the classifiers separately
for each bin.

Signal and noise correlation analysis. Signal correlation (rsignal) and
noise correlation (rSC) were measured for pairs of hash MUAs or pairs of
SUAs recorded on separate channels, not between SUAs from the same
channel, to avoid bias from spike collisions. Signal correlation was mea-
sured as the Pearson correlation of trial-averaged responses to different
stimuli, based on the z-normalized spike count between 100 and 300 ms
after stimulus onset, where z-normalization was across stimuli for each
unit. Noise correlation was measured as the Pearson correlation of trial-
by-trial spike count between 100 and 300 ms, after subtraction of mean
response to that stimulus.

Network anisotropy (homogeneity) analysis. To directly assess the effect
of network anisotropy, we sorted the units within each array by their

average rsignal with other units in the same array. We then defined Group
1 as units that had the strongest average rsignal in each array and defined
Group 2 units as units that had median average rsignal (termed “choris-
ters” and “soloists” in Hung et al., 2014; Lin et al., 2014), excluding
training and test objects. We previously showed that neurons with higher
average rsignal also tend to have spontaneous coincident firing (Lin et al.,
2014; their Figs. 4 and 6; Tamura et al., 2014; their Fig. 10). Our measure
of anisotropy is similar to another measure in which “choristers” and
“soloists” were characterized by population coupling and synaptic cou-
pling, which were partially linked to the strength of visual drive: compare
Okun et al. (2015; their Fig. 3e) with Hung et al. (2014; their Fig. 2B). Our
measure is also supported by a model of network stability in which an-
isotropy was characterized by a combination of functional excitability
and functional interactions (Panas et al., 2015).
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Figure 1. Noise covariation reduces object category generalization encoding in IT. A, Array locations 1–5, centered at A16 of right lateral inferior temporal cortex, recorded in separate sessions
across 3 macaque monkeys under light neurolept anesthesia. Arrays had 64 contacts (8 shanks, 8 contacts/shank) spaced 0.2 mm apart, spanning 1.4 � 1.4 mm horizontally and in depth. STS,
Superior temporal sulcus; AMTS, anterior medial temporal sulcus. B, Effect of noise correlation on classifier performance for within-category generalization. Linear classifiers were trained on 8 objects
per category and tested on 5 other objects per category. Chance is 12.5% for 8 categories. For encoding, classifiers were trained and tested on unshuffled (actual) data versus trained and tested on
trial-shuffled data, shown for individual categories (colors) and for the average across categories (black). For decoding, classifiers were trained and tested on unshuffled data, versus trained on
shuffled data and tested on unshuffled data. Classifier input was spike count in the 100:300 ms period, pooled across 5 arrays and all trials. Data are mean � SEM (50 permutations of objects and
trials). *p � 0.05 (two-tailed t test, uncorrected). **p � 0.01 (two-tailed t test, uncorrected). ***p � 0.005 (two-tailed t test, uncorrected). C, Average category responses for the 5 arrays. Spike
counts 100:300 ms after stimulus onset were averaged across 10 trials, z-normalized across all 240 objects for each contact, and then averaged within each category. z-scores are low because
different objects in a category tend to activate different sets of contacts. White represents broken/inactive contacts.
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For Figure 7A, 2 units per array means the 2 Group 1 units with the
strongest average rsignal and 2 Group 2 units with average rsignal closest to
the 50th percentile in each array. For Figure 7B, Group 1 units were the
30% (solid lines) of the units that had the strongest average rsignal, and
Group 2 units were the 30% that had median average rsignal (35– 65th
percentile) in each array (i.e., 14 Group 1 and 14 Group 2 units for array
2 and 7 Group 1 and 7 Group 2 units for array 4). For generalization
across pose and illumination, we reduced this to 20% (dashed lines, same
Group 1 threshold as in Fig. 6A) to highlight the better efficiency of
correlated neurons for smaller populations (i.e., 8 Group 1 and 8 Group
2 units for array 2 and 4 Group 1 and 4 Group 2 units for array 4), defined
without training and test objects.

Results
Noise covariation reduces category generalization encoding
and decoding
We measured spiking responses to 240 object stimuli across 5
sessions (one array insertion per session) in 3 monkeys (Fig. 1A)
(Lin et al., 2014). Object category readout was based on 104 of the
240 objects, comprising 8 categories and 13 objects per category
(categories with �13 objects were not tested).

A key requirement of cortical computations for object recogni-
tion is generalization across stimulus variations (e.g., variations
within a category and in object pose and illumination) (Poggio and
Bizzi, 2004; DiCarlo et al., 2012). To test the effect of noise covaria-
tion on category generalization, we trained one-versus-all binary
classifiers on 8 of 13 objects per category and tested them on the 5
remaining “unseen” objects (chance is 12.5% for 8 categories).

Noise covariation significantly reduced, by �5%-10%, within-
category generalization performance for most categories (Fig. 1B;
chance is 12.5% for 8 categories, p � 0.005 for faces and animals, p �
0.01 or 0.05 for other categories, two-tailed t test). Because noise
covariation may have different effects on encoding versus decoding
(Averbeck et al., 2006), we measured both types of effects. For en-
coding, we compared the performance when classifiers were trained
and tested on unshuffled (simultaneously recorded) data, versus
when they were trained and tested on trial-shuffled data (“shuffled,”
to mimic independently sampled neurons). For decoding, we com-
pared the performance when classifiers were trained and tested on
unshuffled data, versus when they were trained on shuffled data and
tested on unshuffled data. Noise covariation significantly reduced
category generalization performance for encoding. Knowledge of
noise covariation had no significant effect on decoding, suggesting
that the correlations are orthogonal to the decision boundary (Ey-
herabide and Samengo, 2013; their Fig. 7C).

The effect of noise covariation was uneven across categories.
For example, “tools” had no significant effect, despite high over-
all performance, possibly due to a more distributed representa-
tion for that category. However, no category showed an increase
in encoding performance from noise covariation. Such stimulus
dependence of spike time correlations was previously reported
for IT responses to face feature configuration (Hirabayashi and
Miyashita, 2005) and is postulated to be an additional code in
addition to rate coding (Reichert and Serre, 2014). We also note
that stronger average responses to a category (e.g., to furniture for
array 1) do not necessarily guarantee stronger generalization per-
formance or stronger noise covariation effect, because response
patterns vary across objects in a category.

Also, “faces” and “animals” had higher performance and
stronger noise covariation effect, consistent with stronger tuning
to these categories in some penetrations (Fig. 1C). The stronger
noise covariation effect for “faces” and “animals” is consistent
with previous reports of spatially clustered representation for
these categories in IT (Wang et al., 1996; Freiwald and Tsao, 2010;

Ku et al., 2011; Sato et al., 2013). Array 5’s tuning and location are
suggestive of a previously reported “AL” face patch, but we only
sampled two other array locations in this monkey.

The effect of noise covariation on encoding and decoding was
not due to collapsing across responses to different objects in each
category (i.e., misinterpreting signal as noise) because we also
observed this effect for object identification (of 240 objects; Fig.
2). The effect on encoding was significant across a range of bin
sizes down to 50 ms. The absence of the effect at smaller bin sizes
is likely due to less training data (only 1 object per class) for
identification compared with categorization.

Noise covariation reduces pose and illumination
generalization
Next, we measured how noise covariation affects generalization
across changes in object pose and illumination. For each array, we
selected 10 objects that strongly drove a few neurons and pre-
sented 25 variations of each object (5 poses � 5 illuminations,
�45° to 45° at 22.5° steps; Fig. 3A). We trained the classifier on
responses to four poses or illuminations per object (all illumina-
tions at each pose or all poses at each illumination), then tested
readout of object identity at the remaining pose or illumination.
In all cases, noise covariation reduced generalization perfor-
mance for encoding by �5%–10% (Fig. 3B, p � 0.005; Fig. 3C,
p � 0.05), and knowledge of noise covariation had no significant
effect on decoding performance.

Noise covariation effect is fast and increases with
ensemble size
We tested how the effect of noise covariation on category encod-
ing and decoding depends on ensemble size. Category readout
was based on one-versus-all binary classifiers with cross-
validation across trials, randomly assigned to 5 training trials and
5 test trials per object.

Consistent with theoretical predictions (Sompolinsky et al.,
2001; Averbeck et al., 2006), the effect on encoding increased with
population size (Fig. 4A), reaching 10%–15% relative reduction
in classifier performance (�P/Pcorrected) at 32– 64 randomly se-
lected units per array (Fig. 4C). With fewer simultaneously re-
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corded units, although performance was above chance, noise
covariation had negligible effect on encoding performance, con-
sistent with Aggelopoulos et al. (2005) and Anderson et al.
(2007). However, this was not simply due to flooring of the per-
formance with fewer units because array 3 (orange) also showed
an increased effect with population size, despite low overall per-
formance. For decoding (Fig. 4B,C), the effect on �P/Pcorrected

was nonsignificant for all population sizes and reached up to
0.8% for 64 units per array. �P/Pcorrected was slightly negative for
2– 8 units per array, possibly because shuffling avoids errors from
overtraining with few units. For both encoding and decoding, the
increased effect with population size was similar for multiunit
and single-unit activity, including unsorted hash, and it was con-
sistent across the 5 arrays.

The time course of the noise covariation effect was fast for
encoding (Fig. 4D) and was similar for categorization and iden-
tification (data not shown). The effect was similar for single-unit
and multiunit activity and across different object categories and
bin sizes down to 25 ms (0 –1 spike per neuron). The effect of
noise covariation on encoding was significant even from the ear-
liest response (�100 ms) at 25 ms bin size, and its time course was
similar to that of the classifier readout performance, supporting
that its dynamics coincide with rapid feedforward (“core”) object
recognition (DiCarlo et al., 2012). For decoding, time course
analysis did not reveal a significant effect of noise covariation.

Signal correlation and noise correlation are strongly linked
Previous reports conjectured that noise correlation (rSC) may
increase or decrease coding efficiency, depending on its relation-
ship to signal correlation (rsignal). Noise correlation has been pre-
dicted to increase information if signal and noise correlation are
negatively related, and to decrease information if they are posi-
tively related. Consistent with this, signal and noise correlation
were strongly positively linked in all 5 arrays (Fig. 5; Fisher-
corrected r � 0.38 to 0.79 for SUA, 0.49 to 0.81 for hash MUA,
p � 0.005 for each array). Mean R was similar for SUA (0.63) and
for hash MUA (0.69), indicating that these results are not strongly
biased by oversorting or by low spike count (Cohen and Kohn,
2011). Also consistent with previous reports, both signal and
noise correlation were weak (mean rsignal � 0.11, mean rSC �
0.05, N � 10,645 pairs) despite strong even-versus-odd trial tun-
ing consistency (mean r � 0.6) (Lin et al., 2014). These results
extend upon our previous report linking tuning correlation to
spike time synchrony during spontaneous activity (Lin et al.,
2014), to slow trial-by-trial noise correlations.

Signal and noise correlation effects depend on cortical depth
In primary visual cortex, signal and noise correlation are weaker
in the granular layer than in supragranular and infragranular
layers, and this has been tied to better orientation decoding effi-
ciency for neurons in the granular layer (Hansen et al., 2012). In
our IT data, signal and noise correlation also depended on corti-
cal depth. Within each array, we sorted units by average rsignal

with other units in the same array. Units in the top 20th percentile
of average rsignal (Group 1 units, Fig. 6A, based on SUA) were
disproportionately fewer at 1.0 –1.2 mm depth (granular layer, 2
of 55 units). This depth dependence is specific to average rsignal

(related to “population sparseness”) and is absent for tuning se-
lectivity (Hung et al., 2014; their Fig. 3), a common measure of
“sparseness” (Vinje and Gallant, 2000; Zoccolan et al., 2007; Will-
more et al., 2011).

Noise correlation (rSC) was weaker in the granular layer (mean
rSC � 0.021 for SUA, 0.035 for hash MUA) compared with supra-

Figure 3. Noise covariation reduces pose and illumination generalization. A, Pose and illu-
mination variations for one object. B, C, Classifier performance for generalization across pose
and illumination (colors) for encoding and decoding. Based on arrays 2 and 4, recorded in
separate sessions. For each array, we tested 25 variations of 10 preferred objects. Black repre-
sents average across poses/illuminations. Classifiers were trained on 4 poses or 4 illuminations
(20 variations per object) and tested on object identification at the unseen pose or illumination.
Data are mean � SD (50 trial permutations). Chance is 10% for 10 objects. *p � 0.05. ***p �
0.005. n.s., Not significant.
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granular and infragranular layers (0.066 for SUA, 0.096 for hash
MUA; Fig. 6B; p � 0.001 for all comparisons, unpaired t test). A
recent report also found low noise correlation in anesthetized IT,
based on tetrode recordings in the granular layer (mean rSC �
0.02 for SUA) (Tamura et al., 2014). These values are lower than
previously reported for SUA in awake V1, where mean rSC was
0.04 in the granular layer versus 0.23– 0.24 in supragranular and
infragranular layers (Hansen et al., 2012; see also Kohn and
Smith, 2005; Ecker et al., 2010; Cohen and Kohn, 2011). This
decrease in noise correlation from V1 to IT is consistent with the
weaker signal correlation and rarer spontaneous coincident spik-
ing in IT compared with V1 (Chu et al., 2014; Lin et al., 2014).

The effect of noise covariation on classifier performance also
depended on cortical depth. Categorization, within-category
identification, and within-category generalization performances
were lower in the granular layer than in supragranular and infra-
granular layers (Fig. 6C; all 12.5% chance, for 8 categories and 8
objects/category). The similar depth dependence across these
tasks supports that the better performance for output layers was
not task-specific. For encoding (red, blue, and black lines), noise
correlation significantly reduced classifier performance in supra-
granular and infragranular layers (p � 0.05 to p � 0.005) and had

no significant effect in the granular layer. However, supragranu-
lar and infragranular layers still outperformed the granular layer
for unshuffled data. For decoding (gray lines), knowledge of
noise covariation had no significant effect on performance in any
layer. The better performance of output layers in IT for object
coding is surprising compared with the better performance of the
input layer in V1 for orientation decoding (Hansen et al., 2012),
and this difference is discussed below.

Noise covariation effect depends on network anisotropy
The dependence of the noise covariation effect on ensemble size and on
cortical depth indicates that it should also depend on network anisot-
ropy (variations in homogeneity, measured as average rsignal). We re-
cently reported that, in IT, within-category generalization performance
is better for correlated neurons (units with the highest average rsignal and
spontaneous coincident spiking), consistent with a link between corre-
lated activity and manifold theories of representation (DiCarlo et al.,
2012; Hung et al., 2014; Lin et al., 2014). Here, we examine how noise
covariation’s effect on encoding and decoding depends on network
anisotropy.

We compared the effect of noise covariation on two subsets of
units. Group 1 was units with the highest average rsignal of each
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array, and Group 2 was units with average rsignal closest to the
median of each array (Fig. 7A; see Materials and Methods). This
designation of neurons based on functional interactions directly
addresses the issue of network anisotropy raised in our previous
reports and in recent reports (Okun et al., 2015; Panas et al.,
2015). Object categorization performance was better for Group 1
than for Group 2, and noise covariation had weak but significant
effects on classifier performance for encoding (colors) and no
significant effect for decoding (gray). The stronger effect for
Group 1 is consistent with theoretical predictions for homoge-
neous populations, and the effect required ensembles of at least
8 –16 units to be detected, consistent with Figure 4.

To improve sensitivity, we pooled responses across arrays and
included all units in the top 30th percentile as Group 1 and units
in the median 30th percentile as Group 2 (Fig. 7B, red and black
solid lines, 7–14 units per group per array). The noise covariation
effect on encoding was stronger for Group 1 than for Group 2 for
categorization, within-category generalization, and pose and il-
lumination generalization. This differential effect was not simply
due to the higher performance of Group 1 units than Group 2
units, particularly for smaller ensemble sizes (e.g., 20th percentile
for pose and illumination generalization, dashed lines). For pose
and illumination generalization at 30% ensemble size (solid
lines), although performance was similar for both groups, only
the Group 1 noise covariation effect was significant. For decod-
ing, knowledge of noise covariation had no significant effect for
both Group 1 and Group 2. Overall, these results show that

Group 1 units tend to be more efficient than Group 2 units (better
performance for smaller ensembles) despite the cost of noise
covariation.

Simulation of noise correlation effects on classifier
performance
A possible concern is whether both positive and negative effects
of noise covariation are detectable with linear classifiers, or
whether higher-order kernels are necessary (Reichert and Serre,
2014). We simulated the effect of injecting artificial noise corre-
lation to trial-averaged responses (Fig. 8). Simulated negative rSC

slightly improved both encoding and decoding performance, and
the results for actual (unshuffled) data were approximated by a
simulated rSC of 0.2 (Averbeck et al., 2006; compare their Figs. 2
and 4). This approximation to rSC of 0.2, instead of the much
weaker average rSC of 0.05 (Fig. 5) (Hung et al., 2014; their Fig. 2),
is consistent with the effect of anisotropy. It suggests that encod-
ing and decoding are mainly supported by Group 1 units in out-
put layers, which have higher average rSC (Figs. 5, 6B). However,
we note that our results do not preclude the possibility that the
brain uses higher-order kernels.

Are there any conditions in which increases in noise covaria-
tion might actually improve classifier performance for encoding?
Although our sample was dominated by positive rSC, we also
observed subpopulations with negative rSC. Neuronal pairs that
were selected for rSC ��0.05 on even trials (mean rSC � �0.082,
N � 434 of 10,645 pairs) also had negative rSC on odd trials (mean
rSC � �0.040, p � 10�9 for each of 5 arrays, one-sample t test). A
plausible biological basis is that inhibition could produce nega-
tive rSC between nearby neurons (Tamura et al., 2014; their Fig. 6)
or possibly neighboring areas (consistent with interareal balanc-
ing) (Ramsden et al., 2001), which could be useful for denoising
the effects of traveling waves (Xu et al., 2007). This potential
benefit of negative rSC should be explored in future studies.

Discussion
Our results provide a rare glimpse into the effect of noise covari-
ation on local spiking ensembles at the end of the ventral visual
pathway, and they suggest possible computational strategies for
networks of neurons in higher cortex. As predicted, noise cova-
riation reduced object encoding in IT, including generalization,
and this effect increased with ensemble size and with population
homogeneity, tied to a positive link between signal and noise
correlation. Consistent with previous reports in V1, the effect of
noise correlation depended on cortical depth and was weakest in
the granular layer. However, performance was higher in output
layers of IT, supporting that manifold representation is tied to
recurrent circuitry despite stronger noise correlation. This de-
pendence of coding efficiency on homogeneity and cortical depth
was captured by network anisotropy, which was directly ad-
dressed by our designation of Group 1 and Group 2 units. Finally,
our decoding results suggest that it may be possible to extract all
the information in a population without knowledge of noise cor-
relations. Overall, these data support that even weak noise corre-
lations reduce coding efficiency but that, contrary to previous
reports in the early visual pathway, redundancy is beneficial for
manifold representation of complex high-dimensional object in-
formation, and subsets of neurons may be more immune to noise
covariation than others.

The generality of these results is based on the assumption that
neurons downstream of IT read out the object code via linear
pooling of weighted synaptic inputs. Different results might be
obtained by decoders that know how to exploit these correlations
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(e.g., via higher-order kernels) (Reichert and Serre, 2014). This
possibility is supported by the shift from negative �Idiag/I for
small ensembles to positive �Idiag/I for larger ensembles (Figs. 4C,
8B) and by differences in the noise correlation effect across cate-
gories (Fig. 1B). These conclusions also assume that IT popula-
tion dynamics are not substantially altered under light neurolept
anesthesia compared with awake behaving animals. Because of
the difficulty of access, anesthesia and muscle relaxation were
necessary to study noise covariation in IT, and they were also used
in a previous study of noise correlation in V1 (Kohn and Smith,
2005).

We think that anesthesia did not have a strong effect in our
data for four reasons. First, our fentanyl concentration was
10� lower than in reports that did not find an effect on neu-

ronal dynamics (Loughnan et al., 1987; Constantinople and
Bruno, 2011) and was 100� lower than in a recent report that
found an effect at frequencies slower than 2 Hz (Ecker et al.,
2014). Second, we estimate that our noise correlations are
faster than 3.3 Hz and that these results are not due to slow
up/down fluctuations because injection of slower artificial
noise correlations (via spike jittering) (Smith and Kohn, 2008;
their Fig. 2) resulted in effects on classifier performance that
exceeded that of actual noise correlations. We did observe
such slow up/down fluctuations in some of our later recording
blocks, possibly due to anesthetic accumulation, and we ex-
cluded those blocks from analysis. Third, a report from the
same group found that noise correlations are more similar in
active awake and anesthetized animals than during quiet
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wakefulness (Froudarakis et al., 2014). Fourth, the noise cor-
relations we measured were very low (mean rSC � 0.021 for
SUA, 0.035 for hash MUA in the granular layer), lower than in
most reports of recordings in awake V1 (Kohn and Smith,
2005; Ecker et al., 2010; Hansen et al., 2012) and awake IT
(Gawne and Richmond, 1993). The weakness of the noise cor-
relation in the granular layer here and in a recent report also in
anesthetized IT (Tamura et al., 2014) shows that these results
cannot be due to strong thalamocortical fluctuations under
anesthesia. In both awake V1 and in our lightly anesthetized IT
results, noise correlations are tied to recurrent activity in
supragranular and infragranular layers, consistent with an in-
termediate level of synchronization that is optimal for infor-
mation flow between sparsely connected areas, rather than
with a state of global synchronization that is exhibited during
relaxed and sleeping states (Mark and Tsodyks, 2012). A
strength of our study is that our use of muscle relaxation rules
out correlations due to top-down attention and eye move-
ments (Rajkai et al., 2008; Ito et al., 2011). However, a goal of
future studies should be to understand how correlations im-
pact actual behavior.

Why was coding efficiency better for correlated neurons
despite stronger noise correlation?
The better coding efficiency of correlated neurons (Group 1) is
surprising because sparseness is thought to support efficient cod-
ing, and this has been tied to weaker signal and noise correlation
in layer 4 of V1 (Cohen and Kohn, 2011; Hansen et al., 2012).
Although we also observed weaker signal and noise correlation

in layer 4 (Fig. 6), beyond the already
weak correlation in IT (Gawne and
Richmond, 1993; Sato et al., 2009; Lin et
al., 2014; Tamura et al., 2014) compared
with V1 (Chu et al., 2014), our finding
of more efficient coding by correlated
neurons, mostly in output layers, is
counterintuitive.

Several factors may have contributed
to this difference. Previous studies of cod-
ing efficiency were based on orientation
discrimination by a few neurons per pen-
etration in V1 or MT, whereas we mea-
sured generalization across naturalistic
objects by a larger, denser, and more ho-
mogeneous population in IT. We suggest
the hypothesis that the higher stimulus di-
mensionality, representational complex-
ity, and sampling density in our study
highlight the benefit of manifold repre-
sentation and redundancy for noisy spik-
ing populations. The better performance
of Group 1 units is unrelated to tuning
width (i.e., average rsignal and tuning selec-
tivity, commonly reported as “sparse-
ness”, are unrelated) (Vinje and Gallant,
2000; Zoccolan et al., 2007). The surpris-
ingly better performance of Group 1 is
consistent with recent reports that toler-
ance (Rust and Dicarlo, 2010), but not
sparseness (Willmore et al., 2011), in-
creases along the ventral visual pathway.
The effect cannot be due to feedback from
attention (Takeuchi et al., 2011; Zhang et

al., 2011; Bansal et al., 2014; Scholl et al., 2014) because its rapid
time course (Fig. 4D) matched that of feedforward recognition.

Previous reports implicated statistical learning of the natural
environment by spiking neurons (Luczak et al., 2009; Rust and
Dicarlo, 2010; Berkes et al., 2011; Zylberberg and DeWeese,
2013), and it has been postulated that IT supports invariant rec-
ognition by encoding a manifold representation of complex fea-
tures (DiCarlo et al., 2012). Our results support this by showing
that a low-dimensional correlational structure, which we de-
scribe as a “pipe cleaner” model (Hung et al., 2014; Lin et al.,
2014), is more efficient for coding naturalistic shapes in IT (Bal-
dassi et al., 2013). In our model, uncorrelated units (the bristles,
Group 2) in the input layer, possibly decorrelated and orthogo-
nalized to the local manifold (Bengio, 2009) by balanced excita-
tion and local inhibition (Renart et al., 2010; Graupner and
Reyes, 2013), act as tensors to fine-tune the manifold representa-
tion in output layers (the spine, Group 1). This is consistent with
reports that that columnar-scale organization supports efficient
coding (Tsodyks et al., 1999; Tanaka, 2003; Chen et al., 2006) and
behavior (Nienborg and Cumming, 2014). This is also consistent
with a recent report that continuous remodeling of neural net-
works depends on network anisotropy, with faster remodeling
at the functional periphery (Group 2) and slower remodeling
at the core (Group 1) (Panas et al., 2015). Overall, these results
imply that, in dense populations that encode complex, high-
dimensional information, coding is efficiently concentrated in a
low-dimensional correlational structure, namely, synchronized
neurons in output layers.
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