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Neural Heterogeneities Determine Response Characteristics
to Second-, but Not First-Order Stimulus Features
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Neural heterogeneities are seen ubiquitously, but how they determine neural response properties remains unclear. Here we show that
heterogeneities can either strongly, or not at all, influence neural responses to a given stimulus feature. Specifically, we recorded from
peripheral electroreceptor neurons, which display strong heterogeneities in their resting discharge activity, in response to naturalistic
stimuli consisting of a fast time-varying waveform (i.e., first-order) whose amplitude (i.e., second-order or envelope) varied slowly in the
weakly electric fish Apteronotus leptorhynchus. Although electroreceptors displayed relatively homogeneous responses to first-order
stimulus features, further analysis revealed two subpopulations with similar sensitivities that were excited or inhibited by increases in the
envelope, respectively, for stimuli whose frequency content spanned the natural range. We further found that a linear–nonlinear cascade
model incorporating the known linear response characteristics to first-order features and a static nonlinearity accurately reproduced
experimentally observed responses to both first- and second-order features for all stimuli tested. Importantly, this model correctly
predicted that the response magnitude is independent of either the stimulus waveform’s or the envelope’s frequency content. Further
analysis of our model led to the surprising prediction that the mean discharge activity can be used to determine whether a given neuron
is excited or inhibited by increases in the envelope. This prediction was validated by our experimental data. Thus, our results provide key
insight as to how neural heterogeneities can determine response characteristics to some, but not other, behaviorally relevant stimulus
features.
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Introduction
Understanding the set of transformations by which incoming
sensory input leads to behavioral responses (i.e., the neural code)
remains a central problem in neuroscience. Strong heterogene-
ities in neural populations have been experimentally observed
throughout the nervous system (Bannister and Larkman, 1995a, b;
Goldberg, 2000; Savard et al., 2011) even within the same cell type
(Marder and Goaillard, 2006; Schulz et al., 2006). Although much
effort has focused on determining the effects of these heteroge-
neities on population coding (Marsat and Maler, 2010; Padma-
nabhan and Urban, 2010; Mejias and Longtin, 2012; Tripathy et
al., 2013), considerably less effort has focused on uncovering
their role in determining neural response to the often-complex
features of behaviorally relevant natural stimuli.

Gymnotiform wave-type weakly electric fish sense perturba-
tions of a self-generated electric organ discharge (EOD) through
an array of electroreceptors on their skin that project to higher

brain areas (Chacron et al., 2011; Marsat et al., 2012; Krahe and
Maler, 2014). Natural electrosensory stimuli comprise the sinu-
soidal perturbations (i.e., beats or first-order) experienced when
two or more fish come into proximity whose depth of modula-
tion (i.e., envelope or second-order) depends on the relative dis-
tance and orientation between conspecifics (Yu et al., 2012;
Fotowat et al., 2013). Although much is known about how first-
order features are processed across successive stages of the elec-
trosensory system as detailed in recent reviews (Chacron et al.,
2011; Marsat et al., 2012; Márquez et al., 2013; Krahe and Maler,
2014), the processing of second-order features is not so well un-
derstood (Middleton et al., 2006; Savard et al., 2011; Vonder-
schen and Chacron, 2011; McGillivray et al., 2012; Stamper et al.,
2013). Previous studies have shown that there exist large hetero-
geneities in the baseline activities of these peripheral afferents
(i.e., the spiking activity in the presence of the animal’s unmodu-
lated EOD) (Xu et al., 1996; Gussin et al., 2007). However, how
these afferents respond to envelopes caused by movement and
whether heterogeneities influence these both remain poorly
understood.

Here we recorded electroreceptor responses to stimuli con-
sisting of a high-frequency noisy time-varying waveform (i.e.,
first-order) whose amplitude (i.e., envelope or second-order)
varied more slowly. We found that afferent sensitivity was inde-
pendent of both stimulus and envelope frequency content. Sur-
prisingly, although all afferents responded with increased firing
rate to the upstrokes of the stimulus, further analysis revealed two
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subpopulations whose responses were either in phase (i.e., ON)
or out of phase (i.e., OFF) with the envelope. A linear–nonlinear
cascade model incorporating response properties to the stimulus
waveform along with static nonlinearities explained our experi-
mental data and furthermore predicted how baseline firing fre-
quency can determine whether a given afferent’s response to the
envelope is ON- or OFF-type. Our results thus demonstrate that
neural heterogeneities can have little or significant influence on
neural response properties depending on different stimulus attri-
butes. We propose that heterogeneities help optimize afferent
responses to the largely independent first and second features of
electrosensory stimuli.

Materials and Methods
McGill University’s animal care committee approved all experimental
procedures.

Animals and recording. We used the gymnotiform wave-type weakly
electric fish species Apteronotus leptorhynchus. Animals of either sex were
acquired from local tropical fish suppliers and were housed in groups
(2–10) at controlled water temperature (26°C–29°C) and conductivity
(300 – 800 �S/cm) according to published guidelines (Hitschfeld et al.,
2009). Before surgery, animals were paralyzed with an intramuscular
injection of tubocurarine chloride hydrate (1 �g/g body weight; Sigma).
Surgical methods have been previously described in detail (Bastian,
1996a, b, Bastian et al., 2002; Chacron and Bastian, 2008; Krahe et al.,
2008; Toporikova and Chacron, 2009; McGillivray et al., 2012; Sim-
monds and Chacron, 2015). In brief, animals were transferred to an
experimental tank (30 cm � 30 cm � 10 cm) containing water from the
animal’s home tank and respired by a constant flow of oxygenated water
through their mouth. The animal’s head was then locally anesthetized with
lidocaine ointment (5%; AstraZeneca). Subsequently, the skull was partly
exposed and a small window was opened over the recording region.

Sharp glass micropipette electrodes (20 – 40 M�) backfilled with 3 M

KCl were used to record in vivo from P-type electrosensory afferent axons
(P-units) in the deep fiber layer of the electrosensory lateral line lobe
(ELL) as described in previous studies (Bastian, 1981; Chacron et al.,
2005). The recording electrode was advanced into the ELL with a piezo-
electric microdrive (Inchworm, IW-711; Kopf). The recorded potentials
were amplified (Axoclamp 2B, Molecular Devices), digitized at 10 kHz
sampling rate using CED 1401plus hardware and Spike2 software (Cam-
bridge Electronic Design), and stored on a computer hard disc for offline
analysis. The EOD was recorded between the head and tail of the fish by
using two vertical metal wires (see Fig. 1A, E1 and E2), amplified (model
1700 amplifier, A-M Systems, bandpass filter between 300 Hz and 5 kHz)
and digitized at 10 kHz using a CED Power1401 with Spike2 software
(Cambridge Electronic Design).

Stimulation. It is important to note that the high-frequency (600 –1000
Hz) quasi-sinusoidal EOD waveform generated by the animal can be
considered as a carrier signal. As P-units only respond to changes in EOD
amplitude (Scheich et al., 1973), the EOD amplitude modulation (AM) is
the meaningful stimulus here. For this reason, we will refer to the EOD
AM waveform as the stimulus S(t). We will consider both first- and
second-order attributes of S(t) as described below, and these correspond
to the second- and third-order attributes of the full signal received by the
fish, respectively.

When two conspecifics are in close proximity, interference between
their EODs creates an EOD AM (i.e., first-order) whose frequency is
equal to the difference between the EOD frequencies of both fish and
whose amplitude (i.e., the envelope or second-order) changes as a func-
tion of the relative distance between both fish (Yu et al., 2012; Fotowat et
al., 2013; Metzen and Chacron, 2014). To mimic the small changes in AM
frequency observed during natural behaviors (Stamper et al., 2010, 2012;
Metzen and Chacron, 2014), we used both low (fourth-order Butter-
worth, 5–15 Hz band) and high (fourth-order Butterworth, 60 – 80 Hz
band) frequency noisy AMs. The AM amplitude (i.e., the envelope) was
either constant (i.e., unmodulated) and was set at �40% of the baseline
EOD amplitude as done previously (Gussin et al., 2007; Savard et al.,
2011) or was modulated at 70% depth around this constant value sinu-

soidally at frequencies between 0.05 and 10 Hz that span the range seen
under natural conditions (Yu et al., 2012; Fotowat et al., 2013; Metzen
and Chacron, 2014). We ensured that the envelope frequency was always
lower than the lowest frequency contained in the AM. Thus, for example,
for a 5–15 Hz AM, we used envelope frequencies of 0.05, 0.1, 0.2, 0.5,
0.75, and 1 Hz, whereas, for a 60 – 80 Hz AM, we used envelope frequen-
cies of 0.05, 0.1, 0.2, 0.5, 0.75, 1, 5, and 10 Hz. Additionally, to test the
effects of AM frequency content on envelope coding, we used several
AMs (fourth-order Butterworth) whose frequency bands spanned the
natural range as they were 5–15, 15–30, 30 – 45, 45– 60, 60 – 80, 80 –100,
and 100 –120 Hz and whose amplitudes were modulated sinusoidally at
0.05 and 0.5 Hz.

Each stimulus S(t) lasted 50 s and was delivered as amplitude modu-
lation of the EOD by multiplying it (MT3 multiplier, Tucker-Davis Tech-
nologies) with a sinusoidal signal that is phase-locked to the animal’s
own EOD before being attenuated (Leader, LAT-45, Leader Electronics),
isolated from ground (World Precision Instruments A395 linear stimu-
lus isolator), and delivered to the experimental tank via a pair of silver-
silver chloride electrodes located �20 cm on each side of the animal.
Thus, changes in the animal’s EOD frequency will not alter the stimulus
S(t) as well as its envelope. This stimulation configuration is referred to as
“global” in previous studies because the electric image caused by the
stimulus covers most, if not all, of the animal’s skin surface (Chacron et
al., 2003; Krahe et al., 2008; Toporikova and Chacron, 2009; Avila-
Åkerberg et al., 2010). We measured the resulting perturbations of the
animal’s EOD using a small dipole positioned at the center and lateral to
the animal 1–2 mm away from the skin (Bastian et al., 2002). Before
stimulation, each afferent’s baseline activity (i.e., discharge in the pres-
ence of the animal’s unmodulated EOD) was recorded for a minimum of
20 s. Figure 1A summarizes the different signals and their respective
frequency contents.

Data analysis. All analysis was performed offline using custom written
routines in MATLAB (MathWorks). Values are reported as mean � SEM
throughout.

Extracting the stimulus envelope. The envelope can be regarded as the
instantaneous amplitude of the stimulus S(t) or its time-varying contrast.
It can be obtained from the stimulus S(t) by the following nonlinear
transformation:

E�t� � �S�t�2 � Ŝ�t�2 (1)

where Ŝ(t) is the Hilbert transform of S(t) given by (Myers et al., 2003;
Middleton et al., 2006; Savard et al., 2011) the following:

Ŝ�t� �
1

�
C��

�	


	 S���

t � �
d�� (2)

where C is the Cauchy principal value.
Behavior. We quantified the behavioral responses of each fish to the

envelope by calculating the parameters gain and phase to each particular
envelope frequency using systems identification methods as done in a
previous study (Metzen and Chacron, 2014). However, Metzen and
Chacron (2014) used sinusoidal AM stimuli that are different than
the previously described noisy AMs used here. Briefly, we extracted
the time-dependent EOD frequency from the recording to obtain the
response Rbehavior(t). To compute the gain and the phase, we next
averaged the time-varying EOD frequency over the number of enve-
lope cycles present in the stimulus S(t) to get the response Rbehavior.
The gain was calculated as follows:

gain �
Aresponse

Aenvelope
(3)

where Aresponse is the amplitude of the averaged response Rbehavior, and
Aenvelope is the amplitude of the envelope E(t).

The phase shift was determined as follows:

� �
Tmax�E� � Tmax�R�

TE
	 2� (4)
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where Tmax(E) and Tmax(R) are the times at which the envelope E and the
response Rbehavior reach their maximum values, respectively.

Electrophysiology. The recorded membrane potential was first high-
pass filtered (100 Hz; eighth order Butterworth). Spike times were de-
fined as the times at which this signal crossed a given threshold value
from below. A binary sequence R(t) was then constructed from the spike
times in the following manner: time was first discretized into bins of
width dt � 0.1 ms. The value of bin i was set to 1 if there was a spike at
time tj such that i * dt � tj � (i 
 1) * dt and to 0 otherwise. Because the
bin width dt is smaller than the absolute refractory period of the neuron,
there can be at most one spike time that can occur within any given bin.

To quantify the relationship between the stimulus S(t) and the binary
sequence R(t), we used a Kaiser filter as was done previously (Cherif et al.,
2008) to filter the binary sequence and obtain an estimate of the instan-
taneous firing rate. The cutoff frequency was set to be 0.1% higher than
the highest frequency of the AM stimulus S(t).

To quantify the relationship between the envelope E(t) and the neural
response, we again used a Kaiser filter to filter the binary sequence and
obtain an estimate of the time-dependent firing rate. The cutoff fre-
quency here was set to be 0.1% higher than the envelope frequency. Thus,
the cutoff frequency used for envelope stimuli was always lower than that
used for AM stimuli, and the fast fluctuations caused by the stimulus
waveform will average out when considering the slower timescale at
which the envelope varies. The relationship between the envelope E(t)
and the firing rate estimate was described using linear-systems identifi-
cation techniques. The gain and phase were obtained using the formulas
described above (Eqs. 3 and 4) for behavior.

Resting discharge. We quantified the resting discharge variability using
the coefficient of variation (CV) during baseline activity as follows:

CV �
std�ISI�

mean�ISI�
(5)

where std is the standard deviation and ISI is the interspike interval (i.e.,
the time between consecutive action potentials) sequence. The baseline
firing rate was computed as the number of action potentials per unit time
that occurred during baseline activity. Overall, we found that the baseline
firing rate was nearly constant for each afferent during the recording as
estimates of baseline firing rate just before the onset of each stimulus only
differed by 0.32 � 0.23% (t test, n � 414, p � 0.89) on average. The
normalized baseline firing rate was obtained by dividing the baseline
firing rate preceding the onset of each envelope stimulus by the maximum
firing rate in response to unmodulated noisy AM stimuli. P-units whose
normalized baseline firing rate was not significantly different than 0.5 as
determined by a one-sided t test at the p � 0.01 level were excluded from the
relevant analyses as we then could not reliably determine whether the nor-
malized baseline firing rate was less or greater than 0.5 to test modeling
predictions.

Modeling. We fit a linear–nonlinear cascade model (Chichilnisky,
2001; Massot et al., 2012) to each primary afferent response in the fol-
lowing way: First, we recorded baseline activity for 20 s to measure the
neuron’s mean firing rate. Then, AM stimuli with constant amplitude
(i.e., envelope) and with different frequency bands as described above
were presented. We then estimated the linear filter H(t) from these
data in the following way. Because the AM stimuli used in this study
had relatively narrow frequency ranges, we assumed that the gain
�H̃�f ��, where H̃�f � is the Fourier transform of H(t), and the phase

�f � � arctan�Im�H̃�f ��/Re�H̃�f ���, where Im(…) and Re(…) denote
the imaginary and real parts, respectively, are constant over each AM
stimulus’ frequency content. The phase was obtained from the time lag at
which the autocorrelation function between the stimulus and firing rate
was maximal (Massot et al., 2011). This value was then used to align the
stimulus and firing rate responses in time. Plotting the mean firing rate
response as a function of the stimulus using bins of 0.005 mV/cm gave
rise to a curve that was fitted using a piecewise linear function. We typi-
cally used stimulus values ��10% of the baseline EOD amplitude and
performed a linear least-squares fit. We then implemented the piecewise
nonlinearity by setting negative values of the fitted firing rate to zero and
by setting values greater than the maximum firing rate FRmax to FRmax.

The gain was calculated from the slope of the linear least-squares fit.
Although we used a piecewise linear function to be consistent with pre-
vious studies (Nelson et al., 1997; Gussin et al., 2007), quantitatively
similar results were obtained when we instead fit a sigmoid function
(data not shown).

H(t) was then used to filter the stimulus to obtain the linear prediction
to which the baseline firing rate was added. The resulting signal was then
passed through a static nonlinearity that takes into account rectification
(the firing rate cannot be negative) and saturation (the firing rate cannot
be greater than the maximum value FRmax as determined above) to ob-
tain the predicted firing rate response to stimuli consisting of indepen-
dent and identically distributed AM waveforms whose envelope was
modulated sinusoidally. We first used the model to predict the response
to the stimulus waveform (first-order). To predict the firing rate response to
the envelope (i.e., second-order), we low-pass filtered the predicted firing
rate using a Kaiser filter whose cutoff frequency here was set to be 0.1%
higher than the envelope frequency as done for the experimental data.

Stimulus reconstruction and coding fraction. We used the stimulus re-
construction technique to estimate the time-varying envelope E(t) of our
noisy stimulus from a population of n P-units using their spike trains
Ri(t) (the index i refers to the ith neuron) recorded during stimulation.
Although the spike trains used were not recorded from simultaneously,
we note that previous studies have found that P-units displayed negligi-
ble noise correlations (Chacron et al., 2005). This approach assumes that
the time-varying envelope E(t) can be estimated by convolving each spike
train Ri(t) with a separate kernel Ki(t) and then summing the respective
contributions (Warland et al., 1997; Dan et al., 1998; Krahe et al., 2002;
Massot et al., 2011) as follows:

Eest�t� � �i�1

n �d�Ki��� Ri�1 � �� (6)

The optimal set of kernels Ki(�) that minimizes the mean-square error
� 2 � �[E(t)�Eest(t)] 2
 is a solution to the following system of equa-
tions (Dayan and Abbott, 2001):

�
PR1R1

�f � PR1R2
�f � … PR1Rj

�f �
PR2R1

�f � PR2R2
�f � … PR2Rj

�f �
·
·
·

·
·
·

· · ·
·
·
·

PRiR1
�f � PRiR2

�f � … PRiRj
�f �

	�
K̃1�f �
K̃2�f �

·
·
·

K̃i�f �
	

� �
PER1

�� f �
PER2

�� f �
·
·
·

PERi
�� f �

	 (7)

where K̃i�f � is the Fourier transform of Ki(t), and PRiRj(f ) is the cross-
spectrum between binary sequences Ri(t) and Rj(t). We assessed the qual-
ity of linear stimulus reconstruction by computing the coding fraction
(Gabbiani et al., 1996; Rieke et al., 1996) as follows:

CF � 1 �
�

�
(8)

where � is the standard deviation of the envelope E(t). The CF ranges
between 0 and 1 and represents the fraction of the stimulus that is cor-
rectly estimated (Gabbiani, 1996).

We extrapolated the coding fraction as a function of population
size using a nonlinear least squares fit with the following function
based on theoretical considerations (Zohary et al., 1994; Gabbiani,
1996) as follows:

f(n) � 1 � �
�n�/�n � n(n � 1)r (9)

where 
 and r are parameters and n is the population size. This equation
was used to calculate the population size needed to reach a coding frac-
tion of 0.8.
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Results
We recorded the electrophysiological responses of peripheral
P-type electroreceptor neurons (i.e., P-units) as well as the ani-
mal’s EOD (Fig. 1A) in response to stimuli consisting of EOD

AMs representing two different behavioral contexts. The EOD
AM consisted of bandpass filtered white noise with zero mean
that contained low (5–15 Hz) and high (60 – 80 Hz) frequencies
(Fig. 1B) to mimic natural stimuli that arise during encounters

Figure 1. A. leptorhynchus give behavioral responses to envelopes. A, Schematic of the experimental setup. The animal’s electric field is monitored by a pair of electrodes located in front and
behind the animal (E1 and E2) while the stimulus is delivered using a separate set of electrodes positioned on each side (gray spheres). The full signal (inset, black) received by the animal was
recorded with a dipole �2 mm away from the animal (black spheres). Also shown are the frequency contents of the full signal (black), the noisy AM (blue), and the envelope (red). B, Example stimuli
showing the stimulus (blue) and its envelope (red) for the two different AM signals used. Left, Frequency range between 5 and 15 Hz, mimicking same sex encounters. Right, Frequency range
between 60 and 80 Hz, mimicking opposite sex encounters. Insets, Magnification of the stimulus. C, EOD spectrograms (i.e., EOD power spectrum as a function of time) showing behavioral responses
to the stimuli shown in B from an example specimen. D, Population-averaged gain as a function of envelope frequency for the two noisy AM signals used: black represents frequency range 5–15 Hz,
n 
 10 for each data point; red represents frequency range 60 – 80 Hz, n 
 10 for each data point. E, Population-averaged phase as a function of envelope frequency for the two AM signals used:
black represents frequency range 5–15 Hz, n 
 10 for each data point; red represents frequency range 60 – 80 Hz, n 
 10 for each data point. Error bars indicate SEM.
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between same and opposite-sex conspecifics, respectively (Zakon
et al., 2002; Fotowat et al., 2013; Metzen and Chacron, 2014). The
AM amplitude (i.e., the envelope) varied sinusoidally with fre-
quencies spanning that found under natural conditions (0.05–10
Hz) (Yu et al., 2012; Fotowat et al., 2013; Metzen and Chacron,
2014). Figure 1A shows examples of the noisy AM (blue), its
envelope (red), and the full signal received by the animal (black)
as well as their respective frequency content. It is further impor-
tant to realize that the animal’s EOD is a carrier and that the
meaningful stimulus here is the EOD AM. We will be considering
both first- and second-order features of the stimulus and note
that these correspond to the second- and third-order features of
the full signal received by the animal, respectively. We note that
natural stimuli in other systems (e.g., auditory, somatosensory)
frequently consist of a fast time-varying waveform whose ampli-
tude (e.g., envelope) varies more slowly similar to the stimuli
considered here (Baker, 1999; Heil, 2003; Zeng et al., 2005; Lund-
strom et al., 2010).

A. leptorhynchus display behavioral responses to envelopes
arising from different contexts
The stimuli used in this study are behaviorally relevant to the
animal. Indeed, we found that the animal’s EOD frequency fol-
lowed the detailed time course of the envelope waveform (Fig.
1C). We also observed a stronger behavioral response when the
AM stimulus contained low frequencies as seen predominantly
during interactions between same-sex conspecifics (Zakon et al.,
2002), suggesting that this behavior might serve to deter aggres-
sion (Metzen and Chacron, 2014). We used linear-systems iden-
tification techniques and computed the gain (i.e., the ratio of
output peak-to-peak amplitude in EOD frequency to the enve-
lope peak-to-peak amplitude) as well as the phase (i.e., the
amount of time normalized by the stimulus period that the EOD
frequency must be shifted to be aligned with the envelope) as a
function of envelope frequency. We found that, for a given enve-
lope frequency, the gain was higher for lower AM frequencies.
Strikingly, the gain decreased as a power law whose exponent was
approximately the same for both low and high-frequency AMs
(5–15 Hz: 
 � 1.19 � 0.10; 60 – 80 Hz: 
 � 1.12 � 0.14; Fig. 1D,
compare black and red curves). We also observed a phase lag that
was almost constant as a function of envelope frequency when the
AM contained low frequencies (Fig. 1E, black curve) and that
increased with increasing envelope frequency when the AM con-
tained high frequencies (Fig. 1E, red curve).

P-units display heterogeneous responses to envelope stimuli
Next, we recorded the activity of n � 136 P-units from a total of
16 fish under baseline conditions (i.e., in the presence of the
animal’s unmodulated EOD) and in response to the stimuli de-
scribed above. We observed strong heterogeneities in baseline
activity. For example, the baseline firing frequency ranged be-
tween 156 Hz and 606 Hz (322 � 103 Hz), and the coefficient of
variation of the baseline activity ranged between 0.33 and 0.98
(0.58 � 0.15), which is consistent with previous studies (Xu et al.,
1996; Chacron et al., 2005; Gussin et al., 2007).

Analysis of P-unit responses to envelope stimuli revealed two
distinct classes. One afferent class (n � 81) responded to in-
creases in the envelope with increased activity (i.e., ON-type)
(Fig. 2A), whereas the other class (n � 55) instead responded with
decreased activity (i.e., OFF-type) (Fig. 2B). It is important to
note that, henceforth, ON- and OFF-type will only be used to
describe responses to envelopes. Strikingly, similar responses

were obtained for a given envelope when we used either low or
high-frequency AM waveforms (Fig. 2A,B, middle, compare
black and purple traces). Furthermore, ON- and OFF-type re-
sponses were observed for all envelope frequencies tested and the
responses largely overlapped when time was normalized with re-
spect to the envelope period (Fig. 2A,B, bottom).

Analysis of our dataset revealed that the sensitivities (i.e., gain)
of both classes to the envelope were not significantly different
from one another for all envelope frequencies and for all AM
stimuli used (two-way ANOVA, p 
 0.28; Fig. 2C,D). Responses
of ON-type P-units were in phase with the envelope for all enve-
lope and AM frequencies tested independently of the AM’s fre-
quency content (Fig. 2E,F, solid black and purple circles). In
contrast, responses of OFF-type P-units were out of phase with
the envelope for all envelope and AM frequencies tested (Fig.
2E,F, open black and purple circles). There were no significant
differences between the distributions of gain values for ON and
OFF P-units (Kolmogorov–Smirnov test, p � 0.34) (Fig. 2G). In
contrast, the distribution of phase values were clearly bimodal
(Hartigan’s dip test, p �� 10�3) and ON and OFF P-units dis-
played phase distributions that were significantly different from
one another (Kolmogorov–Smirnov test, p �� 10�3) (Fig. 2H).
Our results show that the P-unit population displays strong het-
erogeneities in responses to envelopes for a wide range of enve-
lope and AM frequencies.

P-units display homogeneous responses to AM stimuli
Why do P-units display such heterogeneities in response to en-
velopes? We first tested whether such heterogeneities might be
caused by heterogeneous responses to the AM stimulus wave-
forms that we used in this study. Thus, we quantified P-unit
responses to AM stimuli characterized by constant envelopes.

The response from a typical ON-type P-unit to an AM stim-
ulus characterized by a constant envelope consisting of bandpass
filtered (60 – 80 Hz) white noise is shown in Figure 3A. We found
that, as the spiking activity only occurred during the stimulus
upstrokes, the firing rate response led the stimulus (Fig. 3A).
Aligning the firing rate response to the stimulus waveform and
plotting one versus the other revealed an approximately piece-
wise linear tuning curve consisting of rectification (i.e., zero fir-
ing rate) for strongly negative values, a region where the firing
rate increases linearly with the stimulus for values �0, and satu-
ration (i.e., firing rate equal to the inverse absolute refractory
period) for strongly positive values (Fig. 3B). These responses
agree with those found previously using different AM stimuli
(Nelson et al., 1997; Gussin et al., 2007). For comparison, the
response of a typical OFF-type P-unit to the same unmodulated
noise stimulus is shown in Figure 3C. This unit’s activity also only
occurred during the stimulus upstrokes, and its firing rate re-
sponse also led the stimulus waveform (Fig. 3C). Aligning the
firing rate response to the stimulus waveform and plotting one as
a function of the other also revealed an approximately piecewise
linear tuning curve that was strikingly similar to that obtained for
the ON-type P-unit (compare Fig. 3B,D).

Quantifying ON- and OFF-type P-unit responses to unmodu-
lated (i.e., with constant envelope) AM stimuli consisting of
bandpass filtered white noise revealed surprising similarities. In-
deed, the gain (i.e., the non-zero slope of the portion of the tuning
curve where firing rate and stimulus are linearly related) (Fig. 3E)
and the phase (Fig. 3F) were not significantly different between
both afferent classes (gain: two-way ANOVA, p 
 0.08; phase:
two-way ANOVA, p 
 0.06). We note that the modulations in
firing rates elicited by AM stimuli were significantly larger than
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those elicited by the envelope: this is due
to the fact that the firing rate modulations
caused by the fast time-varying AM wave-
form then tend to average out partially
over the longer timescale of the envelope.
We however conclude that P-unit re-
sponse heterogeneities to envelope (i.e.,
second-order) stimuli are not simply
inherited from the observed largely ho-
mogeneous responses to AM (i.e., first-
order) stimuli.

A cascade linear–nonlinear model of
P-unit responses to AMs and envelopes
To better understand how P-units can simul-
taneously display homogeneous responses to
AMs and heterogeneous responses to enve-
lopes, we built a linear–nonlinear cascade
model (Chichilnisky, 2001; Massot et al.,
2012). This model, described in Figure 4A,
consists of first linearly filtering the stim-
ulus and adding a baseline value to form a
linear prediction of the firing rate. This
prediction is then passed through a static
piecewise nonlinearity that takes into ac-
count both rectification (i.e., the firing
rate cannot be negative by definition) and
saturation (i.e., the firing rate cannot ex-
ceed a maximum value due to refractori-
ness) to obtain the predicted firing rate
(Fig. 4A).

We first tested whether this model could
accurately describe P-unit responses to the

Figure 2. Two classes of peripheral single sensory neurons display ON-type and OFF-type responses to the envelope, respec-
tively. A, Example of an ON-type P-unit responding to an increase in envelope (top) with an increase in firing rate (middle)
independently of the AM frequency content: black represents 5–15 Hz; purple represents 60 – 80 Hz. Bottom, Firing rate response
to different envelope frequencies with time normalized to the envelope period. It is seen that the responses mostly superimpose.
B, Example of an OFF-type P-unit responding to an increase in envelope (top) with a decrease in firing rate (middle) independently

4

of the AM frequency content: black represents 5–15 Hz; purple
represents 60 – 80 Hz. Bottom, Firing rate response to differ-
ent envelope frequencies with time normalized to the enve-
lope period. It is seen that the responses mostly superimpose.
C, Population-averaged gain to the envelope as a function of
envelope frequency for two different AM signals: black repre-
sents frequency range 5–15 Hz; purple represents frequency
range 60 – 80 Hz for ON (solid) and OFF (dashed) P-units. D,
Population-averaged gain to the envelope as a function of av-
erage AM frequency for two different envelope frequencies:
black represents 0.05 Hz; purple represents 0.5 Hz for ON
(solid) and OFF (dashed) P-units. E, Population-averaged
phase to the envelope as a function of envelope frequency for
two different AM signals: black represents frequency range
5–15 Hz; purple represents frequency range 60 – 80 Hz for ON
(solid) and OFF (dashed) P-units. F, Population-averaged
phase to the envelope as a function of average AM frequency
for two different envelope frequencies: black represents 0.05
Hz; purple represents 0.5 Hz for ON (solid) and OFF (dashed)
P-units. G, Distributions of gain to the envelope across stimuli
for all (dark red), ON (black), and OFF (gray) P-units. There was
no significant difference between the gain distributions ob-
tained for ON and OFF P-units (Kolmogorov–Smirnov test,
p � 0.34). H, Distributions of phase to the envelope across
stimuli for all (dark red), ON (black), and OFF (gray) P-units.
The phase distribution for all P-units consists of two well-
separated modes (Hartigan’s dip test, p �� 10 �3). Further,
the phase distributions obtained for ON and OFF P-units were
significantly different (Kolmogorov–Smirnov test, p ��
10 �3). Error bars indicate SEM.
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AM waveform. Our modeling predictions were accurate for both
ON-type (Fig. 4B) and OFF-type (Fig. 4C) P-unit firing rate re-
sponses to AM stimuli. We analyzed the model’s output in the
same way as the experimental data and used linear-systems iden-
tification techniques to compute the gain and phase of the re-
sponse to the AM. Overall, there was good agreement between the
gain predicted from our model and that computed from experi-
mental data across our dataset (Fig. 4D) and the population-
averaged gain values agreed for all AM stimuli tested (two-way

ANOVA, p 
 0.23) (Fig. 4E). There was also good agreement
between the predicted phase of the response and the experimen-
tally measured one (Fig. 4F) and the population-averaged phase
values agreed for all AM stimuli tested (two-way ANOVA, p 

0.13) (Fig. 4G). We conclude that P-unit responses to AMs can be
explained based on their linear filtering properties, a static piece-
wise nonlinearity, and their baseline firing rates.

We next tested whether this simple model could also accu-
rately describe P-unit responses to envelopes. To do so, we used

Figure 3. ON-type and OFF-type P-units display similar tuning curves to the stimulus. A, Example of an ON-type P-unit’s time-dependent firing rate (bottom) to the stimulus (top). This unit had
a baseline firing rate of 270 Hz. The spike train (middle) displays phase-locking as spikes were only elicited in response to the large positive portions of the 60 – 80 Hz noise stimulus. B, Normalized
tuning curve (white dashed line) showing the normalized mean firing rate as well as the density of the firing rate (color plot) as a function of the normalized stimulus for the ON-type P-unit shown
in A. C, Example of an OFF-type P-unit’s time-dependent firing rate (bottom) to the same stimulus (top) as in A. The spike train (middle) displays phase-locking qualitatively similar to that of the
ON-type P-unit shown in A. This unit had a baseline firing rate of 416 Hz. D, Normalized tuning curve (white dashed line) showing the normalized mean firing rate as well as the firing rate density
(color plot) as a function of the normalized stimulus for the OFF-type P-unit shown in C. E, Population-averaged gain values with respect to the stimulus for ON-type (black) and OFF type (gray)
P-units as a function of the average AM frequency. There were no significant differences between ON- and OFF-type P-units (two-way ANOVA, p 
 0.08). Higher-frequency AMs gave rise to higher
gain values in general. F, Population-averaged phase values with respect to the stimulus for ON (black) and OFF-type P-units (gray) as function of average AM frequency. There were no significant
differences between ON- and OFF-type P-units for any of the AMs used (two-way ANOVA, p 
 0.06). Higher-frequency AMs gave rise to higher phase leads in general. Error bars indicate SEM.
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Figure 4. A linear–nonlinear (LN) cascade model predicts P-unit responses to AMs. A, Schematic showing the LN model’s structure. The stimulus (left) is first convolved with a filter H(t) that is
determined from data to generate the linear predicted firing rate (middle). The baseline firing rate is then added to the linear prediction, and the resulting signal is passed through a static
nonlinearity that takes into account rectification and saturation to obtain the predicted firing rate (right). B, Traces showing our model’s prediction (bottom, purple) with the actual response
(bottom, black) to the AM (top, blue) for an example ON-type P-unit. C, Traces showing the model’s prediction (bottom, purple) with the actual response (bottom, black) to the AM (top, blue) for
an example OFF-type P-unit. D, Predicted gain to the AM as a function of the actual gain to the AM for all ON-type (black) and OFF-type (gray) P-units in our dataset. The data points are scattered
around the identity line (black dashed line). E, Population-averaged gain as a function of the average AM frequency for our data (black) and our model’s prediction (green). F, Predicted phase to the
AM from our model as a function of actual phase to the AM for all ON-type (black) and OFF-type (gray) P-units in our datasets. G, Population-averaged phase as a function of the average AM frequency
for our data (black) and our model’s prediction (green). Error bars indicate SEM.
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Figure 5. A linear–nonlinear (LN) cascade model predicts P-unit responses to envelopes. A, Schematic showing the LN model’s structure. The stimulus (outside left) is first convolved with a filter
H(t) that is determined from data to generate the linear predicted firing rate (left). The baseline firing rate is then added to the linear prediction, and the resulting signal is passed through a static
nonlinearity that takes into account rectification and saturation to obtain the predicted firing rate (right). The resulting signal is then low-pass filtered to obtain the predicted response to the
envelope (outside right). B, Traces showing our model’s prediction (bottom, green) with the actual response (bottom, black) to the envelope (top, red) for an example ON-type P-unit. C, Traces
showing the model’s prediction (bottom, green) with the actual response (bottom, black) to the envelope (top, red) for an example OFF-type P-unit. D, Predicted gain to the envelope as a function
of the actual gain to the envelope for all ON-type (black) and OFF-type (gray) P-units in our dataset. The data points are scattered around the identity line (dashed black line). E, Population-averaged
gain as a function of envelope frequency for our data (black) and our model’s prediction (green). F, Predicted phase to the envelope from our model as a function of actual phase to the envelope for
all ON-type (black) and OFF-type (gray) P-units in our dataset. G, Population-averaged phase as a function of envelope frequency for our data (black) and our model’s prediction (green) for ON
(bottom) and OFF (top) -type P-units. Error bars indicate SEM.
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the same model as in Figure 4A, but low-pass filtered the output
firing rate as done for the experimental data to investigate firing
rate fluctuations on the envelope timescale (Fig. 5A). We found
that our simple model could accurately predict both ON-type
(Fig. 5B, green) and OFF-type (Fig. 5C, green) P-unit firing rate
responses to envelopes. We analyzed the model’s output in the
same way as the experimental data and used linear-systems iden-
tification techniques to compute the gain and phase of the re-
sponse to the envelope. Overall, there was good agreement
between the gain predicted from our model and that computed
from experimental data across our dataset (Fig. 5D), and the
population-averaged gain values agreed for all envelope frequencies
tested (two-way ANOVA, p 
 0.17) (Fig. 5E). There was also good
agreement between the predicted phase of the response and the ex-
perimentally measured one (Fig. 5F), and the population-averaged
phase values were in good agreement overall (Fig. 5G). We conclude
that P-unit responses to envelopes can be explained based on their
linear filtering properties, a static piecewise nonlinearity, and their
baseline firing rates.

Heterogeneous baseline firing properties determine gain and
phase of the envelope response
We then used our model to generate predictions as to the mech-
anisms that underlie ON- and OFF-type responses to envelopes.

We focused on the baseline firing rate as
well as the static nonlinearity because our
previous results (Fig. 3) showed no major
differences between the linear filtering
properties of ON- and OFF-type P-units.
To illustrate how both baseline firing rate
and static nonlinearities can influence re-
sponses to envelopes, let us consider the
three cases shown in Figure 6A and as-
sume that the envelope varies slowly with
respect to the AM (i.e., that the envelope
does not vary much during one cycle of
the AM and thus is effectively constant).
In Figure 6A (left), a model neuron with
low baseline firing rate chosen just above
the zero rate level responds (Fig. 6A, bot-
tom left, solid purple curve) in a linear
fashion to the sinusoidal stimulus (Fig.
6A, top left), except for stimulus phases
for which the firing rate is equal to zero
(i.e., rectification). For comparison, the
hypothetical firing rate response in the ab-
sence of rectification is also shown (Fig.
6A, left, dashed black curve). The mean of
the firing rate response (Fig. 6A, left, solid
horizontal purple line) is then offset pos-
itively with respect to its value in the ab-
sence of rectification (Fig. 6A, left, dashed
horizontal black line). It is then easy to see
that sinusoidal stimuli of larger amplitude
will give rise to more rectification (i.e., the
firing rate will be zero during a greater
portion of the stimulus cycle), leading to a
greater positive offset of the mean and
that the response of this model neuron
will thus be in phase with the envelope.

In contrast, Figure 6A (right) shows
the response of a neuron with a high base-
line firing rate just below the maximum

firing rate value FRmax. This neuron displays saturation in re-
sponse to the sinusoidal stimulus (Fig. 6A, right, solid blue
curve). Thus, the mean firing rate is then negatively offset (Fig.
6A, right, solid horizontal blue line) with respect to its value in the
absence of saturation (Fig. 6A, right, dashed horizontal black
line). Stimuli of larger amplitudes (i.e., envelopes) will elicit more
saturation and thus a greater negative offset. The response of this
model neuron will then be out of phase with the envelope. Figure
6A (middle) shows the response of a neuron whose baseline firing
rate is equal to FRmax/2. The response of this neuron (Fig. 6A,
middle, solid green curve) displays both rectification and satura-
tion. However, the increase in firing rate due to rectification is
then exactly compensated by the decrease in firing rate due to
saturation. Thus, the mean firing rate (Fig. 6A, middle, solid
green line) is equal to its value in the absence of stimulation (Fig.
6A, middle, dashed black line). This simple model thus predicts
that the gain of the envelope response (i.e., the absolute change in
firing rate divided by the stimulus amplitude) will be smallest for
P-units whose baseline firing rate is in the middle of the dynamic
range (Fig. 6B) and that the phase is either zero for normalized
baseline firing rates �0.5 and 180° otherwise (Fig. 6C). Thus, our
model makes the important prediction that both the gain and the
phase of the envelope response are determined by the baseline to
maximum firing rate ratio for a given afferent.

Figure 6. Model predicts baseline firing determines ON- vs OFF-type responses to envelopes. A, Left, Schematic showing why a
P-unit with low baseline firing rate gives an ON-type response (bottom, solid purple curve) to the envelope of a sinusoidal stimulus
(top): because of rectification at zero, the mean firing rate increases (bottom, solid horizontal purple line) during stimulation
compared with what it would be if no rectification occurred (dashed horizontal black line) as indicated by the arrow. Bottom,
Dashed black curve indicates the response to the same stimulus without the static nonlinearity. Middle, Schematic showing why a
P-unit with baseline firing rate in the middle of the dynamic range (i.e., equal to FRmax/2) does not respond to the envelope. For this
unit, the increase in firing rate due to rectification is exactly compensated by the decrease due to saturation (bottom, solid green
curve). Thus, the mean firing rate (bottom, horizontal solid green line) is not different from the baseline firing rate (bottom,
horizontal dashed black line). Bottom, Dashed black curve indicates the response to the same stimulus without the static nonlin-
earity. Right, Schematic showing why a P-unit with high baseline firing rate gives an OFF-type response (bottom, solid blue curve)
to the envelope of a sinusoidal stimulus (top): because of saturation, the mean firing rate decreases (bottom, blue horizontal line)
during stimulation compared with what it would be if no saturation occurred (dashed black horizontal line) as indicated by the
arrow. Bottom, Dashed black curve indicates the response to the same stimulus without the static nonlinearity. B, The gain displays
a minimum when the normalized baseline firing rate (i.e., the baseline firing rate divided by the maximum firing rate obtained
during stimulation) is equal to 0.5. C, Phase of the response as a function of normalized baseline firing rate. Responses are ON-type
for normalized baseline firing rates �0.5 and OFF-type otherwise.
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We verified our model’s predictions with respect to gain ex-
perimentally by separating our recorded P-units into three
groups. We found that P-units whose normalized baseline firing
rates were both significantly higher than those whose normalized
baseline firing rates were close to 0.5 (Fig. 7A, two-way ANOVA,
p � 0.004). We next plotted the phase of the envelope response as
a function of normalized baseline firing rate. Confirming our
model’s predictions, we found that most ON-type (n � 72, 89%)
and OFF-type (n � 49, 89%) cells displayed normalized baseline
firing rates that were �0.5 or 
0.5, respectively (Fig. 7B). Fur-
ther, the population-averaged normalized baseline firing rate of
ON-type P-units was significantly �0.5 (t test, n � 72, p ��
10�3), whereas that of OFF-type P-units was significantly 
0.5
(t test, n � 49, p �� 10�3) (Fig. 7C).

Stimulus reconstruction and population coding
Finally, we quantified how well one can reconstruct the envelope
waveform based on the activity of P-unit populations. In partic-
ular, we were interested whether the observed heterogeneous re-
sponses might help optimize information transmission. We used
the optimal stimulus reconstruction technique in which each
spike train is convolved with an optimal filter to estimate the
stimulus waveform (Rieke et al., 1996; Gabbiani and Koch, 1998;
Massot et al., 2011) (Fig. 8A). Overall, we found that the coding
fraction (i.e., the fraction of the stimulus waveform that is cor-
rectly reconstructed) increases with increasing population size
(Fig. 8B). However, we found that the quality of the reconstruc-
tion for the envelope signal was significantly lower than that of
unmodulated noisy AM waveforms (Fig. 8B), this is expected
because P-units display much greater sensitivities to the AM
waveform than to the envelope (Figs. 2C,D and 3E). By extrapo-
lating the curves obtained in Figure 8B, we estimated that N �
324 � 57 P-units would be necessary to obtain a quality of recon-
struction for envelopes similar to that seen for AMs, which is
�2% of the total P-units population (15,000) available in each
fish: the implications of this result are discussed further below.
We next compared the quality of the reconstruction using popu-
lations of P-units of only a given type (i.e., ON or OFF) or a mixed
population (50% ON and 50% OFF). Although the quality of the
reconstruction improved for increasing population size for all
three groups (Fig. 8C), considering a mixed population gave rise
to significantly higher coding fraction values than considering
populations of either ON or OFF-type P-units of the same size
(two-way ANOVAs with Bonferroni post hoc correction, p ��
10�3) (Fig. 8C). Thus, although within each class heterogeneities
improve the quality of the reconstruction as a function of increas-
ing population size, heterogeneities between the two classes gives
rise to further improvement: this is a generalization to the enve-
lope case of the benefit of adding ON- and OFF-type responses to
first-order stimuli for improved reconstruction (Gabbiani,
1996). The quality of the reconstruction improved for increasing
AM frequencies (Fig. 8D) but was independent of envelope fre-
quency for a given population size (Fig. 8E), indicating that the
P-unit population faithfully transmits information about enve-
lopes over the entire frequency range tested.

Figure 7. Verifying modeling predictions. A, Population-averaged gain values for P-units
with low (�0.48, N � 72), medium (
0.48 and �0.52, N � 15), and high (
0.52, N � 49)
normalized baseline firing rates. P-units with low and high normalized baseline firing rates
displayed significantly larger gains than P-units with medium normalized baseline firing rates
(two-way ANOVA, p � 0.004). B, ON-type (black) responses are observed preferentially for
P-units with a normalized baseline firing rate �0.5, whereas OFF-type (gray) responses are

4

instead preferentially observed for P-units with higher normalized baseline firing rates. C, The
normalized baseline firing rate of ON-type P-units was on average (0.38 � 0.01) significantly
less than 0.5 (t test, nON � 72, p �� 10 �3), whereas that of OFF-type P-units was on average
(0.57 � 0.01) significantly greater than 0.5 (t test, nOFF � 49, p �� 10 �3). Horizontal dashed
line indicates the threshold value of 0.5.
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Discussion
Summary of results
We studied the peripheral electroreceptor afferent responses to
stimuli consisting of a fast time-varying waveform whose enve-
lope varied sinusoidally. Analysis revealed two P-unit classes (ON-
and OFF-type) with similar sensitivities. Both classes displayed
similar piecewise linear tuning curves to unmodulated first-order
stimuli. To explain these results, we built a linear–nonlinear cascade

model that incorporated known properties
of P-units: namely, baseline firing rate, lin-
ear filtering properties, and a static piece-
wise nonlinearity. This model successfully
explained variability in our dataset. Further
analysis revealed that the normalized base-
line firing rate determined the phase of the
envelope response. We validated this pre-
diction experimentally. Finally, we quanti-
fied the quality of the linear reconstruction
of the envelope by P-units. The observed
heterogeneous responses to envelopes (i.e.,
ON vs OFF-type) were advantageous as a
heterogeneous population of ON and OFF
P-units transmitted more information than
a population of more homogeneous ON or
OFF P-units.

Coding of envelopes in the
electrosensory system
Envelopes are a behaviorally relevant fea-
ture of electrosensory stimuli as they carry
information about the relative positions
between conspecifics as well as their iden-
tities (Yu et al., 2012; Fotowat et al., 2013;
for review, see Stamper et al., 2013). In
particular, envelopes can arise during two
behaviorally relevant situations: (1) dur-
ing movement between two conspecifics;
and (2) from the static interactions be-
tween the EODs of three of more fish.
Whereas the former movement envelopes
generally contain low (�1 Hz) temporal
frequencies (Yu et al., 2012; Fotowat et al.,
2013; Metzen and Chacron, 2014), the
latter “social” envelopes instead contain
higher (
1 Hz) temporal frequencies
(Stamper et al., 2010; Fotowat et al.,
2013). Weakly electric fish perceive both
movement and social envelopes as evi-
denced from behavioral responses (Stamper
et al., 2012; Metzen and Chacron, 2014).
Although it is known that electrosensory
neurons, including P-units, can respond
to envelopes, all previous electrophysio-
logical studies have used stimuli that
mimicked social envelopes (Middleton et
al., 2006; Savard et al., 2011; Vonderschen
and Chacron, 2011; McGillivray et al.,
2012), whereas we specifically considered
stimuli that instead mimic movement en-
velopes. Our study is thus the first that
investigates how electrosensory neurons
respond to mimics of movement enve-
lopes. Although our electrophysiological

results have shown that the quality of envelope reconstruction
obtained by combining P-unit spike trains was independent of
frequency, our present results (Fig. 1D) as well as previous ones
have shown that behavioral responses decreased as a function of
envelope frequency (Metzen and Chacron, 2014). As such, be-
havioral responses are likely due to further processing of the de-
tailed envelope information carried in P-unit spike trains by

Figure 8. The P-unit population transmits detailed information about the envelope independently of envelope frequency. A,
Schematic of the stimulus reconstruction procedure. Each neural response Ri(t) to the signal E(t) (left) was convolved (R) with an
optimal filter Ki(t) (middle). The results were then summed to get the estimated signal Eest(t) (right). B, Coding fraction (i.e., the
fraction of the envelope that is successfully reconstructed) as a function of population size for all envelope frequencies using a 5–15
Hz AM stimulus. For comparison, the coding fraction quantifying the fraction of the unmodulated 5–15 Hz AM stimulus that is
correctly reconstructed is also shown. Similar results were obtained using a 60 – 80 Hz AM stimulus (data not shown). C,
Population-averaged coding fraction (i.e., the fraction of the envelope that is successfully reconstructed) as a function of popula-
tion size for ON-type P-units (black), OFF-type P-units (gray), and a mixed population of ON 
 OFF-type P-units (dark red, 50% ON
and 50% OFF). The coding fraction for mixed population is significantly greater than that obtained when considering either ON- or
OFF-type P-units for population �5. *p � 0.01 (two-way ANOVA with Bonferroni post hoc correction). D, Population-averaged
coding fraction for the envelope as a function of the average AM frequency for two envelope frequencies: dark blue represents 0.05
Hz; light blue represents 0.5 Hz. The coding fraction increased as a function of AM frequency and both curves were not significantly
different from one another (t test, p � 0.7492). E, Population-averaged coding fraction obtained for the envelope as a function of
envelope frequency for 5–15 Hz (open circles) and 60 – 80 Hz (filled circles) using a mixed population of n � 6 P-units.
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downstream neurons. Further studies should thus focus on how
downstream neurons decode envelope information. In particu-
lar, P-units synapse onto pyramidal neurons within three parallel
maps of the body surface in the ELL with different response pro-
files to first-order features (Shumway, 1989; Krahe et al., 2008;
Maler, 2009a, b; Khosravi-Hashemi and Chacron, 2014; Krahe
and Maler, 2014), and future studies should focus on character-
izing how pyramidal neurons, which are the sole output neurons
of the ELL, respond to social and movement envelopes in a map-
specific manner.

Moreover, we note that we considered stimuli whose intensity
was large enough to elicit nonlinear responses to individual
P-units. Stimuli with weaker intensities will elicit firing rate mod-
ulations from P-units that are linearly related to the stimulus
(Gussin et al., 2007), and it is then necessary to perform a non-
linear transformation to extract the envelope (Middleton et al.,
2007). Previous studies have shown that downstream targets of
P-units, namely, pyramidal neurons as well as inhibitory in-
terneurons, can respond to envelopes by performing nonlinear
transformations (Middleton et al., 2006; McGillivray et al., 2012).
However, whether and, if so, how these nonlinear transforma-
tions determine the phase of ELL pyramidal neuron responses to
envelopes span the large dynamic range observed under natural
conditions (Yu et al., 2012; Fotowat et al., 2013; Metzen and
Chacron, 2014) have not been investigated to date. Further stud-
ies are therefore needed to investigate this important issue.

Coding of first- and second-order features of natural stimuli
by the sensory periphery
Heterogeneous responses in peripheral sensory neural popula-
tions have been observed ubiquitously across systems and species
and are frequently associated with distinct receptor types (e.g.,
Type I and II hair cells in the mammalian auditory and vestibular
systems) (Hargrave and McDowell, 1992; Köppl, 1997; Goldberg,
2000; Gold and Gebhart, 2010; Eatock and Songer, 2011). This is
however not the case for P-units (Zakon, 1987; Bennett et al.,
1989).

What advantage is there then in having P-units display strong
heterogeneities in their responses to envelopes (i.e., second-order
features) while, at the same time, display weak heterogeneities in
their responses to EOD AMs (i.e., first-order features)? We hy-
pothesize that this is a consequence of the fact that P-units, being
peripheral sensory neurons, must optimize their coding proper-
ties to provide downstream neurons with the relevant informa-
tion about both first- and second-order features of electrosensory
stimuli that are largely independent of one another (Stamper et
al., 2013; Metzen and Chacron, 2014) as seen in other systems
(Simoncelli and Olshausen, 2001). The first-order features of
natural electrosensory stimuli display large variations in their
spatial extent as those caused by prey are spatially localized,
whereas those caused by conspecifics are instead spatially diffuse
(Zupanc and Maler, 1993; Nelson and MacIver, 1999). In con-
trast, second-order features of natural electrosensory stimuli only
occur during interactions with conspecifics and thus will activate
most, if not all, of the P-unit population (Stamper et al., 2013).
We propose that the relatively homogeneous responses of P-units
to first-order features might help better signal the presence of the
weak spatially localized stimuli caused by prey, as it would be theo-
retically easier to detect the resulting similar changes in activity
across a small neural subpopulation. In contrast, as second-order
features will activate most, if not all, of the P-unit population,
heterogeneities in their response instead allow for increased
information transmission. It is conceivable that tradeoffs be-

tween homogeneity and heterogeneity help optimize informa-
tion transmission about both first- and second-order features
of electrosensory stimuli, but further studies are needed to test
this hypothesis.

Role of neural heterogeneities in coding
Neural heterogeneities have been found ubiquitously in the CNS.
Although theoretical studies have shown that heterogeneous
neural networks transmit more information than homogeneous
ones (Mejias and Longtin, 2012), which is supported by experi-
mental work (Marsat and Maler, 2010; Padmanabhan and Ur-
ban, 2010; Tripathy et al., 2013), how neural heterogeneities
determine different response profiles to a given stimulus feature
is poorly understood. Although cells with ON- and OFF-type
responses have been reported across brain areas, these responses
are typically mediated by direct excitation and inhibition through
local interneurons (Saunders and Bastian, 1984; Imig et al., 1990;
Ris and Godaux, 1998; Schiller, 2010). Our results showing that
baseline firing rate, combined with static nonlinearities, can give
rise to either ON- or OFF-type responses to envelopes thus pro-
vide the first evidence that a neural population with homoge-
neous tuning properties to one stimulus feature can display
heterogeneous response profiles to another feature.

Applicability to other systems
Envelopes are a common feature of natural stimuli across sys-
tems, whose statistics are qualitatively similar to that considered
here, which carry behaviorally relevant information and are es-
sential for perception (Baker, 1999; Heil, 2003). However, com-
paratively little is known about the coding strategies used by the
brain to process them (but for the auditory system, see Joris et al.,
2004). Neurons displaying ON- and OFF-type responses to
second-order features are likely to be found elsewhere. This is
because neurons with high baseline firing rates can be found not
only at the sensory periphery (Köppl, 1997; Goldberg, 2000) but
also in more central brain areas (Kuffler, 1953; Rospars et al.,
1994; Linden et al., 2009; Luczak et al., 2009). Moreover, many
neurons display relative refractoriness (Häusser and Roth, 1997;
Mickus et al., 1999; Chacron et al., 2001; Sadeghi et al., 2007) that,
if elicited before rectification, will lead to OFF-type envelope re-
sponses. Although only a few studies have reported response
phase to envelopes (Joris and Yin, 1992; Joris, 1996; Delgutte et
al., 1997), the mechanisms reported here could explain why the
responses of some auditory neurons are mostly in phase with the
envelope whereas those of others are mostly out of phase (Ku-
wada et al., 2014). In particular, although our results show that
taking into account the known linear filtering properties of elec-
troreceptor afferents and implementing static nonlinearities in
the firing rate such as rectification and saturation is sufficient to
account for their responses to envelopes, it is likely that other
types of nonlinearities seen in other systems will also contribute
to shaping responses to envelopes (French and Wong, 1977;
Patuzzi and Robertson, 1988; Massot et al., 2012; Rho and
Prescott, 2012). Further studies are however needed to test these
predictions.

References
Avila-Åkerberg O, Krahe R, Chacron MJ (2010) Neural heterogeneities and

stimulus properties affect burst coding in vivo. Neuroscience 168:300 –
313. CrossRef Medline

Baker CL Jr (1999) Central neural mechanisms for detecting second-order
motion. Curr Opin Neurobiol 9:461– 466. CrossRef Medline

Bannister NJ, Larkman AU (1995a) Dendritic morphology of CA1 pyrami-

3136 • J. Neurosci., February 18, 2015 • 35(7):3124 –3138 Metzen and Chacron • Neural Heterogeneities and Response Characteristics

http://dx.doi.org/10.1016/j.neuroscience.2010.03.012
http://www.ncbi.nlm.nih.gov/pubmed/20298764
http://dx.doi.org/10.1016/S0959-4388(99)80069-5
http://www.ncbi.nlm.nih.gov/pubmed/10448168


dal neurones from the rat hippocampus: II. Spine distributions. J Comp
Neurol 360:161–171. CrossRef Medline

Bannister NJ, Larkman AU (1995b) Dendritic morphology of CA1 pyrami-
dal neurones from the rat hippocampus: I. Branching patterns. J Comp
Neurol 360:150 –160. CrossRef Medline

Bastian J (1981) Electrolocation II: the effects of moving objects and other elec-
trical stimuli on the activities of two categories of posterior lateral line lobe
cells in Apteronotus albifrons. J Comp Physiol A 144:481–494. CrossRef

Bastian J (1996a) Plasticity in an electrosensory system: II. Postsynaptic
events associated with a dynamic sensory filter. J Neurophysiol 76:2497–
2507. Medline

Bastian J (1996b) Plasticity in an electrosensory system: I. General features
of a dynamic sensory filter. J Neurophysiol 76:2483–2496. Medline

Bastian J, Chacron MJ, Maler L (2002) Receptive field organization deter-
mines pyramidal cell stimulus-encoding capability and spatial stimulus
selectivity. J Neurosci 22:4577– 4590. Medline

Bennett MV, Sandri C, Akert K (1989) Fine structure of the tuberous elec-
troreceptor of the high-frequency electric fish, Sternachus albifrons (gym-
notiformes). J Neurocytol 18:265–283. CrossRef Medline

Chacron MJ, Bastian J (2008) Population coding by electrosensory neurons.
J Neurophysiol 99:1825–1835. CrossRef Medline

Chacron MJ, Longtin A, Maler L (2001) Negative interspike interval corre-
lations increase the neuronal capacity for encoding time-varying stimuli.
J Neurosci 21:5328 –5343. Medline

Chacron MJ, Doiron B, Maler L, Longtin A, Bastian J (2003) Non-classical
receptive field mediates switch in a sensory neuron’s frequency tuning.
Nature 423:77– 81. CrossRef Medline

Chacron MJ, Maler L, Bastian J (2005) Electroreceptor neuron dynamics
shape information transmission. Nat Neurosci 8:673– 678. CrossRef
Medline

Chacron MJ, Longtin A, Maler L (2011) Efficient computation via sparse
coding in electrosensory neural networks. Curr Opin Neurobiol 21:752–
760. CrossRef Medline

Cherif S, Cullen KE, Galiana HL (2008) An improved method for the esti-
mation of firing rate dynamics using an optimal digital filter. J Neurosci
Methods 173:165–181. CrossRef Medline

Chichilnisky EJ (2001) A simple white noise analysis of neuronal light re-
sponses. Network 12:199 –213. CrossRef Medline

Dan Y, Alonso JM, Usrey WM, Reid RC (1998) Coding of visual informa-
tion by precisely correlated spikes in the lateral geniculate nucleus. Nat
Neurosci 1:501–507. CrossRef Medline

Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and
mathematical modeling of neural systems. Cambridge, MA: Massachu-
setts Institute of Technology.

Delgutte B, Hammond BM, Cariani PA (1997) Neural coding of the tempo-
ral envelope of speech: relation to modulation transfer functions. In: Psy-
chophysical and physiological advances in hearing (Palmer AR, Rees A,
Summerfield AQ, Meddis R, eds), pp 595– 603. London: Whurr.

Eatock RA, Songer JE (2011) Vestibular hair cells and afferents: two chan-
nels for head motion signals. Annu Rev Neurosci 34:501–534. CrossRef
Medline

Fotowat H, Harrison RR, Krahe R (2013) Statistics of the electrosensory
input in the freely swimming weakly electric fish Apteronotus lepto-
rhynchus. J Neurosci 33:13758 –13772. CrossRef Medline

French AS, Wong RK (1977) Nonlinear analysis of sensory transduction in
an insect mechanoreceptor. Biol Cybern 26:231–240. CrossRef Medline

Gabbiani F (1996) Coding of time varying signals in spike trains of linear
and half-wave rectifying neurons. Network 7:61– 85. CrossRef

Gabbiani F, Koch C (1998) Principles of spike train analysis. In: Methods in
neuronal modeling: from ions to networks (Koch C, Segev I, eds), pp
313–360. Cambridge, MA: Massachusetts Institute of Technology.

Gabbiani F, Metzner W, Wessel R, Koch C (1996) From stimulus encoding to
feature extraction in weakly electric fish. Nature 384:564–567. CrossRef
Medline

Gold MS, Gebhart GF (2010) Nociceptor sensitization in pain pathogenesis.
Nat Med 16:1248 –1257. CrossRef Medline

Goldberg JM (2000) Afferent diversity and the organisation of central ves-
tibular pathways. Exp Brain Res 130:277–297. CrossRef Medline

Gussin D, Benda J, Maler L (2007) Limits of linear rate coding of dynamic
stimuli by electroreceptor afferents. J Neurophysiol 97:2917–2929.
CrossRef Medline

Hargrave PA, McDowell JH (1992) Rhodopsin and phototransduction. Int
Rev Cytol 137B:49 –97. Medline
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