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Context plays a pivotal role in many decision-making scenarios, including social interactions wherein the identities and strategies of
other decision makers often shape our behaviors. However, the neural mechanisms for tracking such contextual information are poorly
understood. Here, we investigated how opponent identity affects human reinforcement learning during a simulated competitive game
against two independent computerized opponents. We found that strategies of participants were affected preferentially by the outcomes
of the previous interactions with the same opponent. In addition, reinforcement signals from the previous trial were less discriminable
throughout the brain after the opponent changed, compared with when the same opponent was repeated. These opponent-selective
reinforcement signals were particularly robust in right rostral anterior cingulate and right lingual regions, where opponent-selective
reinforcement signals correlated with a behavioral measure of opponent-selective reinforcement learning. Therefore, when choices
involve multiple contextual frames, such as different opponents in a game, decision making and its neural correlates are influenced by
multithreaded histories of reinforcement. Overall, our findings are consistent with the availability of temporally overlapping, context-
specific reinforcement signals.
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Introduction
Many decisions involve dynamically learning action and stimulus
values from experience with reward and punishment. Real-world
choice values are highly contextual: while one choice is highly
valued in one contextual setting, it may have a low or even nega-

tive association elsewhere. Salient examples of the contextual na-
ture of choice values come from social decision-making studies,
in which high-level factors, such as reputation (Fehr and Gächter,
2002), perceived personality characteristics (King-Casas et al.,
2005), and moral character (Delgado et al., 2005), greatly influ-
ence choices to trust, help, or punish others. Even basic stimulus-
related value learned through reinforcement is contextual in that
simple actions (e.g., approach and avoidance) take on different
values in the presence of that stimulus, and the reinforcement
history of a stimulus can transfer to novel choice pairings of
that stimulus (Frank et al., 2004). By contrast, choice values
can be influenced by social contexts much more dynamically
in a multithreaded manner, such as when identical games are
played against distinct opponents. How well humans can track
context-specific values while those values are dynamically
changing remains poorly understood, as do the supporting
neural mechanisms.
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Significance Statement

In real-world decision making, context plays a strong role in determining the value of an action. Similar choices take on different
values depending on setting. We examined the contextual dependence of reward-based learning and reinforcement signals using
a simple two-choice matching-pennies game played by humans against two independent computer opponents that were randomly
interleaved. We found that human subjects’ strategies were highly dependent on opponent context in this game, a fact that was
reflected in select brain regions’ activity (rostral anterior cingulate and lingual cortex). These results indicate that human rein-
forcement histories are highly dependent on contextual factors, a fact that is reflected in neural correlates of reinforcement signals.
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Reward signals during simple games and other tasks are ob-
served throughout the human (Vickery et al., 2011) and monkey
(Barraclough et al., 2004; Seo and Lee, 2007; Lee et al., 2012;
Donahue et al., 2013) brains, but how are such signals, resulting
from interactions with different opponents, compartmentalized
in the brain to selectively influence behavior? Consider the game
of matching pennies. When games are repeated, human and
monkey participants often play strategies that are well described
by reinforcement learning algorithms, such that recently re-
warded options are played with higher frequency (Mookherjee
and Sopher, 1994, 1997; Erev and Roth, 1998). Suppose that two
independent opponents are played in such a game. Recent
choice– outcome associations against one player clearly would be
irrelevant against an independent opponent. We face similar di-
lemmas constantly in both social and nonsocial tasks, wherein
our choice set is identical or very similar to prior experience, but
the physical or social context is different. In many cases, we might
treat the multiple contexts as independent, and only learn from
relevant choices and outcomes. Our memory of choices and out-
comes should be “tagged” by context, such as opponent identity,
when such conditions arise.

To examine the dynamic response of reward signals to con-
text, we randomly interleaved plays of a matching-pennies game
against two computerized opponents while participants were
scanned with fMRI. We tested whether participants’ choices de-
pended on opponent context. In addition, we used a multivoxel

pattern analysis (MVPA) to examine neural signals that discrim-
inated wins from losses, and asked whether these reinforcement
signals were more robust and discriminable on trials followed by
the same opponent. In contrast to treating stimulus–reward as-
sociations themselves as contexts, here we isolated context by
equalizing the overall probability of winning with respect to each
choice in both contexts; choice values varied dynamically and
independently for each opponent. We found that opponent iden-
tity modulated sustained neural reinforcement signals during de-
cision making.

Materials and Methods
Participants. Participants were 26 members of the Yale University and
New Haven, Connecticut, community. Fifteen participants were male
and ages ranged from 18 to 32 years (mean: 23.5 years). One participant
did not complete the task due to equipment malfunction and was ex-
cluded from analysis.

Task. Participants completed three stages of a matching-pennies game
(Fig. 1A) against two randomly interleaved computerized opponents.
The images of the opponents for all participants were two Caucasian
males chosen for their distinctiveness (one opponent has facial hair,
while the other does not) from the color FERET (Facial Recognition
Technology) database (Phillips et al., 1998). Participants were informed
that the faces represented two completely independent opponents, which
were both controlled by a computer algorithm. They were informed that
the algorithm would track their choices independently, and that each
opponent’s algorithm would not be “aware” of the other opponent’s

Figure 1. Behavioral task and opponent-dependent reinforcement learning during matching-pennies game . A, Trial sequence (2 trials shown). B–C, Mean regression coefficients from a logistic
regression on prior choice and choice � outcome interaction, split by whether the prior trial was played against the same or a different opponent. B displays mean coefficients for the interaction
term. Positive values imply a win–stay, lose–switch strategy with respect to the given choice. Solid symbols indicate significant ( p � 0.05) difference from zero, across participants. Asterisks
indicate significant difference between same-opponent and different-opponent weights (**p � 0.001, *p � 0.05). Error bars represent SEs. C displays mean coefficients for the choice terms.
Positive values imply staying; negative values switching.
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choices and outcomes. The participants were encouraged to treat the
opponents independently to win the maximum reward. Monetary re-
wards were given according to the performance in the task. Participants
were given a $15 endowment at the beginning of the experiment. Every
win was rewarded with an additional $0.20, while every loss was penal-
ized by the loss of the same amount. Misses (failing to respond within the
allotted time) were heavily penalized (�$0.50) to strongly discourage
missing responses. At the end of the experiment, the earned rewards were
rounded up to the nearest dollar and added to the base compensation for
the study. Participants were shown their current total at the end of every
session of the task.

A matching-pennies game was played in three stages that differed in
speed and the exploitation by the computer opponents: (1) prescanning
practice session (4 s/trial, exploitative, 3 � 100-trial blocks), (2) scanning
practice session (12 s/trial, exploitative, 1 � 49-trial block), and (3) main
scanning sessions (12 s/trial, nonexploitative, 6 � 49-trial blocks). Ex-
ploitative computer opponents attempted to detect and counter patterns
in the participant’s behavior (described below), whereas trials in the
nonexploitative sessions produced predetermined orders of wins and
losses. The reason for this change from prescanning to scanning blocks
was to maximize the power of statistical analyses by equalizing the num-
ber of trials across different conditions as much as possible.

Prescanning practice sessions (fast, exploitative). Before entering the
scanner, participants completed three 100-trial practice blocks with fast
timing against an algorithm that tracked and attempted to exploit serial
dependencies in their behavior. Two participants only completed two
100-trial practice blocks due to late arrival at the imaging site. In each
trial, participants were shown the face of one of two opponents, and were
required to respond within 2 s with a key press indicating a choice of
“heads” or “tails.” A circular, yellow fixation marker was superimposed
on the face, and changed from empty to filled to indicate receipt of a
response. Two seconds after the face cue onset, the outcome was shown
in the form of the opponent’s choice (a picture of the heads or tails side of
a US penny). The outcome stayed up for 2 s and was replaced immedi-
ately with the next trial’s opponent cue, which was either the same face
seen in the prior trial, or the other opponent’s face. Each session con-
sisted of 50 trials against each opponent, randomly intermixed.

Scanning practice session (slow, exploitative). After the participant was
settled into the scanner, an additional practice session was completed
while a structural scan was completed. This practice session served to
acclimate participants to the slow-paced, fMRI version of the task, and
preserved the “exploitative” nature of the opponent in the new timing
scheme. Each trial began with an opponent cue superimposed with a
filled yellow circular fixation marker (2 s), which was followed by 4 s of
fixation, after which the fixation marker was emptied and the word “Re-
spond!” was presented to indicate that a choice should be registered. The
participant used a two-button response box to register a choice, after
which the fixation marker was filled again to indicate that the response
was received. Two seconds after the onset of the choice cue, the oppo-
nent’s response was shown (heads or tails side of a penny) for 2 s. Finally,
the fixation marker was shown alone for 2 s, followed by the opponent
cue for the next trial. This session consisted of 49 trials, 24 against each
opponent (randomly intermixed), plus an additional trial in the begin-
ning against a randomly selected opponent. During this practice session,
computer opponents’ choices were again selected according to the algo-
rithm described below.

Main scanning sessions (slow, nonexploitative). During the main func-
tional scanning sessions, trial timing was the same as in the scanning
practice session. At the beginning of the scan, an additional five discarded
acquisitions were obtained, resulting in a 10 s fixation period before
onset of the first trial. The last trial in each session was followed by 12 s of
fixation. Fixed trial timing without jitter was necessary due to our focus
on decoding trial N outcomes during trial N � 1 brain activity, since
jittering trials would have inconsistently shifted the outcome relative to
the early activity of the subsequent trial.

The main difference between the scanning practice session and the
main scanning sessions was the algorithm that controlled opponents’
behaviors. Unbeknownst to participants until the end of the experiment,
the exploitative algorithm (described below) was discontinued for the

main sessions to balance, as much as possible, the number of wins and
losses followed by same-opponent and different-opponent trials, as well
as wins and losses in that subsequent trial. That is, we sought to equalize
the number of win–same–win, win–same–loss, …, loss– different–loss
trials (eight possible combinations of outcome in trial t, same/different
opponent in trial t � 1, and outcome in trial t � 1). This was done to
equate, as much as possible, the number of trials for different choice–
outcome sequences for our MVPA analysis, as described below. As
shown in the results, however, the disuse of the exploitative algorithms in
the present study did not alter the major behavioral effects reported in
our previous study (Vickery et al., 2011).

Computer opponent’s algorithm. The algorithm employed by the com-
puter opponent during both practice sessions was based on the algorithm
used in our previous experiments with the matching-pennies task (Bar-
raclough et al., 2004; Vickery et al., 2011). Two instances of the same
algorithm were applied independently for the two opponents. The algo-
rithm maintained a history of all choices and outcomes (wins/losses) of
the participant versus the opponent it represented. To make a choice in
trial N, the participant’s four most recent choices against the same oppo-
nent and their outcomes were identified. The algorithm examined pat-
terns of length 1, 2, 3, and 4 choices that matched the pattern preceding
trial N, and the participant’s historical proportion of choosing either
option following those patterns. It also examined similar patterns of
choices and rewards in the last four trials. It subjected each of these eight
proportions as well as the overall choice probability to a binomial test,
and used the strongest bias (i.e., largest significant deviation from 0.5
probability of choosing heads) to make its own choice. For instance, if the
strongest bias suggested the probability of the participant choosing heads
was 0.7, then it would choose tails with a probability of 0.7 to counter the
expected choice.

Behavioral analysis. Choice behavior was analyzed using a logistic re-
gression model, applied to individual participant’s choice sequences. The
dependent variable, choice on trial t, was coded as 0 (for tails) and 1 (for
heads), and the probability of choosing heads was modeled as a function
of each individual’s last four choices ( C) and the interaction of those
choices with outcomes ( O). As predictor variables, choices and out-
comes were coded as 1 for heads, �1 for tails, 1 for win, and �1 for loss.
The influence of choices and the interactions of choices with outcomes
were modeled separately based on whether the prior trial was played
against the same (CS) or different (CD) opponent:

logit P�Ht� � �0 � �
i�1

4

�SC,iCS,t�i � �
i�1

4

�SCO,iCS,t�iOS,t�i

� �
i�1

4

�DC,iCD,t�i � �
i�1

4

�DCO,iCD,t�iOD,t�i

In addition to this dual-opponent model, we also considered a single-
opponent model, in which opponent identity played no role in determin-
ing choice based on trial history:

logit P�Ht� � �0 � �
i�1

4

�C,iCt�i � �
i�1

4

�CO,iCt�iOt�i

We considered these models in the context of the full sequence of choices
(including both scan and practice trials) and for scanning sessions alone.
There was no major difference between scan and practice sessions that
would influence our conclusions, so we present the results of a combined
(practice and scanning) analysis.

To analyze the correlation between behavioral sensitivity to opponent
and opponent-dependent decoding accuracy for neural data described
below, we calculated an index of opponent dependency, IOD, based on
the results of the logistic regression analysis described above using the
following equation: IOD � 	�SCO,1	 � 	�DCO,1	.

This score reflects the difference in the overall dependency on out-
come � choice conjunction in the last trial for same and different oppo-
nents, regardless of the sign of that dependency, and captures how much
the identity of the opponent alters the dependence of the current choice
on the outcome in the previous trial. It also takes into account individual
variation in how participants respond to previous wins and losses. For
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instance, a win–stay/lose–switch strategy and an equally strong win–
switch/lose–stay strategy are treated equivalently by this measure. There-
fore, it reflects an increase in the overall responsiveness to reward from
the same opponent. If participants play win–stay/lose–switch in response
to the same opponent, but play the opposite (win–switch/lose–stay)
strategy in equal proportions when there is an opponent change, those
tendencies cancel in the above measure.

fMRI sequence parameters. fMRI data were acquired by a 3T Siemens
Trio scanner and a 12-channel head coil. We acquired a high-resolution
(1 mm 3) T1-weighted MPRAGE structural image that was used for an-
atomical reconstruction, cortical and subcortical labeling, and partici-
pant coregistration. Functional scans were T2*-weighted gradient-echo
EPI sequences, consisting of 34 slices with an oblique axial orientation
and acquired with a resolution of 3.5 � 3.5 � 4.0 mm 3 (sequence pa-
rameters: TR � 2000 ms; TE � 25 ms; flip angle, 90°; matrix, 64 � 64).
Six functional scanning runs consisting of 305 volumes were acquired for
each participant, with each run lasting 10 min, 10 s. The first five volumes
were discarded before analysis.

Structural and functional preprocessing. We applied Freesurfer’s
(http://surfer.nmr.mgh.harvard.edu/) automated routines for cortical
labeling and subcortical parcellation based on the high-resolution struc-
tural image. Functional data for all analyses were motion corrected to the
first volume of the first functional scan and slice-time corrected. For
MVPA analyses, the data were not smoothed, but each voxel’s activity
within a run was corrected for drift using a detrending algorithm with
second-order polynomial, and Z-normalized.

MVPA procedures. In all analyses described in this paper, we decoded
experimental variables for trial N based on the three volumes following
the onset of opponent cue in trial N � 1. Our primarily analyses targeted
the previous trial’s outcome. MVPA was implemented using PyMVPA
(v.2.3.1; Hanke et al., 2009), and a support vector machine (SVM) algo-
rithm. In all cases, we used a linear kernel and penalty parameter ( C) of
1. A linear SVM treats a pattern as a vector in a high-dimensional space,
and tries to find a linear hyperplane that optimally separates the two
trained categories, by maximizing the accuracy of the split in the training
data as well as maximizing the margin between the hyperplane and the
nearest samples (referred to as support vectors). The default value of the
SVM parameter (C � 1) was chosen a priori and based on convention,
due to a lack of power in our study to determine it independently, as it
demonstrates good overall performance [we used the same default pre-
viously (Vickery et al., 2011)]. We approached classification in two dif-
ferent ways: first, using ROI-based analyses, and second, by a searchlight
analysis. For the ROI analysis, 45 bilateral ROIs were determined based
on the Automated Anatomical Labeling Atlas (Tzourio-Mazoyer et al.,
2002), which was transformed to each subject’s individual functional
space. The ROIs covered most of the cortex and major subcortical gray-
matter structures, excluding the cerebellum.

Events in our event-related design were determined jointly by the
choices of both the participant and the computer opponent. To approx-
imately conserve equal numbers of trials in each bin based on our trial-
balancing criteria, we artificially fixed the number of wins and losses to be
equal (except for the randomly selected outcome of the first trial of each
scan) for each opponent. Nevertheless, event sequences were still not
completely balanced due to the unpredictability of the participant’s
choices. To avoid confounds in the analysis, we balanced training and
transfer sets by randomly removing trials for each subject to ensure that
the results did not depend on a learned bias of the classifier. Such balanc-
ing was done independently within each of the two halves of the experi-
ment as defined for the split-half cross-validation procedures. The
factors that were balanced for the primary analysis were the outcome and
computer’s choices for trial N, as well as the opponent’s identity (same or
different as prior trial) in trial N � 1. Accordingly, eight classes were
equalized: Win-Heads-Same, Win-Tails-Same, Lose-Heads-Same, Lose-
Tails-Same, Win-Heads-Different, Win-Tails-Different, Lose-Heads-
Different, Lose-Tails-Different (this also balanced participant choice).
Thus, significant decoding of wins/losses could not be attributed to de-
coding of computer or participant choice.

Trials were divided into two halves for each experiment, and trial type
was balanced independently for each half to prevent the acquisition or

expression of bias in the classifier. Although trials were not temporally
jittered in our experiment, the results from these decoding analyses are
quite unlikely to result from any serial correlation in the hemodynamic
response, since the behavioral events in successive trials were largely
independent. Finally, in analyses not reported here, we did not observe
differences in win/loss decoding between same-opponent and different-
opponent trials before the opponent cue (all p’s 
 0.21), which would be
expected if our results were driven by serial correlations.

Split-half cross-validation procedures were used to assess classifier
performance within each ROI or searchlight. For our primary MVPA
analysis, decoding of wins and losses was further split by opponent (same
or different). Two independent classifiers were trained for same-
opponent and different-opponent trials. For other MVPA analysis, in-
cluding decoding same versus different opponent, only one classifier was
employed. We evaluated statistical significance by adopting a permuta-
tion and bootstrapping scheme (Stelzer et al., 2013). First, we calculated
the accuracy of the classifier within a given ROI or searchlight for each
subject (averaging performance across the two split-half cross-validation
runs). Then, we computed the accuracy of the classifier when labels were
randomly permuted for each subject. Label permutations were con-
ducted independently within each split-half section of the data, so as to
preserve the balance of trial types within each half. To preserve spatial
correlations within a particular permutation, the same permutation was
applied to each ROI mask or searchlight within each sample. We com-
puted 1000 permutations per subject for the ROI-based approach, and
100 permutations per subject for the searchlight-based approach. To
compute group-level statistics, for each ROI and searchlight we com-
puted 10 5 bootstrap samples. To construct each bootstrap sample, one
permuted accuracy map was randomly drawn per participant, and aver-
aged (or, in the case of comparing same-opponent vs different-opponent
classifiers, one permuted accuracy map per condition was drawn and
differenced). Average performance (or average difference in perfor-
mance) in each ROI/searchlight center was compared with the histogram
of accuracies computed in this bootstrapping procedure to determine
ROI or searchlight-wise significance. An additional stage of cluster-based
significance testing was conducted for the searchlight analysis (see
searchlight methods, below). For the ROI approach, significance values
were corrected using false discovery rate (FDR) correction (Benjamini
and Hochberg, 1995; q � 0.05 across ROIs).

We did not factor out the univariate response specific to wins and
losses and/or opponent conditions before MVPA (e.g., by conducting a
GLM and applying MVPA to residuals of that model). One reason for this
was that our claims do not depend on our results being specific to MVPA.
That is, MVPA, as employed here, can pick up both on overall activity
differences between conditions, as well as subtler pattern differences that
differentiate conditions. We do not make any claim about the specificity
of decoding results to patterns per se rather than overall activity differ-
ences between conditions.

Searchlight procedures. A searchlight analysis (Kriegeskorte et al., 2006)
was conducted using procedures similar to the ROI-based approach but
applied to spheres of voxels surrounding each voxel. For each voxel
within the brain mask, a spherical volume surrounding it (but con-
strained to be within the brain mask) was formed. Searchlight radius was
2 voxels; thus, each searchlight volume encompassed 33 total voxels (the
3 � 3 � 3 cube plus the next voxel bordering the central voxel of each
face) and had a maximum extent of 15 mm on the within-plane dimen-
sions and 20 mm on the across-plane dimension. Decoding accuracy was
determined within that volume for both the accurate labels and 100
randomly permuted condition labels, and assigned to the central voxel.

Group-level analysis was based on the bootstrap and conducted in a
two-step procedure adopted from Stelzer et al. (2013). A total of 10 5

bootstrap samples were calculated by independently sampling one map
per subject of the 100 permuted accuracy maps, and then averaging
accuracy. The original (nonpermuted) searchlight mean accuracy map
was then compared with each of 10 5 samples of the permuted accuracy
maps and each searchlight location was assigned a significance level based
on the noise histogram for that location. This map was thresholded at a
significance level of p � 0.005 for cluster analysis. The same threshold
procedure was applied to every bootstrap accuracy map to compute sig-
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nificance levels based on chance cluster size. For each bootstrap sample,
the number and size of each cluster (defined by six-face connectivity)
surviving the threshold procedure ( p � 0.005) was computed, and the
number of clusters of each size was computed. These were then aggre-
gated across bootstrap samples to form a normalized histogram of cluster
sizes obtained by chance. Cluster significance levels were based on cluster
extent, determined by the following formula:

Pcluster � �
s�
s

�

Hcluster�s��

where Hcluster is the normalized cluster-size histogram and s � is the num-
ber of significant voxels in the cluster. These p values were then corrected
by applying a step-up FDR procedure (Benjamini and Hochberg, 1995;
q � 0.05). Clusters in the original group accuracy map and their signifi-
cance were then computed according to their size to determine cluster
significance.

Univariate (GLM) procedures. For comparison, we conducted a uni-
variate analysis, using FSL [Functional MRI of the Brain (FMRIB) Soft-
ware Library, http://fsl.fmrib.ox.ac.uk/fsl/], although the design of our
study was not optimized for such a procedure. For this analysis, fMRI
data were subjected to additional preprocessing steps. In addition to
slice-time correction and motion correction, a high-pass temporal filter
(50 s cutoff) was applied, and data were smoothed with a 5 mm FWHM
Gaussian kernel before analysis.

A first-level GLM was constructed for each run, modeling four condi-
tions: wins and losses were independently modeled, split by whether the
subsequent trial was against the same or different opponent (win¡same,
win¡different, loss¡same, loss¡different). To roughly parallel MVPA
procedures, the conditions were modeled using finite impulse response
methods with separate 2 s stick regressor for each condition and time
point. Eight such regressors were employed, covering a span of 16 s
beginning with the volume collected during outcome display. At the first
level, prewhitening was applied and the same temporal filtering applied
to the data were also applied to the regressors. Simple contrasts were
constructed for each time point and condition for aggregation at the
subject level. Functional images were registered to the high-resolution
structural image, which was in turn registered to a standard MNI image
(2 � 2 � 2 mm resolution). Second-level, fixed-effects GLM analyses
combined data across runs, separately for each subject, first converting
each first-level contrast to standard space. The same 45 ROIs employed in
MVPA were converted to each subject’s standard space, and the time
course of activity associated with each condition within each ROI was
extracted from the subjects’ second-level GLM estimates by averaging
estimates within each ROI. Finally, within each subject, ROI, and condi-
tion bin, we averaged together the three estimates corresponding to the
time points employed in MVPA analysis (activity corresponding to the
2– 8 s interval following onset of the subsequent trial’s opponent cue).

To estimate differences in activity between win and loss trials that
varied depending on the subsequent trial’s opponent, we subtracted the
activity in loss trials from that in win trials and conducted a paired t test
within each ROI [(win�same � loss�same) vs (win�diff � loss�diff)], a test
that is equivalent to the 2 � 2 F test of the interaction between outcome
and opponent conditions.

Results
Dependence of choice on opponent cues
We regressed choices on prior four choices and the prior four
choice � outcome interactions, following previous work (Lee et
al., 2004; Vickery et al., 2011). In the single-opponent model, the
regressors were not separated for the same and different oppo-
nents. In the dual-opponent model, separate regressors were used
for same and different opponents, depending on the match be-
tween the current trial and the prior trial. The dual-opponent
model was nested within the no-opponent model, since con-
straining the regression coefficients to be equal for the two oppo-
nent conditions would result in the single-opponent model. By
the likelihood ratio test, the dual-opponent model was preferred

over the single-opponent model (� 2 � 720.0, df � 200, p �
0.001). The dual-opponent model was also associated with a
lower Akaike information criterion value (20,869) than the
single-opponent model (21,187). Likelihood per trial was 0.537
and 0.561 for the single-opponent and dual-opponent models,
respectively. These values are relatively close to the chance level of
0.5 because the performance of the participants was close to the
optimal strategy for the matching-pennies task.

We examined the regression coefficients for the dual-
opponent model to examine how prior choices and outcomes
differently influenced behavior depending on opponent type and
trial lag (Fig. 1B,C). We submitted the coefficients correspond-
ing to the prior four trials’ choice � outcome interactions (Fig.
1B) to a repeated-measures ANOVA, which revealed a significant
interaction between opponent and lag (F(3,78) � 10.8, p � 0.001)
and significant main effects of opponent (F(1,26) � 17.6, p �
0.001) and lag (F(3,78) � 5.9, p � 0.001). The greatest differences
between same-opponent and different-opponent coefficients
were evident in the influence of the one-back and two-back
choice � outcome interactions. According to post hoc contrasts,
while the mean coefficients for different-opponent coefficients
did not significantly differ from zero across participants, the
same-opponent coefficients were strongly positive overall (both
p � 0.001, one-sample t test vs 0) and significantly higher than the
different-opponent coefficients (both p � 0.001, paired t tests).
These results indicate that participants’ choices were influenced
by the outcomes of previous choices differently according to the
identity of opponent encountered in multiple preceding trials.

Regression coefficients corresponding to prior choices also
revealed switching behavior that was numerically enhanced by
changing opponents. A repeated-measures ANOVA applied to
the eight coefficients corresponding to four prior choices split by
opponent (Fig. 1C) revealed a main effect of lag (F(3,78) � 9.1, p �
0.001) and opponent identity (F(1,26) � 5.7, p � 0.024), but the
interaction only neared significance (F(3,78) � 2.4, p � 0.073).
Regression coefficients corresponding to the last three different-
opponent choices were significantly below zero, although only
the lag 1 influence was significantly more negative for different
opponent than for same opponent (uncorrected p � 0.02).

Choices of participants were influenced by prior choice �
outcome interactions against the same opponent, even those oc-
curring 
1 trial ago. To determine whether this dependence
lasted across intervening trials against a different opponent, we
conducted a separate logistic regression analysis. The modeled
choices were restricted to those choices on which the immediate
prior choice was played against the different opponent. The re-
gressors were choice and choice � outcome interactions from the
most recent trial played against the same opponent. The regres-
sion coefficient for the choice � outcome interaction was signif-
icantly 
0 across participants (mean, 0.21; SD � 0.26, t(24) �
4.06, p � 0.001), implying that participants were playing win–
stay, lose–switch with respect to temporally remote trials against
the current opponent. Dependence on the choice term was not
significantly different from zero across participants. Thus, play-
ers’ actions were determined by the identity of the opponent
encountered in multiple preceding trials, suggesting that infor-
mation about previous choices and outcomes can be stored and
retrieved subsequently according to the opponent identity in the
current trial.

Effects of opponent identity on neural reinforcement signals
We first examined the persistence of BOLD reward signals from
trial N during the period following the introduction of the oppo-
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nent cue for trial N � 1. Focusing on same-opponent trials, SVM
classifiers were trained and tested on the three-volume average
following the next trial’s opponent cue. This procedure was con-
ducted for 45 bilateral ROIs. Despite potential noise introduced
by the intervening opponent cue, wins versus losses were widely
decoded throughout the brain, replicating our prior results
(Vickery et al., 2011). Forty-two of 45 ROIs yielded significant
win versus loss decoding results (FDR-corrected, q � 0.05, one-
sided permutation/bootstrap test). The only regions without sig-
nificant outcome decoding were the rectus, frontal midorbital,
and Rolandic operculum regions.

Next, we examined how outcome signals varied according to
opponent identity. Whereas 42 of 45 ROIs showed significant win
versus loss decoding for same-opponent trials, only 30 of the 45
regions showed significant decoding for different-opponent tri-
als (both tests independently FDR-corrected, q � 0.05, one-sided
permutation/bootstrap test). This difference was significant (� 2

� 10.0, p � 0.002, df � 1). Decoding accuracies for same-
opponent and different-opponent trials were directly compared
by submitting the results for 45 ROIs to an omnibus repeated-
measures ANOVA, with two factors (ROI and opponent type).
The dependent variable was performance of the classifier within
each ROI and condition as measured by binomial Z-score. This
test showed a significant main effect of opponent identity (F(1,24)

� 5.88, p � 0.023, partial � 2 � 0. 20), with better decoding
performance in same-opponent (accuracy mean, 0.56) than in
different-opponent (mean, 0.53) trials. There was also a main
effect of ROI (F(44,1056) � 2.23, p � 0.001, partial � 2 � 0.09),
reflecting variability in overall decoding accuracy across ROIs.
The interaction of ROI and opponent identity was not significant
(F(44,1056) � 1.04, p � 0.39).

We further tested the effect of opponent identity on decod-
ing performance in individual ROIs. We computed a differ-
ence in the decoding accuracy for each ROI, and compared it
to bootstrapped difference scores based on permuted condi-
tion labels, constructing a noise histogram for this difference
score within each ROI and computing the significance value of
each ROI on the basis of that histogram. Finally, we applied
FDR correction (q � 0.05) to these significance values. Two
individual ROIs showed an effect that survived FDR correc-
tion (q � 0.05): the anterior cingulate and lingual regions.
Both regions showed better decoding performance for same-
opponent than different-opponent trials. At an uncorrected
( p � 0.05) threshold, an additional 11 regions showed the
same pattern: superior parietal, inferior parietal, midcingu-
late, amygdala, fusiform, cuneus, superior occipital, calcarine,
precuneus, angular gyrus, and putamen. No region ap-
proached even uncorrected significance levels in the opposite
direction.

We next examined whether the individual variability in the
magnitude of opponent-specific reinforcement signals was re-
lated to behavior. For each participant and ROI, we calculated
a difference score for decoding accuracy in same-opponent
versus different-opponent trials. We also calculated overall
behavioral sensitivity to opponent identity (IOD), which quan-
tified how the reliance on the previous trial outcome de-
pended on the opponent identity (see Materials and
Methods). We correlated these two values across participants
for the two ROIs that showed significant same 
 different
win/loss decoding. Both correlations were significant (Fig. 2;
ACC: r � 0.45, p � 0.024; lingual: r � 0.48, p � 0.016).

Decoding of opponent switch, computer’s choice,
and congruency
Differential discriminability of reward signals for same-opponent
and different-opponent trials could be due to other signal or noise
differences related to opponent changes, regardless of reward encod-
ing. To examine this possibility, we conducted two control analyses
from the same interval and trials employed in the above analyses.
First, we trained classifiers to distinguish same-opponent from
different-opponent trials, collapsing across wins and losses. Second,
we trained classifiers to distinguish the computer’s choice (heads or
tails, as indicated by the visual stimulus), and compared same-
opponent with different-opponent trial outcomes.

Decoding of same versus different opponent trials was not
significantly above chance in any ROI at an FDR-corrected q �
0.05 threshold. At an uncorrected threshold (p � 0.05), three
regions were significantly above chance: superior frontal, the
supplementary motor area, and precuneus. Notably, however,
same versus different opponent decoding was not significantly
above chance in either the anterior cingulate (mean, 0.508; un-
corrected p � 0.29) or the lingual (mean, 0.507; uncorrected p �
0.31) ROIs that showed significant modulation of win/loss sig-
nals based on opponent identity.

Computer choice was also poorly decoded in every ROI, proba-
bly due to the more rapid decay of this information. No regions
showed a significant ability to decode heads or tails in either same-
opponent or different-opponent trials from this interval when cor-
rected for multiple comparisons. Neither was the difference in
decoding ability between same-opponent and different-opponent
trials significant in any region. Focusing on visual regions, however,
the strongest same-opponent classification accuracy arose within
inferior occipital cortex (mean, 0.54; uncorrected p � 0.008). The
same regions decoded heads versus tails above chance on different-
opponent trials, as well (mean, 0.53; uncorrected p � 0.02). The
difference was not significant (p � 0.41).

Both of these findings suggest that opponent-dependent rein-
forcement signals were not merely due to general effect of the
opponent cue adding noise to decoding on different-opponent
trials. There was no apparent effect of the opponent cue on de-
coding the recent visual stimulus representing the computer’s
choice. The status of the opponent cue (same vs different) was
also very poorly decoded throughout the brain, including the two
regions that showed significant modulation of outcome decoding
by the changes in opponent identity.

An additional possible explanation for better reward decoding
following same-opponent versus different-opponent cues is
competition between representations of the most recent reward
received with the reward expectancy from the opponent cue it-
self. For instance, when an opponent is repeated following a win,
the expectancy of reward associated with the opponent is more
consistent with the recent outcome, whereas if the opponent were
changed, the most recent outcome would be unrelated to the
recent history of outcomes associated with the next opponent. To
examine this possibility, we focused on different-opponent trials,
and split these trials into congruent and incongruent types, ac-
cording to the immediate prior reward and the most recent ex-
perience with the next opponent. To balance this new
congruency dimensions in the dataset, we excluded the identity
of the prior opponent as a balancing factor, to obtain a sufficient
number of trials necessary for MVPA analyses. We then trained
and tested, as above, win versus loss decoding for congruent and
incongruent different-opponent trials, independently. If the re-
duced decoding accuracy for different-opponent trials resulted
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from inconsistency in two different outcome signals, the decod-
ing accuracy would be higher in congruent trials.

No region showed significantly better decoding of win/loss
on congruent versus incongruent trials, when corrected for
multiple comparisons. Critically, neither anterior cingulate
nor the lingual region showed a trend in this direction (both
uncorrected p 
 0.1). However, eight other regions showed a
trend in this direction according to uncorrected significance
values (all p � 0.05, uncorrected). Additionally, 21 regions
showed significant (FDR-corrected p � 0.05) win/loss decod-
ing ability under congruent conditions, whereas no regions
showed significant win/loss decoding ability under incongru-
ent conditions. Thus, congruency between rewarding out-
comes and prior reward associations with the opponent cue
may play some role, but the evidence in favor of this is rela-
tively weak in our dataset, especially within ROIs that showed
maximal same-opponent versus different-opponent decoding
differences.

An additional counter-explanation for the apparent oppo-
nent dependency of reward signals is that the expected value of
a different-opponent cue may systematically differ from that
of the same-opponent cue. In particular, the same-opponent
cue may be expected to have a higher expected value following
a win than a loss, whereas the different-opponent cue may
show reduced or no difference between the immediately pre-
ceding win and loss. Thus, the classifier might incidentally
decode the expected value of the subsequent cue. We con-
ducted a series of behavioral analyses to test whether this con-

found was a viable explanation for opponent-dependent
reinforcement signals.

First, we examined the conditional dependence of winning
and losing based on opponent (the following statistics were cal-
culated for scanning runs only, but all major patterns held true
regardless of whether or not we included practice runs). The
probability of winning any trial that shared the same opponent as
the prior trial was the same as for trials that did not share the same
opponent, 0.50, and did not differ significantly (t(24) � 1.10, p �
0.28). We further divided these trials based on whether the prior
trial was a win or a loss. All four probabilities were equal to 0.50
when rounded to two significant digits, and when entered into an
ANOVA we found that there were no significant main effects of
either prior trial outcome (F(1,24) � 0.38, p � 0.55) or opponent
(F(1,24) � 1.21, p � 0.28), and there was no significant interaction
(F(1,24) � 0.52, p � 0.48).

Second, we examined whether expected values might differ
across these types of trials. Using our logistic regression models
fitted to each individuals’ data, we calculated P(heads) and
P(tails) from the model for each trial, and took those values as a
proxy for the expected value of each choice. Then, we calculated
the expected value of each choice as a function of whether the
prior trial was played against the same opponent or different
opponent, and whether the prior trial was a win or a loss. We
entered these values into a 2 � 2 ANOVA. If expected value of the
opponent cue in the upcoming trial is incidentally decoded as the
previous outcome, then we would expect to see an interaction of
the cue’s expected value based on opponent and reward. Only the

Figure 2. A, B, Correlations between behavioral index of opponent dependency and same-opponent versus different-opponent win/loss decoding difference in ACC (A) and lingual (B) ROIs. ROIs
are overlaid on the MNI standard brain.
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main effect of opponent was significant
(F(1,24) � 6.35, p � 0.02), with partici-
pants choosing higher-value choices more
frequently for trials following plays
against the same opponent than those fol-
lowing plays against the different oppo-
nent, but showing no main effect of
reward (F(1,24) � 1.82, p � 0.19), nor a
significant interaction (F(1,24) � 2.48, p �
0.12). Thus, differences in expected value
of the subsequent opponent cue were un-
likely to account for higher decoding ac-
curacy of wins and losses for same-
opponent vs different-opponent trials.

Searchlight analysis
To supplement our ROI-based analysis,
and to gain greater spatial specificity, we
conducted two searchlight analyses of
win/loss decoding in same-opponent and different-opponent tri-
als. First, we conducted a whole-brain searchlight analysis with
cluster correction. Using the permutation/bootstrap and cluster-
correction method described in Materials and Methods (Stelzer
et al., 2013), we derived cluster-corrected significance maps for
both the same-opponent and different-opponent win/loss de-
coding. The result for the same-opponent classification analysis
was a single massive cluster spanning 95,132 voxels (34% of all
voxels within a brain mask) covering a diverse spectrum of brain
regions in every lobe of the brain. The result for the different-
opponent classification analysis was also one massive cluster, but
one that extended across a reduced extent of 24,553 voxels (9% of
brain-mask voxels).

We conducted a similar procedure for comparing same-opponent
versus different-opponent win/loss decoding. First, we computed an
averagedifferencemapforwin/lossclassificationacrosssame-opponent
and different-opponent trials. Then, we masked this map by all regions
in which either the same-opponent or different-opponent maps ex-
ceeded chance with a significance level of p � 0.005. We applied the
same procedure to all 105 bootstrap samples to form a histogram of
accuracy differences for each searchlight center, and thresholded all of
these maps at p � 0.005. We then constructed a normalized cluster size
histogram, FDR-corrected (q � 0.05) these p values, and computed the
cluster-wise significance in the original accuracy difference map.

This procedure resulted in two significant clusters (Fig. 3).
One cluster was located primarily in the right frontal lobe and
extended across right rostral anterior cingulate and into the su-
perior frontal cortex. The second cluster was located primarily in
right lingual gyrus but also extended partially into cuneus, pre-
cuneus, and the inferior parietal lobe.

Second, to better understand the spatial specificity of the op-
ponent specificity in the ACC ROI, we conducted a second
follow-up analysis using a voxelwise FDR correction rather than a
cluster correction, since a cluster-wise correction leaves ambigu-
ity about the spatial locus of peak differences within significant
clusters. For this test we constrained ourselves to the ACC ROI,
because of the strict nature of voxelwise correction.

We calculated p values based on the bootstrapped noise dis-
tributions of same-opponent versus different-opponent differ-
ence in win/loss decoding accuracy for each searchlight centered
in the ACC ROI. We then corrected for multiple comparisons
using a voxelwise FDR correction. This revealed a set of 125 vox-
els passing this threshold, largely in right, rostral ACC (Fig. 4;
peak MNI coordinates: X � 8, Y � 39, Z � 7), implying that the

ROI-based results in ACC were primarily driven by this subset of
voxels.

Univariate ROI analysis
Results of a GLM analysis showed greater activity in response to
wins than losses in a broad set of regions, averaged over the time
points employed for MVPA analysis. A paired t test of the differ-
ence between wins and losses survived FDR correction in 28 of 45
regions, all of which showed greater mean activity in response to
wins than losses. However, when the difference in activity for win
and loss trials was contrasted between same-opponent and
different-opponent trials, no region survived FDR correction. At
an uncorrected threshold (p � 0.05), four regions showed signif-
icantly greater win than loss activity under same-opponent than
different-opponent trials: medial frontal orbital, paracentral lob-
ule, middle temporal pole, and superior temporal.

Discussion
Participants in the present study strongly relied on the history of
reinforcement to make decisions in games, but only that portion
of the history associated with the current opponent. These results
demonstrate that humans can multiplex reinforcement histories
threaded by contexts, such as opponent identities. Neural rein-
forcement signals were also modulated by context. In particular,
accuracy of decoding outcomes from BOLD activity was signifi-
cantly greater for right ACC and right lingual regions when the
opponents stayed the same than when they switched. Moreover,
across participants, the strength of opponent-specific modula-
tion of reinforcement signals in these regions was correlated with
the degree of behavioral dependence on opponent cues. These
results support an important role for the right rostral ACC and
right lingual regions in contextualizing the neural signals related
to reinforcement.

Context-dependent modulation of reinforcement signals
Learning to choose based on probabilistic feedback might rely on
the activity of a network of prefrontal, striatal, and perhaps pari-
etal regions that encode reward values associated with actions
(Daw and Doya, 2006; Kable and Glimcher, 2009; Lee et al.,
2012). While widespread activity changes are detectable in re-
sponse to wins and losses (Vickery et al., 2011), several brain
regions exhibit signals that are tightly linked to specific aspects of
reinforcement learning. For example, positive or negative out-
comes can cause sustained neural activity in some regions, and

Figure 3. Whole-brain searchlight results. Two clusters survived thresholding ( p � 0.005) and cluster correction (q � 0.05).
Right is shown as right in the figure.
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such signals are related to future performance (Histed et al., 2009;
Curtis and Lee, 2010). In addition, the dorsomedial prefrontal
cortex might contribute to maintaining the balance between ex-
ploration and exploitation (Donahue et al., 2013) and switching
away from a simple model-free reinforcement learning during
competitive games (Seo et al., 2014).

All stimulus–reward or stimulus–response learning is, in a
sense, contextual. The stimulus serves as the context, with differ-
ent actions having different value depending upon the stimulus
identity. It is also known that simple stimulus–reward learning
results in generalization (Frank et al., 2004), thus stimulus–
reward learning is not strictly confined to particular contexts. In
contrast to prior work, this study examined dynamic learning of
choice values, where those values varied only according to a sim-
ple contextual cue, and in which there was overall no advantage to
either option. Further, the particulars of our design enabled us to
focus upon the fate of sustained reinforcement signals following
the presentation of contextual cues.

Recent work suggests that reinforcement signals are tailored
to the specific demands of the learning environment. For in-
stance, multiple value signals can be maintained in parallel for
separate effectors (Gershman et al., 2009). Additionally, separa-
ble prediction error signals associated with multiple levels of a
decision-making hierarchy have been observed (Daw et al., 2011;
Diuk et al., 2013). Our study uniquely examines the effect of
context on persisting reinforcement signals.

Consistent with the findings from these studies, we found
reinforcement signals sustained in many brain areas for a period
of time after each outcome, while opponent cues signaled the
transition to a new state or maintenance of the prior state. If
reinforcement signals are actively maintained in working mem-
ory to influence future choice, activity related to win versus loss
outcomes might decay differently depending on the identity of
the opponent cue. Indeed, reward-related signals attenuated
faster when a different opponent was cued. The fact that this
difference in the time course of reinforcement signals was related
to the opponent specificity of behavioral adjustment suggests that
persistent reward signals did not merely reflect passive decay of

BOLD signals. Instead, more persistent
activity observed in the same-opponent
trials for some cortical areas might reflect
the maintenance and amplification of re-
inforcement signals as they become incor-
porated into upcoming action selection.
Although reinforcement signals were at-
tenuated in these brain areas during
different-opponent trials, our behavioral
results also indicate that this information
was not completely lost, since future
choices were still dependent on the out-
comes of the choices against the same op-
ponent even after encountering another
opponent. Future studies are needed to
determine how information about the
outcomes from previous interactions with
the same opponent can be retrieved dur-
ing the subsequent interaction with the
same opponent.

Implication for cortical network for
theory of mind
The essence of social decision making is the
interdependence of choices made by multi-

ple agents. Namely, the outcome of one’s choice is determined
jointly by the choices of multiple group members. Accordingly,
knowledge and reasoning about other agents is an essential compo-
nent of social decision making. The current findings are not neces-
sarily constrained to the social domain; replacing faces in our study
with nonsocial symbolic contextual cues might also lead to similar
effects. Namely, the lack of a nonsocial condition in our experiment
prevents us from inferring that our results genuinely depend on the
social nature of our task. However, it is worth considering our find-
ings in the context of prior findings of social decision making, given
the strong role of agent context in that domain.

Even though our study did not manipulate the social nature of
context, the current findings are consistent with prior evidence
that the mPFC, including the ACC region reported in our study,
supports a broad range of functions related to reasoning about
other agents, and further suggests that the mPFC integrates sig-
nals related to agency with representations of actions and value
(Behrens et al., 2009; Seo et al., 2014). When participants reason
about the mental states of others, increased activation has consis-
tently been observed in mPFC, posterior superior temporal sul-
cus, temporoparietal junction (TPJ), and posterior cingulate
cortex (PCC; Gallagher and Frith, 2003; Amodio and Frith,
2006). Previous studies have suggested that a broad range of so-
cial reasoning tasks evoke activity in mPFC (Amodio and Frith,
2006), including person perception, while TPJ and PCC might
show more specific responses to reasoning about the thoughts of
others (Saxe and Powell, 2006). Activity in the regions related to
theory of mind (ToM) has been further linked to the perceived
agency of other decision makers and the complexity of reasoning
about other agents during games. For instance, mPFC activity is
greater during competitive (Gallagher et al., 2002; Boorman et al.,
2013) and cooperative (McCabe et al., 2001; Hampton et al.,
2008) games when partners are perceived to have agency than
otherwise. Activity in the mPFC of monkeys also signals the dis-
engagement from the use of a default model-free reinforcement
learning algorithm during a simulated matching-pennies task
(Seo et al., 2014). These results suggest that mPFC activity reflects
explicit mentalizing during strategic reasoning.

Figure 4. Significant searchlight centers in ACC (q � 0.05, voxelwise small-volume correction), displayed on average of
normalized subjects’ brains.
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In addition to its role in social cognition, mPFC activity is also
often related to value-related computations (Daw et al., 2011).
Further, mPFC carries value signals specifically related to belief-
based value learning (Burke et al., 2010; Zhu et al., 2012), and
associative learning of the reliability of social signals (Behrens et
al., 2008). Connecting the reward-processing and social aspects
of decision making, expected value signals in mPFC during a
game are best explained by incorporating ToM constructs
(Hampton et al., 2008; Watanabe et al., 2014). Further, a task that
evokes mentalizing produces activity in mPFC that models an
opponent’s reward prediction errors (Suzuki et al., 2012). This
suggests that ToM mechanisms may play some role in mPFC
value representation. However, only one opponent was involved
in this prior work, and thus opponent-dependent threading of
reinforcement signals could not be observed. The current results
link reinforcement signals in mPFC to representations of oppo-
nent identities. The mPFC, responsive to both value and agency,
is a strong candidate as a region responsible for the integration of
value representations with social reasoning.

This study also uncovered opponent-dependent reinforce-
ment signals in lingual gyrus. Reward-related activity in this re-
gion was previously observed (Delgado et al., 2003; Elliott et al.,
2003), but was dismissed as likely due to visual differences (Tri-
comi et al., 2004). Visual confounds cannot explain reward de-
coding in the present study since visual cues did not predict
reward. Further investigation into the role of this region in deci-
sion making may be warranted.

In our study, TPJ and STS both carried reinforcement signals,
but these were not contingent upon opponent identity. These
regions might still be involved in reward-independent reasoning
about other agents, a mechanism that may not have been evoked
by our game task. This is supported by previous observations of
signals in these areas related to whether opponents lie or tell the
truth (Behrens et al., 2008), and by the correlation of STS activity
with inferences about the influence of one’s own actions on an-
other player’s actions (Hampton et al., 2008).

An important limitation of the current paper is that only a
social task was employed. An avenue for further development is
to investigate how context specificity in reinforcement signals
may or may not differ between social and nonsocial tasks. An
additional limitation is that the absence of jitter in this study
prevented us from fully separating cue and outcome activity.

Overall, our results support evidence that mPFC plays an im-
portant role in representing context-specific reward signals dur-
ing decision making. The mPFC may serve a vital role in
integrating reinforcement signals with context signals to support
value-based decision making.
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