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Neural activity in ventral premotor cortex (PMv) has been associated with the process of matching perceived objects with the motor
commands needed to grasp them. It remains unclear how PMv networks can flexibly link percepts of objects affording multiple grasp
options into a final desired hand action. Here, we use a relational encoding approach to track the functional state of PMv neuronal
ensembles in macaque monkeys through the process of passive viewing, grip planning, and grasping movement execution. We used
objects affording multiple possible grip strategies. The task included separate instructed delay periods for object presentation and grip
instruction. This approach allowed us to distinguish responses elicited by the visual presentation of the objects from those associated with
selecting a given motor plan for grasping. We show that PMv continuously incorporates information related to object shape and grip
strategy as it becomes available, revealing a transition from a set of ensemble states initially most closely related to objects, to a new set of
ensemble patterns reflecting unique object-grip combinations. These results suggest that PMv dynamically combines percepts, gradually
navigating toward activity patterns associated with specific volitional actions, rather than directly mapping perceptual object properties
onto categorical grip representations. Our results support the idea that PMv is part of a network that dynamically computes motor plans
from perceptual information.
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Introduction
The ability to interact with a large variety of real-world objects in
flexible and creative ways is one of the most salient traits of the
primate cerebral motor system, and has arguably played a pivotal
role in the evolutionary success of our species (Napier, 1980;
Lemon, 1993). Upon looking at an object, we can quickly plan
and execute a variety of movements to grasp and manipulate it in

a context-appropriate manner. The ventral premotor cortex
(PMv) is a key node in the parietofrontal network specialized in
transforming visual information representing the shape of ob-
jects into hand postures best suited for grasping (Fagg and Arbib,
1998; Luppino et al., 1999; Rizzolatti and Luppino, 2001; Tanné-
Gariépy et al., 2002; Brochier and Umiltà, 2007; Theys et al., 2012;
2013). Transient PMv inactivation impairs hand preshaping pre-
ceding grasping, but does not impair reaching (Fogassi et al.,
2001). Further, individual PMv neurons display grip-specific ac-
tivation during grasping; differential responses to various objects
are also observed during instructed delays preceding grasping
movements, and even during visual object fixation when no
movement is intended (Godschalk et al., 1981; Murata et al.,
1997; Raos et al., 2006; Umilta et al., 2007; Fluet et al., 2010;
Carpaneto et al., 2011; Townsend et al., 2011; Schaffelhofer et al.,
2015).

Although most real-world objects can be grasped in many
different ways, previous experimental work has focused on exam-
ining single-neuron activity during actions in which each target
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Significance Statement

The present work demonstrates that the activity of groups of neurons in primate ventral premotor cortex reflects information
related to visually presented objects, as well as the motor strategy used to grasp them, linking individual objects to multiple
possible grips. PMv could provide useful control signals for neuroprosthetic assistive devices designed to interact with objects in
a flexible way.
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object was associated with a single well-practiced grip strategy.
This has promoted the view that objects elicit PMv activity spec-
ifying a particular grip strategy, suggesting that the computation
linking objects to actions requires a mapping of percepts to sets of
cells representing specific grip categories. However, in the natural
world objects can be grasped in many different ways depending
on the situation. It is not clear how PMv circuits could flexibly
link either the same action to multiple objects or multiple actions
to the same object. In this study, we used multielectrode arrays to
record neural ensemble activity in PMv of nonhuman primates
(NHPs) engaged in a grasp and lift task where each of two target
objects could be gripped in two different ways. Objects shared
one grip type (power) and had one unique grip each (precision or
key). The task included a sequence of two instructed delay peri-
ods: during the first, an object was viewed without knowledge of
the correct grip type, during the second, colored lights were used
to cue the correct grip. This approach allowed us to distinguish
responses elicited by the visual presentation of the objects from
those associated with selecting a way to grasp it. We use spike
train similarity (SSIMS) analysis (Vargas-Irwin et al., 2015) to
track the progression of PMv ensemble states leading from object
viewing to grasping. This method allows us to quantify the simi-
larity of the ensemble activity patterns across trials including
those elicited by grasping a given object in different ways, as
well as those associated with grasping different objects using
the same grip.

Our results show that PMv ensemble activity dynamically
evolves throughout the process of selecting and executing a
grasping action. Out task design elicits a transition from a set of
ensemble states most closely associated with the target objects to
a separate set of states displaying object and grip information,
reflecting the neural computations linking objects to actions.

Materials and Methods
Neural population activity recording. Neural ensemble activity was re-
corded from three male macaque monkeys (9 –12 kg) using chronically
implanted microelectrode arrays (Blackrock Microsystems). Animals
were maintained in a facility approved by the Association for Assessment
and Accreditation of Laboratory Animal Care, National Institutes of
Health (AAALAC, NIH). All surgery was performed using standard ster-
ile procedures in an approved animal surgical facility. The microelec-
trode arrays were implanted into the functionally defined PMv upper
limb area accessible on the cortical surface (just posterior to the genu of
the arcuate sulcus, at the level of the principal sulcus); this region on the
periarcuate convexity, corresponding to the F4 –F5c boundary (using the

terminology of Belmalih et al., 2009), has been reliably found to contain
neurons related to distal upper limb movements (Kurata and Tanji, 1986;
Rizzolatti et al., 1988; Raos et al., 2006; Umilta et al., 2007; Nelissen and
Vanduffel, 2011). Each electrode array contained a 4 � 4 mm grid with 96
active silicon-based electrodes 1 mm in length and spaced 400 �m apart
(for details on array structure and surgical procedures, see Suner et al.,
2005; Barrese et al., 2013). The location of each PMv array on the cortex
is displayed in Figure 1. Additional arrays were implanted in primary
motor cortex and or dorsal premotor cortex (data from these arrays in
not included in the analysis presented). Monkeys were head fixed during
recording. Data acquisition and storage were performed using a Cerebus
multichannel data acquisition system (Blackrock Microsystems). Differ-
ences in spike waveform shape were used to identify single-unit activity
using custom-made software using template matching with spike overlap
resolution (Vargas-Irwin and Donoghue, 2007). Only units exceeding a
signal-to-noise ratio of 1.2 were included in the analysis (SNR � mean
spike amplitude/95% confidence interval for voltage during nonspiking
periods).

Behavioral task. We recorded the activity of PMv neuronal ensembles
using chronically implanted microelectrode arrays in three NHPs (rhe-
sus macaques) trained to perform a cued grasping task with instructed
delay (CGID). Recording sites are shown in Figure 1. Four recording
sessions were performed for each NHP. In each session, between 49 and
135 neurons were simultaneously recorded in PMv.

The temporal sequence of the task is shown in Figure 2. To initiate a
trial, the head-fixed monkeys, sitting in a primate chair in a fully dark-
ened room, held their hands on two touch-sensitive pads for one second.
One of two possible objects was presented in front of them using a cus-
tom made turntable device and then illuminated by a spotlight posi-
tioned above. After a further one second delay, one of two grip-type
instructions was provided using colored lights. Monkeys were trained to
grasp objects in one of two ways using the following conditional associ-
ations: a red light instructed a power grip (common to both objects), and
a yellow light instructed either a key or precision grip (depending on
which object was present). The monkeys were required to keep their
hands in contact with start pads until a “go” cue (green light) was deliv-
ered (which happened 2 s after the grip instruction cue). They then
reached forward, grasped the object with the instructed grip and lifted it.
The objects were mounted on sliding rails that allowed 2 cm of vertical
displacement; a fruit juice reward was given if the objects were held at the
top position for �200 ms. To detect whether the correct grip was being
used, each object was instrumented with four capacitive sensors (Qtouch
sensors, Atmel). For all grips, two points of contact on opposite sides of
the object were required (with an independent pair of sensors for each
grip). Both objects included an identical 10-cm-long, 3.5-cm-diameter
cylinder. For Object A, the cylinder was joined to a horizontal disk with a
diameter of 7.5 cm and thickness of 0.5 cm. In Object B, the cylinder was
joined to a vertical plate measuring 10 � 7 � 0.5 cm. In Monkey G, the

Figure 1. Multielectrode array implantation sites for the three NHPs used in the study. A 10 � 10 microelectrode array (400 m� spacing) was chronically implanted at each site (Blackrock
Microsystems). In all cases, arrays were positioned just anterior to the genu of the arcuate sulcus at the (mediolateral) level of the principal sulcus. 3D rendering of the cortical surfaces was generated
based on 3T MRI scans (Brown MRI Research Facility) using BrainSight software (Rouge Research). CS, Central sulcus; AS, arcuate sulcus; PS, principal sulcus.
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cylinder was the top part of the object (Fig. 3). In subsequent experiments
with Monkeys S and R the cylinder was positioned at the bottom (we
found that this configuration was easier for the monkeys to visualize and
grasp while in head fixation). For each recording session, the monkeys
performed between 80 and 150 trials, with between 15 and 40 exemplars
of each grip/object combination. Objects and grips were pseudoran-
domly interleaved throughout the session (keeping trial numbers for all
combinations approximately consistent). In summary, for each trial the
monkeys were presented with one of the two objects and, depending on
subsequent instructional cues, grasped them either in a similar way
(power grip) or a different way (precision or key grip).

SSIMS analysis. We used spike train similarity space analysis (SSIMS;
as described by Vargas-Irwin et al., 2015) to quantify object and grip-
related effects on neural activity at each of the task phases. SSIMS is an
example of relational data analysis that uses estimates of similarity to
describe the relationship between multiple data samples (Lehky et al.,
2013). Note that mapping neural data into a SSIMS projection is done
without any information regarding behavioral condition (unsupervised
dimensionality reduction). Instead, the method relies on the intrinsic
properties of the neural data and does not require an explicit model of the
relationship between neural activity and external variables. The SSIMS
algorithm begins by embedding the neural data into a high-dimensional
pairwise similarity space, and then projects the data into a more compact
(low-dimensional) representation, which facilitates statistical analysis as
well as data visualization while still capturing the relationship between
individual data points. A neural activity pattern is represented by a point
in the resulting SSIMS projection (which can be defined over one or
many neurons simultaneously). The distance between points denotes the
degree of similarity between the activity patterns they represent. Two
identical firing patterns correspond to the same point in this space; the
more different they are, the farther apart they lie in the SSIMS projection.

The following operations are performed to generate a SSIMS projec-
tion of dimensionality d representing the activity of n neurons recorded
over t trials: (1) generate a high-dimensional embedding for the data
using the pairwise distances between the spike trains recorded for each
neuron. We use the spike train metric proposed by Victor and Purpura
(1996) to evaluate similarity. This method evaluates differences in spike
trains based on how spikes in one train have to be shifted, deleted, or
inserted to make it precisely match another train (similar to the “edit
distance” or “Levenshtein distance” used to compare letter strings or
genetic sequences). The cost function used was adjusted such that the
cost of shifting a spike by �100 ms was equivalent to inserting and
deleting a spike (1/q � 100 ms). The activity pattern for one neuron
during a single trial is represented by a similarity vector of length t,
representing the distance to each of the other trials. When performing
ensemble-level analysis, vectors from multiple neurons are concate-
nated, resulting in a set of t ensemble similarity vectors with dimension-
ality n � t. We define the state of the ensemble as the combination of all the

recorded spikes fired by all well isolated neurons during each of the 1 s
time periods analyzed; two ensemble states are considered identical if all
the spikes for each neuron occurred at exactly the same relative times. In
the SSIMS representation, identical states are mapped to exactly the same
point.

(2) Perform dimensionality reduction using the t-SNE algorithm de-
veloped by van der Maaten and Hinton (2008). The goal is to project the
original high-dimensional data into a low-dimensional space of size d to
facilitate visualization and analysis. The t-SNE algorithm uses explicit
models of the “local neighborhoods” around each high-dimensional
point to perform dimensionality reduction while preserving the rela-
tional structure of the data. The use of dynamic neighborhood sizes
allows the algorithm to preserve local structure through areas of varying
data density. The data are initially transformed to an intermediate num-
ber of dimensions using principal component analysis (for computa-
tional efficiency). In our implementation, we used a 50-dimensional
space. Gradient descent is then used to minimize the KL-divergence
between local neighborhood probability functions in the 50-
dimensional PCA space and the target low dimensional SSIMS space
(initialized using a second d-dimensional PCA projection). Our im-
plementation of t-SNE used a perplexity setting of 30 (equivalent to
the effective number of neighbors used to determine the Gaussian
kernel used for density estimation).

Our previous work has demonstrated that the combination of spike
metrics and t-SNE outperforms other alternatives, including similarity
estimates based on binned spike counts and dimensionality reduction
using PCA or multidimensional scaling (Vargas-Irwin et al., 2015). We
have also shown that the SSIMS algorithm is robust over a wide range of
parameter settings and capable of accurately classifying reaching and
grasping movements from primate cortical recordings. MATLAB code
for implementing the SSIMS algorithm is available upon request.

The present work uses SSIMS projections in four different ways:
(1) Evaluating single-neuron properties: the (Euclidian) distance be-

tween low-dimensional SSIMS projections can be used to estimate the
similarity between neural activity patterns. If neural activity patterns
differ between two experimental conditions, trials within the same con-
dition will cluster closer together, whereas trials in different conditions
will be further apart. This phenomenon can be quantified by comparing
the distribution of within- and between-category separation in the
SSIMS projection. Units for which the median distance for trials in the
same category (i.e., object or grip) was significantly smaller than
the median distance for trials in different categories were considered to
have significant clustering (Kruskall–Wallis, p � 0.05). Note that this
approach goes beyond testing for differences in firing rate, because it also
incorporates the timing of each spike, allowing us to evaluate relatively
large time windows without binning. This technique was used to com-
pare activity associated with the same object and different grips, or for the
same grip and different objects. In the case of grip-related clustering,

object light 

grip cue 

go cue 

task phase 1 3 4 2 5 

both hands
at start pads 

red/yellow
grip cue 

object
presentation

green
go cue 

object
contact

object
lift

juice
reward

one second

Figure 2. CGID task. Task timeline, showing the onset and offset of the object light, grip cue, and go cue. There are four types of trials, representing combinations of two objects and three grips
(with both objects sharing one grip in common). For analysis purposes, the task was divided into five 1 s time periods.
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results from both objects were pooled together after adjusting the p val-
ues using Bonferroni correction for multiple comparisons. We used 15D
SSIMS vectors (d � 15) for statistical comparisons. Further increasing
the dimensionality did not change the number of selective units, in agree-

ment with our previous decoding results using the SSIMS method
(Vargas-Irwin et al., 2015).

(2) Graphically displaying the relationships (similarity) between single
trials at a given point in time: SSIMS plots represent the activity of the
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Figure 3. Object and grip related information is reflected in the firing pattern of individual neurons. The activity patterns of two simultaneously recorded PMv neurons (Monkey G) are shown for
each of the four object � grip combinations. In all cases, raster histograms are aligned to object presentation. Note that one neuron presents similar activity patterns for both power grips (bottom),
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for units 12 and 39, respectively.
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entire ensemble during each trial in an unbiased way, because the method
does not take into account class labels. For visualization we use lower-
dimensional projections of size d � 2 or d � 3.

(3) Ensemble decoding: SSIMS projections can be easily adapted for
discrete classification of neural activity patterns. Here, we use a simple
nearest-neighbor classifier based on the Euclidean distances between
SSIMS data points corresponding to individual
trials. The classifiers were evaluated using leave-
one-out cross validation. We used a 15D SSIMS
space, which was sufficient to capture relevant
data features (increasing dimensionality further
did not improve decoding).

(4) Neural trajectories: it is also possible to
use SSIMS to track the transition across differ-
ent task phases, representing the temporal evo-
lution of recorded ensemble activity through
time (Churchland et al., 2007; note the overall
goal is similar, although a different dimension-
ality reduction algorithm is used). Recall that
the SSIMS algorithm represents a given ensem-
ble activity pattern in terms of the similarity
(distance metric) with other recorded patterns
(a vector of similarity measurements). To gen-
erate neural trajectories, the activity patterns re-
corded over a sliding time window were
compared with the full set of spike trains aligned
to each task phase. Each time point is therefore
represented by a vector with dimensionality n � t
� p, where n is the number of neurons, t is the
number of trials, and p is the number of task
phases. Note that it is only necessary to run gra-
dient descent on the set of spike trains at each
task phase (which form the basis for the space),
the resulting transform can then be applied to
any number of n � t � p vectors representing other
temporal alignments. In this manner, it is pos-
sible to evaluate the relationship between neural
activity patterns at different time points in a sin-
gle unified space.

Results
Single-unit responses in the CGID task
A total of 12 recording sessions were in-
cluded in this study (4 sessions for each of the
three NHP subjects). The number of well iso-
lated single units identified per session
(SNR � 1.2) varied between 48 and 134, as
detailed in Table 1 (mean � 84.6, SD �
34.9).

Single-unit activity in PMv displayed a
wide variety of phasic and/or tonic re-
sponses associated with each of the task-
relevant stimuli (Fig. 3). In addition to movement-related
discharges, individual neurons typically displayed time-locked
responses to the object presentation, as well as the grip instruc-
tion cues.

For analysis purposes we divided the task into five 1 s time
periods (highlighted in Fig. 2): (1) intertrial interval (lights off, no
cues), (2) object presentation phase (illumination), (3) early grip
cue phase (first second after grip instruction, early planning), (4)
late grip cue phase (late planning, following the early grip cue
phase and immediately preceding the go cue), and (5) object
contact phase (spanning 0.5 s before and after object contact was
detected using capacitive sensors embedded in the object).

The first part of our analysis focused on the properties of
individual neurons. To isolate the object and grip effects, we

compared trials with the same grips performed on different ob-
jects (power grip trials), or trials with the same object grasped
using different grips (power vs precision, or power vs key).

Significant clustering of SSIMS projections was evaluated in
the manner described in the methods section to detect object or
grip related information. The percentage of neurons displaying
object and grip selectivity gradually increased through the differ-
ent task stages, going from �15% to �50% (Fig. 4). During the
object presentation period (before the grip had been instructed)
only object-related information was observed above chance levels
(representing �15% of all recorded neurons). Following the grip
cue, the number of units showing grip related information far
exceeded object-related neurons (Fig. 4). The number of exclu-
sively object-related neurons decreased to near chance levels in
the later stages of the task in all three monkeys. However, in two
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Figure 4. Single-units displaying object- and grip-related information. SSIMS projections were used to determine whether
individual neurons presented significant grip/object related information (significant difference in median within and between
category SSIMS distances; KW, p�0.05). Object information was only evaluated for trials with the same grip (power) and different
objects, whereas grip information was evaluated for different grips performed on the same object (key vs power or precision vs
power). Each plot shows the number of neurons displaying exclusively object information, exclusively grip information, or both.
The dashed line shows the number of false-positives expected for the given p value (5%). Data from each monkey is presented
separately.

Table 1. Number of single units (SNR > 1.2) identified in each session

Session 1 Session 2 Session 3 Session 4

Monkey G 60 49 50 48
Monkey R 62 81 72 76
Monkey S 116 138 129 134
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monkeys (G and S) we observed a gradual increase in the number
of neurons representing a combination of both object and grip
information up to and including the action execution period.
This trend was not observed in the third animal (R), where the
number of neurons displaying object-related information
dropped to chance levels by the object contact phase.

Clustering neural ensemble states
To display the informational content of PMv ensembles, we gen-
erated 2D SSIMS plots using the full set of simultaneously re-
corded neurons for each session (Fig. 5). Note that these plots are
provided to facilitate visualization of the patterns present in the
data, whereas the statistical analysis of clustering patterns is pre-
sented in subsequent figures. During phase 1 (the intertrial inter-
val) the trial types were mixed randomly, and there was no clear
clustering of similar activity patterns in the SSIMS projection,
consistent with the lack of object or grip information available
during this period. However, as more information was provided
to the monkey, clustering of specific ensemble states emerged.
During the object presentation period, the ensemble states sepa-
rated into two clusters, denoting increased similarity between
spiking patterns associated with each object (Fig. 5, phase 2).
Following the presentation of the grip cue, SSIMS representa-
tions shifted, forming a new set of clusters reflecting grip type in
addition to object similarity. In two of the monkeys (G and S),
this resulted in a set of four independent clusters, each associated
with one grip/object pairing that persisted beyond the instructed
delay period and into the action execution (contact) phase. Note
that the two power grips formed distinct but neighboring clus-

ters. In the third monkey, grip-based clustering overshadowed
object-related influences, generating only three clusters in the
later stage of the task. Notably, for Monkey R the power grip
formed a single cluster regardless of which object was the target.
This observation is in agreement with the apparent lack of object-
selective neurons observed in the later parts of the task for Mon-
key R (Fig. 4).

Decoding object type and grip strategy
We next used decoding methods to quantify the information
related to objects and grips present in PMv ensemble activity.
These results also provide a direct measure of useful informa-
tion that could be extracted from PMv for potential neuro-
prosthetic control purposes. We used SSIMS projections for
partially overlapping 1 s time windows (advancing in incre-
ments of 50 ms) to provide a continuous estimate of the en-
semble states throughout the task. For classification purposes,
15-dimensional SSIMS projections were used. Decoding was
performed using nearest neighbor classifiers tested using
leave-one-out cross validation. Classification results across
trial time for object and grip type are shown in Figure 6. For all
monkeys, mean performance for a given type of classification
was below the corresponding 99% confidence limit of the
chance distribution before the trial started (evaluated using a
Monte Carlo approach with 10,000 random shuffles of the trial
labels); this could be considered as the baseline state. In agree-
ment with our initial clustering analysis, object classification
rose above the 99% confidence interval after the target object
was illuminated, well in advance of significant grip-related
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decoding. That is, the object type being viewed could be cate-
gorized based on ensemble firing differences on single trials.
In Monkeys G and S, the accuracy of object classification con-
tinued to increase up to the moment of action execution,
reaching �90% around the time of object contact. This find-
ing indicates that the network continued to carry information
sufficient to clearly distinguish the two objects. A different
pattern was observed in Monkey R, where object classification

dropped to near-chance levels after an early peak following
object presentation (Fig. 6). This failure to accurately classify
objects across the instructed delay is consistent with SSIMS
projections showing a single cluster common to both power grips in
Monkey R (Fig. 5). In all monkeys, grip classification accuracy grad-
ually increased during the delay period following the grip instruction
cue, with near perfect (�95% correct) classification by the time of
contact with the object.
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Figure 6. Decoding object and grip type. A nearest-neighbor classifier using leave-one-out cross validation was used to classify both grip type and object strategy at each time point based on
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Temporal evolution of neural ensemble states
We generated three-dimensional SSIMS trajectories to evaluate the
temporal evolution of ensemble activity patterns across task phases
(see Materials and Methods for details). Whereas the SSIMS projec-
tions from a single-task phase (Fig. 5) display the relationship be-
tween different ensemble states at a given time, the SSIMS
trajectories highlight the relationship between the activity patterns
observed at different time points in the task. The decoding analysis
presented in Figure 6 quantifies the separation of activity patterns
related to different object � grip combinations at different time
points; the mean neural trajectories in Figure 7 provide an intuitive
way to visualize the convergence/divergence of the ensemble activity
patterns through the course of object presentation, action selection,
and movement execution. This illustration highlights how the en-
semble states associated with a given object are initially most similar,
resulting in two object-related clusters. Following the grip instruc-
tion, however, neural activity gradually shifts into a new pattern
where ensemble states associated with specific grip strategies are
most similar, consistent with their engagement in computing grip.

Discussion
We evaluated the evolution of ensemble activity in primate PMv
as visual information from objects and grip instruction cues was
used to plan and execute grasping movements. Monkeys would
first view an object affording two possible grasping strategies and
then receive a light cue instructing how it should be grasped. It is
important to note that the monkeys had to rely on two different
types of instructions to determine the correct grip to use. Object
illumination allowed the monkeys to view the 3D shape of the
target object. This has been shown to involve parietal areas (in

particular AIP; Luppino et al., 1999; Mu-
rata et al., 2000). Next, the monkeys had
to interpret the color of the grip cue light
to choose the correct grip. This type or
arbitrary stimulus–response association is
known to preferentially engage frontal re-
gions, such as the supplementary motor
area and dorsal premotor cortex. Thus,
the task required the combination of two
qualitatively different types of visually de-
rived information engaging largely segre-
gated cortical circuits: (1) information
directly related to object geometry, and
(2) information related to the grip in-
struction through a learned stimulus–re-
sponse association. Clustering of neural
activity patterns at different task phases
demonstrates a transition from a set of en-
semble states most closely related to ob-
jects to a different set reflecting object �
grip combinations. Our results show that
ensemble activity recorded within a 4 � 4
mm area of PMv contains information re-
lated to the full transformation leading
from object detection to action execution,
dynamically responding to information as
it becomes available.

The model of PMv functional organi-
zation proposed by Fagg and Arbib
(1998), based on the seminal work by Riz-
zolatti et al. (1988), has remained rela-
tively unchanged in recent years
(Rizzolatti and Luppino, 2001; Raos et al.,
2006; Carpaneto et al., 2011). This model

proposes that subcircuits in PMv represent archetypal grip strat-
egies comprising an elementary “movement vocabulary” acti-
vated by visually driven activity in parietal cortex. When multiple
grips are possible, the model suggests a “winner take all” selection
process that ultimately leads to the activation of a circuit repre-
senting a single canonical grip. Previous experiments have shown
accurate decoding of many different grip types, but have not
explicitly examined interactions between grip affordances for in-
dividual objects: they either used a task in which objects were
associated with a single type of grip, or presented objects and grip
instructions simultaneously (Fluet et al., 2010; Townsend et al.,
2011; Schaffelhofer et al., 2015). By contrast, in the present ex-
periment we compared both single neurons and ensemble re-
sponses to objects that can be grasped in different ways,
separating in time the visual presentation of the target object
from the instruction of how to grasp it. As a particular grasping
strategy was selected from a set of possible movements associated
with a given object, we observed a shift from a condition where
ensemble states related to the same object were most similar, to a
regime where the planned/executed grip was the main factor de-
termining the relationship among ensemble states. Notably, we
observed clusters of ensemble states associated with each object
before the grip was specified. These neural activity patterns di-
verged for the two objects well in advance of the grip cue, which
was unknown to the monkey when the object was presented.
Activity during the object presentation stage did not appear to
represent “default” grip strategies, because the ensemble states in
question were different from any of those engaged after the grip
instruction was provided. These “object-related” ensemble states

go cue 

grip cue 

object 
presentation Object A Object B

Power Grip Key/Pre. Grip

Mean SSIMS 3D trajectories (2 views)

Object A: key grip      Object B: precision grip

Object A: power grip    Object B: power grip

Figure 7. SSIMS trajectories: linking objects to actions. The temporal evolution of ensemble activity is tracked by generating
SSIMS projections from sliding time windows (1 s duration, sliding by 50 ms). The resulting space captures the relationship
between activity patterns observed at different task phases. The mean trajectories for the four different types of trials are shown in
different colors for one session in Monkey G (two viewpoints are provided to display 3D structure). Dots along the lines mark the 50
ms shifts in the time bins. Trajectories were smoothed with a Gaussian kernel (400 ms SD). Object presentation events, grip cues,
and go cues, are highlighted by circles, stars, and squares, respectively. The graph in the boxed region shows a summary of the
general pattern observed. Similar results were obtained for the other two monkeys.
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appear to be stepping-stones that bring the network closer to the
desired output state (i.e., one that generates downstream activity
triggering the appropriate grasp) as part of an ongoing dynamic
process. Preparatory activity (preceding movement) can be
mathematically described as the early phases in the evolution of a
complex dynamical system that will eventually reach the desired
output state (Churchland et al., 2010). Under this view, “repre-
senting” objects and/or grips as such is not necessary (or even
desirable) as long as the appropriate descending cortical outputs
are generated. Our results are fully compatible with this formu-
lation: the ensemble appears to continuously incorporate infor-
mation throughout the instructed delay, gradually shifting the
population response toward the correct output patterns.

Our results show that presenting objects with different combina-
tions of grip affordances elicited distinct activity patterns in PMv.
Furthermore, in two of our three NHPs (G and S) we observed
statistically separable patterns of activity associated with engaging
power grips aimed at different objects (even though the relevant
parts of the objects were of exactly the same dimensions and posi-
tions relative to the monkeys). These distinct activity patterns
emerged as soon as the correct grip type was cued (before movement
was initiated), and persisted throughout the execution of the grasp-
ing movement. Schaffelhofer et al. (2015) recently demonstrated
that specific grips can be reliably classified even when aimed at dif-
ferent objects. It is important to note that, for that study, monkeys
executed grasping movements in the dark. It is likely that visual input
plays a key role in the object-related effects we observe. Additionally,
in the present study the SSIMS projections for power grip trials
aimed at different objects formed separate but adjacent clusters for
Monkeys G and S, showing that the associated neural activity pat-
terns, although distinct, still tended to be similar (Fig. 5). A decoder
therefore should still be able to generalize across the two types of
power grips, reproducing the decoding results presented by Schaffel-
hofer et al. (2015).

We observed a different pattern in Monkey R: in this case, the
power grip clusters for the two objects overlapped, resulting in
relatively poor object decoding. This may reflect a difference in
the neuronal subpopulation sampled. It is possible that, in this
monkey, a larger portion of PMv was buried in the bank of the
arcuate sulcus, beyond the reach of the microelectrode arrays
used in this study. In this case, recording electrodes may have
encroached upon more caudal MI populations. The decrease in
decoding accuracy for both object and grip information during
the instructed delay periods is consistent with this scenario. Al-
ternatively, Monkey R may have approached the task using a
different cognitive strategy from the other two NHPs. Using a
single activity pattern to generate power grips for both objects
could be viewed as an example of successful behavioral general-
ization. Generalization across different contexts is a characteristic
of highly encephalized species that has been notoriously hard to
replicate in artificial intelligence systems (Kelley and Long, 2010).
Monkeys can be highly variable in their ability to generalize
(Hikosaka et al., 1995). Merging different neural states with
equivalent motor outputs into a single activity pattern may reflect
a mechanism of generalization used by the motor system when
learning new tasks. Further experiments with independent mea-
sures of generalization will be required to explore this possibility.

Our results demonstrate that very similar grasping move-
ments can be related to different (that is, statistically separable)
neural activity patterns when engaged within the “context” of
different objects. Given the high-dimensional nature of neural
ensemble states, there are likely to be multiple states representing
correct solutions to a given grasping problem: that is, there are

likely to be many different cortical network activity patterns that
will ultimately lead to the same downstream output to � motor
neurons. A many-to-one mapping with multiple “output-
equivalent” network states that generate the same behavioral re-
sponse could simplify the process of mapping sensory inputs to
desired motor outputs, in effect expanding the set of target states
that provide a correct solution to a given behavioral challenge.
This organizational principle could also facilitate the ability to
trigger a particular behavior in response to different types of
stimuli, since it would circumvent the problem of funneling dif-
ferent kinds of information into a single state that uniquely trig-
gers the desired motor output. The experience-driven tuning of
this system would result in “affordance landscapes” unique to
each subject, dynamically linking visual inputs with motor re-
sponses using multiple possible pathways through the high-
dimensional space of possible network states. Note that these
output-equivalent states could potentially hold different types of
information not reflected in the motor output: for example, two
states ultimately leading to power grips could also reflect other
potential grip affordances present in a given context. Preserving
information about other possible grips in addition to the one
being currently engaged could provide some ethological advan-
tage (if a rapid change in grasping strategy is required, for
example). Examining grasping-related neural activity over a
broader range of behavioral tasks using more detailed kine-
matic measurements will be necessary to determine how PMv
represents similar movements performed in different con-
texts, and to what degree subtle differences in movement ex-
ecution are reflected in neural activity.

Neurons in ventral premotor cortex have also been shown to
respond to somatosensory stimuli. Remarkably, many neurons
display dual visual/tactile receptive fields organized in a body-
anchored reference frame; this kind of neurons respond to visual
stimuli approaching a specific body part (Rizzolatti et al., 1981;
Graziano et al., 1994; Fogassi et al., 1996). We observed the high-
est grip and object decoding accuracy around the time monkeys
made contact with the objects (Fig. 5). It is likely that the activity
patterns we describe incorporate additional visual and somato-
sensory components as the objects enter the monkey’s periper-
sonal space. Further experiments will be needed to isolate the
contribution of this type of visual/somatosensory signals to activ-
ity in PMv.

Brain– computer interface applications
Brain– computer interfaces (BCIs) allow people with compro-
mised mobility to use neural activity as a command signal for
assistive devices (Hochberg et al., 2006; 2012; Collinger et al.,
2013). Our results in monkeys suggest that premotor areas may
provide useful signals for BCI applications. We have demon-
strated robust decoding of both objects and grips, and have
shown that object-related activity can be present well in advance
of the emergence of an action plan. Decoding these activity pat-
terns could provide advanced information about possible action
targets to assistive devices. Our data also suggests that some de-
gree of contextual information is present in PMv, allowing us to
distinguish between power grips aimed at different objects.
Wodlinger et al. (2015) have recently reported that BCI kine-
matic decoders calibrated in the absence of objects may fail to
perform well once objects are introduced. We conclude that “see-
ing an object elicits a component or factor” which interferes with
direct decoding of kinematics, disrupting intended grasping
commands and causing the robotic limb under neural control to
back away from the object, contrary to the stated intention of the
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user. Remarkably, the effect disappeared once the participant
closed her eyes. This finding is in agreement with our observa-
tions, and suggests that object-related information is present in
human motor cortex. Taking into account this type of context-
related signals may be a critical step in achieving naturalistic,
generalizable, BCI control.
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