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Recency and repetition are two factors that have large effects on human memory performance. One way of viewing the beneficial impact
of these variables on recognition memory is to assume that both factors modulate a unidimensional memory trace strength. Although
previous functional neuroimaging studies have indicated that recency and repetition may modulate similar brain structures, particularly
in the region of the inferior parietal cortex, there is extensive behavioral evidence that human subjects can make independent and
accurate recognition memory judgments about both an item’s recency and its frequency. In the present study, we used fMRI to examine
patterns of brain activity during recognition memory for auditory–verbal stimuli that were parametrically and orthogonally manipulated
in terms of recency and number of repetitions. We found in a continuous recognition paradigm that the lateral inferior parietal cortex, a
region that has previously been associated with recollective forms of memory, is highly sensitive to recency but not repetition. In a
multivariate analysis of whole-brain activation patterns, we found orthogonal components that dissociated recency and repetition
variables, indicating largely independent neural bases underlying these two factors. The results demonstrate that although both recency
and repetition dramatically improve recognition memory performance, the neural bases for this improvement are dissociable, and thus
are difficult to explain in terms of access to a unitary memory trace.
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Introduction
In tests of memory, it is normally the case that items encountered
more recently are recognized faster and more accurately than
those encountered less recently. Likewise, items that have been
presented multiple times are more easily recognized than those
that have never, or only rarely, repeated. The effects of recency
and repetition may both be understood as modulating an under-
lying quantity, memory strength, that indexes the amount of in-
formation available about a stored memory trace (Wells, 1974;
Wickelgren, 1974). There is nevertheless extensive behavioral ev-
idence that human subjects can, if required, reliably differentiate
between these two variables (Peterson et al., 1969; Hintzman et
al., 1972; Wells, 1974; Hintzman, 1988, 2010).

In the cognitive neuroscience of human memory, however,
there is still considerable debate as to whether there exist neural
structures whose activity tracks a unidimensional memory
strength quantity. Because recency and repetition both have large
effects on memory performance, the joint exploration of these
two factors in the context of recognition memory offers a power-

ful way to probe for the existence of a neural center that is gener-
ically sensitive to increases in memory strength.

Previous work has shown that recency and repetition manip-
ulations modulate neural activity in the left inferior parietal cor-
tex (LIPC-AG), in the vicinity of the angular and supramarginal
gyri (LIPC-SMG; Yassa and Stark, 2008; Greve et al., 2010). A
number of recent human neuroimaging studies have shown that
activity in the angular gyrus (LIPC-AG) is sensitive to recency
in memory tasks (Nee and Jonides, 2008; Buchsbaum and
D’Esposito, 2009; Greve et al., 2010; Huijbers et al., 2010; Buchs-
baum et al., 2011a,b). These findings seem to be consistent with
functional neuroimaging studies showing enhanced LIPC-AG
activation during recollective forms of long-term memory re-
trieval, as assessed primarily by subjective measures of conscious
memory access (e.g., the remember/know paradigm; Hutchinson
et al., 2009; Johnson et al., 2013).

Here we propose that the reason LIPC-AG is sensitive to both
short-term recency and recollection from long-term memory is
because in both cases the retrieved memory is not merely strong
but is also contextually specific; that is, the reactivated memory
contains perceptual, temporal, spatial, or other information that
uniquely distinguishes it from other similar events. In contrast, be-
cause repetition may introduce multiple memory traces (Hintzman,
1988) that are embedded in a variety of encoding contexts (Martin,
1968; Melton, 1970; Xue et al., 2010), repetition promotes the for-
mation of strong memories that lack contextual specificity. Thus, we
propose that the LIPC-AG should be sensitive to manipulations of
recency, but not necessarily repetition.

To date, however, no study has compared the effects of repe-
tition and recency in a single functional neuroimaging study.
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Here we factorially manipulate these two variables to test whether
activation in the LIPC-AG is sensitive to the contextual specificity
of a retrieved representation rather than its overall memory
strength.

Materials and Methods
Participants. Twenty-three healthy subjects (14 females; age, 19 –30 years,
M � 22.5 years, SD � 2.9) gave informed consent according to proce-
dures approved by the Research Ethics Board of the Rotman Research
Institute. All were right-handed, fluent English speakers with normal
hearing. All had normal or corrected-to-normal vision, and had at least
13 years of education (M � 15.5 years, SD � 1.5). None of the subjects
had a history of neurological illness. Three subjects were eliminated from
statistical analyses due to poor performance (excessive rate of nonre-
sponding; �10% nonresponses) and an additional three subjects were
eliminated due to (�5 mm maximal displacement) head motion, leaving
17 subjects (9 females).

Experimental stimuli. A set of 334 two-syllable nouns was selected from
the MRC psycholinguistic database (Wilson, 1988). Relevant indices for
the word set are the following: familiarity: mean � 524.5, SD � 180.4;
average Kucera–Francis written frequency: mean � 87.1, SD � 107.3;
imageability: mean � 429.6, SD � 162.5. The initial 334 real words were
then used to create pseudowords by randomly selecting pairs of words
and swapping their first and second syllables to create pseudowords. For
example, the words “trellis” and “below” could be used to create the
pseudowords “trelow” and “bellis.” Using this method, a set of 300 pseu-
dowords was generated that preserved the bigram frequency character-
istics of the real words. Six participants then rated each of the
pseudowords on a scale of 1–5 as to how similar it was to a real English
word (1 � does not sound like a real word, 5 � sounds very much like a
real word). Pseudowords that were rated �2 SD above the “wordlike-
ness” mean were dropped from the stimulus list, leaving 276 pseudo-
words in the final set. All the words and pseudowords (610 in total) were
then converted to audio files using online text-to-speech software
Neospeech (female voice).

fMRI scanning methods. Functional and structural brain images were
acquired with a 3 tesla Siemens scanner using a 32-channel Siemens head
coil. All subjects were scanned over seven runs, each of which lasting 6
min and 52 s. There was a �1 min break between each of the seven scans
during which subjects awaited the next experimental block. The total
fMRI scanning time was 46 min and the experiment from beginning to
end was �1 h and 30 min.

Functional images were collected with a T2*-weighted echo-planar
imaging (EPI) sequence (302 time points, TR � 1370 ms; TE � 27 ms;
FOV � 225 mm; flip angle � 62°; 96 � 96 matrix). Image volumes were
acquired in 24 oblique axial slices (thickness � 3.5 mm; interslice gap �
0.4 mm; in-plane resolution � 1.88 � 1.88 mm). In addition, high-
resolution structural images were acquired with a T1-weighted
MP-RAGE sequence in 160 oblique axial slices (thickness � 1.0 mm;
in-plane resolution � 0.975 � 0.975 mm). Wedge sponges were used to
stabilize the head, minimizing head motion. The experimental paradigm

was programmed and presented using PXLab software (Hans Irtel, Uni-
versity of Mannheim, Mannheim, Germany), which ran on a Dell laptop.
Auditory stimuli were delivered via MR-compatible Avotec headphones.
Subjects also wore earplugs for additional sound attenuation of the scan-
ner background noise. Visual stimuli (instructions and fixation cross)
were presented on a rear-projection screen. Participants viewed the
screen via a mirror mounted inside the head coil and responded by
pressing two buttons on a four-button fiber-optic response pad (Current
Designs), which rested on their thigh, using their dominant (right) hand.

Experimental task. Subjects performed a continuous recognition par-
adigm with auditory–verbal stimuli (Fig. 1). During each of the seven
scanning runs, subjects were presented with a sequence of 100 words for
which they made a binary old/new recognition memory decision. The
stimulus onset asynchrony for the words was distributed uniformly over
the range 2.5–5 s. For each word in the sequence, subjects pressed the
right button on the response pad if the item was new (i.e., encountered
for the first time in the experiment) and the left button if the item was
judged to be old (i.e., previously encountered in the experiment). There
were three main experimental manipulations: word type, repetition
number, and lag. Word type refers to whether the item was a real two-
syllable English language word or a two-syllable pseudoword. Note that
the word type manipulation was not a central focus in this study, but was
included to ensure that lag and repetition effects would generalize across
pre-experimental familiarity with individual items. Repetition number
refers to the number of times the current item had already been pre-
sented, ranging from zero (first time, e.g., “new”) to six. Lag refers to the
difference in the ordinal position of the current item and the last time
that item was presented. For repeated items, lag could take on the follow-
ing values: 1, 2, 4, 8, 16, 32 (where lag 1 is an immediate repetition). For
new items, lag did not have a value. The full set of “old” trials formed a
two (word type) by six (repetition) by six (lag) factorial design. The set of
“new” items did not fit within this factorial structure and was treated as a
separate group of trials consisting of two conditions (“new word” and
“new pseudoword”). Fifty-four (27 words, 27 pseudowords) items re-
peated exactly six times during the experiment, and each repetition of a
given word was at a different level of the lag factor. There were therefore
6 � 54 � 324 trials involving an item repetition (46% of all trials). The
remaining 376 trials consisted of new items (half of which were real
words and half pseudowords). Items were sampled randomly from the
word and pseudoword stimulus pools so that not all subjects were pre-
sented with the exact same set of items.

A particular item never repeated at the same lag twice, and a repeating
item occurred at all of the lag levels exactly once. The ordering of the lags
for a repeating item was based on a random shuffling of the lag levels. For
example, if the word “bottom” was designated as a repeating item, it
would appear seven times: first as a new item and thereafter as an old item
where it would occur at a different lag for each of the 6 repetitions (e.g.,
2-32-1-16-4-8). Once a word had repeated six times, it would not appear
again during the experiment. To avoid having more of the initial repeti-
tions (e.g., repetitions 1 and 2) occur during the early part of the exper-
iment and the late repetitions (e.g., repetitions 5 and 6) occur at the end

Figure 1. Schematic overview of continuous recognition task. Two-syllable words and pseudowords were auditorily presented in a continuous stream separated by a variable duration
interstimulus interval (2.5–5 s). Each box represents a single auditory presentation of the depicted word, with the subscripts “n” and “r” indicating whether the item is novel or repeating,
respectively. Below the word is the condition label, where “R1” for example means “repetition number 1” and “R2, L1” means “repetition number 2 and lag 1.” The connecting lines above the boxes
show the temporal relation between repeating items.
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experiment, “repeating” words were introduced periodically throughout
the experiment. This was done in such a way as to minimize the relation
between the absolute serial position of items and repetition number. This
scheme produced an average correlation over all stimulus randomiza-
tions between trial number (1–700) and repetition number (1– 6) was
low (Spearman rank correlation: 0.08). As a consequence of this scheme,
however, a small proportion (4%; 28/700) of repetition trials crossed
over scanning run boundaries. Because this affected the absolute time
between these repetitions on these trials (but not the ordinal lag), they
were eliminated from all behavioral and fMRI analyses. Most of these
“cross-run” trials (75%) were of lag 16 and 32 and the remaining 25%
were from lags 1, 2, 4, and 8. Because these cross-run trials were removed
from all analyses the net effect was that there were somewhat fewer re-
maining analyzable observations at longer lags (e.g., 54 trials at lag 1; 40
trials at lag 32).

Finally, it should be noted that although this experiment has a large
number of nominal “conditions,” we used statistical analyses that gener-
ally treated both lag and repetition as continuous variables. Thus, we
were primarily interested in monotonic relationships between key-
dependent variables (BOLD, RT, accuracy) and the integer-valued inde-
pendent variables, lag and repetition. To take advantage of the
parametric nature of our design and to maximize power, we have avoided
categorical (e.g., ANOVA-based) analyses in favor of analyses in which
lag and repetition are entered as continuous measures.

fMRI data processing and statistical analysis. For each scanning run, 302
EPI images were obtained in DICOM format and exported using AFNI
(Cox, 1996) into NIFTI-1 format. For each subject, images were motion-
corrected and realigned to the mean image volume for the first run of the
session using the AFNI program 3dvolreg. Functional images were then
smoothed with a 5 mm full-width at half-maximum Gaussian kernel. All
statistical analyses were performed on these smoothed and realigned images.

Each subject’s high-resolution anatomical MP-RAGE scan was nor-
malized to Montreal Neurological Institute (MNI) stereotaxic space with
a nonlinear transformation using nonlinear symmetric normalization as
implemented in ANTS (Avants et al., 2008). An additional six-parameter
rigid-body registration between each subject’s mean functional image
was performed to derive a transformation between each subject’s native
EPI space and the subject’s high resolution anatomical image. For display
purposes, data from group analyses were projected on to a standard MNI
surface template (the fsaverage cortical surface from FreeSurfer; Dale et
al., 1999) using the AFNI program 3dVol2Surf and visualized using the
AFNI program SUMA.

Univariate statistical analyses of fMRI data. Single-subject analyses us-
ing the general linear model (GLM) were performed using the AFNI
program 3dDeconvolve. To increase the number of observations within
each cell and thus improve the precision of condition-wise parameter
estimates, we collapsed across repetitions 1-2, 3-4, and 5-6, respectively.

This yielded a regression model with 36 total conditions (6 lag � 3
repetition � 2 word type).

Each of the 36 conditions was modeled by convolving a hemodynamic
response function (SPM canonical function as implemented in AFNI)
with the onset and duration of the experimental events. An additional set
of five nuisance regressors (a constant term plus linear, quadratic, and
higher-order polynomial terms) was included for each scanning run to
model low-frequency noise in the time series data. Trials in which sub-
jects failed to respond, responded too quickly (�500 ms), or took too
long to respond (�3000 ms) were excluded from the main analysis and
modeled with a separate “error” regressor (between 4% and 6% of all
trials over subjects). All of the remaining trials were included, both cor-
rect and incorrect. The rationale for including all trials, rather than only
correct trials, is because of our primary interest was in tracking the rela-
tionship between independently manipulated variables (lag and repeti-
tion) and their relationship to behavioral and neural indices of memory
strength. Thus, if we were to only include correct trials, we would be
effectively examining trials for which memory strength was by definition
high, thus distorting our estimate of the relationship between the
independent variables of interest and memory strength; moreover,
this distortion would be disproportionate in the more difficult con-
ditions, i.e., those with longer lags and/or longer lags and a lower
number of repetitions.

Statistical contrasts at the single subject level were computed as
weighted sums of the estimated � coefficients divided by an estimate of
the SE, yielding a t statistic for each voxel in the image volume.

A priori ROI analysis. To examine activation in the portion of the
LIPC-AG that has previously been shown to be recency-sensitive, we
performed an ROI analysis. To avoid a selection bias in defining the area
of interest, we used MNI coordinates reported in a number of previous
functional neuroimaging studies showing recency effects in the LIPC-AG
(Buchsbaum and D’Esposito, 2009; Greve et al., 2010; Huijbers et al.,
2010; Kimura et al., 2010; Oztekin et al., 2010; Buchsbaum et al., 2011a;
Nee and Jonides, 2011) to define a priori ROIs for the left and right
hemispheres. This was done by taking the mean of all the coordinates
falling in the LIPC-AG from these studies and defining a spherical ROI
with an 8 mm radius around the coordinate centroid (left LIPC-AG: x �
�52, y � �57, z � 39; right LIPC-AG: x � 53, y � �50, z � 30). Left and
right ROI masks were then used to extract averaged values from spatially
normalized � images estimated in subject-specific GLM analyses.

Multivariate statistical analysis. To examine distributed patterns of
activation in the brain associated with experimental conditions we con-
ducted barycentric discriminate analysis (BADA) (Abdi, 2010) on the set
of spatially normalized � estimates from the single-subject GLM analyses
as an input data matrix. BADA is a multivariate statistical method that
decomposes a data matrix into orthogonal factors that capture the asso-
ciation between a set of J variables (voxels) and N categories (conditions;
Abdi, 2010; Abdi et al., 2012; Buchsbaum et al., 2012). Each observation
is represented by the 1 by J vector of the activation values of its voxels.
Then each category of interest is represented by the barycenter of its

Table 1. BADA analysis: locations of peak voxel loadings for PC1 (lag)

x y z Max Z-score N voxels Region

Positive loadings
�5 23 47 5.13 111 Cingulate gyrus
�32 32 8 3.92 16 Anterior insula

Negative loadings
19 56 35 6.37 371 Frontal pole
�38 29 47 5.52 76 Middle frontal gyrus
�20 59 29 5.08 47 Frontal pole
7 50 14 4.14 28 Paracingulate gyrus
28 20 �13 4.51 21 Frontal orbital cortex
25 26 53 3.53 19 Middle frontal gyrus
28 8 50 3.61 19 Middle frontal gyrus
49 �43 29 9.44 2634 Angular gyrus/superior temporal

sulcus
�59 �49 41 9.73 811 Supramarginal gyrus
1 �43 41 4.78 146 Precuneous cortex
�68 �25 �4 5.48 104 Middle temporal gyrus, posterior
�53 2 �34 4.50 31 Middle temporal gyrus, anterior

Table 2. BADA analysis: locations of peak voxel loadings for PC2 (repetition)

x y z Max Z-score Size Region

Positive loadings
�2 17 �1 4.85 59 Paracingulate gyrus
�2 38 �19 3.74 18 Frontal medial cortex
�11 53 2 4.09 16 Paracingulate gyrus
64 �28 32 4.49 45 Supramarginal gyrus

Negative loadings
�44 5 35 5.35 282 Middle frontal gyrus
1 26 53 5.80 210 Superior frontal gyrus
�32 26 �1 6.19 129 Insular cortex
37 23 �4 5.31 86 Insular cortex
�44 53 2 4.82 68 Frontal pole
�68 �31 2 4.20 25 Middle temporal gyrus
�44 �49 50 4.74 130 Lateral occipital cortex
�14 5 14 3.81 16 Thalamus
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observations (i.e., the weighted mean; the barycenter is also called the
center of gravity of the observations of a given category). A generalized
principal component analysis is finally performed on this category by
variable matrix. In the present case, the “observations” consist of the �
image maps for each of the 36 conditions in the experiment. The goal of
BADA is to discover reliable multivariate patterns of activation that best
explain the total variance in the set of activation images.

BADA gives a set of discriminant factor scores for the categories and a
set of loadings for the voxels. First, the number of significant components
is assessed by comparing the magnitude of the eigenvalues of the solution
to an empirical null distribution derived from 500 random permutations
of the data matrix, which is a standard number for multivariate analyses
of brain data (McIntosh and Lobaugh, 2004). Statistical significance for
the BADA components is determined using 500 bootstrap replications of
the original data matrix yielding pseudo Z-scores for both the factor

scores and voxel loadings (McIntosh and Lobaugh, 2004). Contrast vec-
tors encoding hypotheses of interest are correlated with the BADA-
derived factor scores to assess the extent to which significant components
derived from the BADA solution reflect one or another aspect of the
experimental design. By computing the bootstrapped correlation be-
tween a linear contrast vector parameterized by lag or repetition, we can
formally assess the association between the experimental manipulations
and the factors derived from the data-driven BADA solution. This allows
us to test whether the most important dimensions of the data in terms of
explained variance are related to the dimensions that comprise the fac-
torial structure of the experimental design (i.e., lag and repetition). Be-
cause BADA is based on PCA, one assumption of the technique is that the
data can be adequately decomposed into linear combinations of orthog-
onal factors, which may not be the case for all datasets.

Voxelwise analyses of lag, repetition, and memory strength. Although the
BADA is very sensitive to large-scale multivariate patterns in the data, it
may not be as sensitive to local activation patterns that are not part of a
correlated network. To derive an index of memory strength from behav-
ioral performance measures, we used a combination of RT and accuracy
data. Combining these measures made use of both speed and accuracy
data and because accuracy was near ceiling for lag 1 at all repetition levels,
the RT information provides additional information to optimally sort
the conditions in terms of memory strength.

Thus, we computed the rank order of mean RT over all conditions
(ranking each condition from lowest to highest) and accuracy (ranking
each condition from highest to lowest). To combine these two measures,
we first averaged these ranks together and then reranked these averages,
yielding a final nonparametric index of memory strength that could be
associated with each experimental condition (henceforth, “mem-
strength”) and was based on both RT and accuracy measures.

We then sought to identify regions in the brain whose activity profile
was better predicted by memstrength than either lag or repetition alone.
To achieve this we computed a voxelwise Spearman rank correlation
between each of the three variables (lag, repetition, and memstrength)
and each subject’s set of 36 � images (6 lag � 3 repetition � 2 word type).
At the group level, we then compared the three sets of within-subject
correlations for every voxel in MNI space to one another using paired t
tests on the Fisher Z-transformed correlations. To identify voxels in the
brain that were best modeled by one of the three variables we used two
criteria. First, to classify one of the variables as the “nominally best
model” for a voxel we required that it show a significant relationship
with the BOLD activity estimate ( p � 0.005, cluster extent � 18 voxels
as determined by Monte Carlo simulation using AFNI program
3dAlphaSim) and have a numerically larger mean correlation than both
of the other two measures. Second, to classify a variable as the “reliably
best model” we required that it show a significant correlation with the
fMRI signal on its own ( p � 0.005, cluster extent �18 voxels) and have a
significantly larger ( p � 0.005) average correlation than both of the other
two measures. This latter requirement was quite stringent because our
performance-based memory strength variable was necessarily correlated
with both lag and repetition independent variables. For that reason we
report results for three thresholds (nominal best model, reliably best at
p � 0.05, and reliably best at p � 0.005; see Table 3 and Fig. 7).

Results
Behavioral results
Before analyzing RT and accuracy, we first removed all trials for
which RT was �500 ms, �3000 ms, or trials in which a repeating
item crossed a scanning run boundary. We then performed a
linear mixed effects analysis with three independent variables:
word type (real, pseudo) and repetition number (1– 6), and log
lag (1, 2, 4, 8, 16, 32) as continuous variables, plus all higher-
order linear interactions. The “lag” variable was log-transformed
so that its relation to RT was more linear. This basic linear model
accounted for 84% of the variance of the group means. As rec-
ommended by Pinheiro and Bates (2000), we used bootstrap re-
sampling to assess statistical significance of the fixed effects terms
in the model. We performed 1000 bootstrap iterations, sampling

Table 3. Peak activations for correlations with lag, repetition, and memstrength

x y z N voxels Region

Positive correlations
Best Lag

13 65 11 261 Frontal pole
�38 26 38 232 Middle frontal gyrus
�23 65 20 41 Frontal pole
25 8 47 30 Middle frontal gyrus
37 62 �10 27 Frontal pole
31 20 �19 23 Frontal orbital cortex
46 11 �43 2701 Angular gyrus
�56 �49 5 764 Supramarginal gyrus
1 �52 32 94 Precuneous cortex
�71 �25 �16 75 Middle temporal gyrus
�53 �4 �40 24 Inferior temporal gyrus

Best Rep
1 38 �10 45 Paracingulate gyrus
58 �28 26 19 Supramarginal gyrus

Best memstrength
22 14 47 81 Middle frontal gyrus
4 56 26 72 Frontal pole
�29 26 44 40 Middle frontal gyrus
7 56 5 31 Frontal pole
�23 44 44 31 Frontal pole
�65 �46 26 55 Supramarginal gyrus
64 �31 29 22 Supramarginal gyrus
43 �58 17 127 Lateral occipital cortex
�32 �88 29 19 Lateral occipital cortex
�32 �7 �19 16 Amygdala

Negative correlations
Best Lag

28 �61 �1 17 Precuneous cortex
19 �100 11 37 Occipital pole

Best Rep
�47 20 14 228 Middle frontal gyrus
�50 20 �13 98 Insular cortex
�8 38 35 95 Superior frontal gyrus
58 23 17 77 Middle frontal gyrus
40 23 �10 57 Frontal orbital cortex
�41 50 �4 54 Frontal pole
52 �16 �4 110 Superior temporal gyrus
�65 �28 �4 78 Superior temporal gyrus
�59 2 �10 61 Superior temporal gyrus
49 11 �13 27 Temporal pole
�35 �49 35 123 Lateral occipital cortex

Best memstrength
13 35 23 225 Paracingulate gyrus
�50 20 20 96 Middle frontal gyrus
�32 29 �1 91 Insular cortex
34 17 �4 45 Insular cortex
�17 20 �22 18 Frontal orbital cortex

Buchsbaum et al. • Recency, Repetition, and Recognition Memory J. Neurosci., February 25, 2015 • 35(8):3544 –3554 • 3547



with replacement from subjects. Pseudo
Z-scores were then computed by dividing
the model coefficients by the SD of the
estimates derived from the bootstrap resa-
mpling procedure. Subjects were faster to
respond to real (mean RT � 1064 ms)
than to pseudowords (mean RT � 1100
ms) and this effect was statistically signif-
icant (Z � �4.73, p � 0.0001). Significant
linear effects of repetition number (Z �
�11.84, p � 0.0001) and log lag (Z �
17.63, p � 0.0001) were also observed.
There were also significant interactions
between the linear effect of repetition
number and log lag (Z � �2.39, p �
0.016), word type and log lag (Z � �2.72,
p � 0.006), and word type and repetition
number (Z � 2.17, p � 0.03).

We also assessed the percentage of
variance explained by lag and repetition
variables, computed separately for each
subject. The lag and repetition variables
accounted for an average of 16% (SD �
0.08) and 7% (SD � 0.04) of the RT vari-
ance, respectively. The average spearman
rank correlation between lag and RT was
0.43 (SD � 0.11) and �0.26 (SD � 0.08)
between repetition and RT. Thus, al-
though both lag and repetition had reli-
able effects on RT, the former explained
somewhat more total variance. Finally, we
tested whether a more complex model
with additional quadratic terms for both
lag and repetition would yield a better fit
to the data. Indeed, adding squared terms
for repetition number and log lag, plus all
higher-order interactions, yielded a better
model fit as evaluated with a likelihood ratio test (p � 0.001).
However, compared with the fully linear model the augmented
model explained only an additional 6% (from 84% to 90%) of the
variance in fits to the group means. The cell means for all RTs
with model fits from the augmented model are shown in Figure 2.

We also examined the accuracy data using a mixed effects logistic
regression model with resampling to assess statistical reliability of
model terms. This analysis revealed significant effects of log lag (Z �
�5.41, p � 0.0001) and repetition number (Z � 4.49, p � 0.0001)
and a nonsignificant effect word type (words more accurate than
pseudowords; Z � 1.45, p � 0.14); that is, however, in the same
direction as the corresponding RT effect. In contrast to the RT data,
none of the interaction terms reached statistical significance. Thus,
as expected, accuracy decreased as a function of lag and increased as
a function of repetition. Overall, collapsing across repetition and
word type, accuracy was near ceiling at 0.98 (proportion correct) for
lag 1 and decreased monotonically to 0.85 accuracy for lag 32. Like-
wise, collapsing over lag and word type, accuracy was at 0.98 for the
sixth repetition and decreased monotonically to 86% for the first
repetition.

fMRI data analysis
ROI analysis: LIPC-AG
To examine the effects of lag and repetition in the LIPC-AG, we
used left and right hemisphere 8 mm spherical ROIs defined
using MNI coordinates (see Materials and Methods) derived

from previous studies that have identified recency effects in the
parietal lobe (left LIPC-AG: x � �52, y � �57, z � 39; right
LIPC-AG: x � 53, y � �50, z � 30). These ROIs were then used
to extract parameter estimates from the GLM analyses conducted
at the single subject level. As with the analysis of behavioral RT
data, linear mixed effects models with bootstrap resampling were
then performed separately for left and right hemisphere ROIs to
test for statistical significance of the following model terms: log
lag, repetition, word type and all higher- order interactions. As
with behavioral analyses, both log lag and repetition were mod-
eled as continuous variables rather than as unordered factors. In
both hemispheres there was a significant linear effect of log lag
(left: Z � �6.15, p � 0.0001; right: Z � �4.16, p � 0.0001). On
the left side there was a significant log lag by repetition (Z �
3.009, p � 0.0043) interaction, and a trend for the same interac-
tion on the right (Z � 1.55, p � 0.12). No other effects were
statistically significant in either hemisphere. To further charac-
terize the lag by repetition interaction, we first averaged across
word type and hemisphere because both hemispheres showed a
similar interaction pattern. We then examined linear repetition
effects within each level of lag (1, 2, 4, 8, 16, 32) with a boot-
strapped linear mixed model. These follow-up analyses showed
that there was no linear repetition effect for lags 1, 2, 4, and 8, but
there was a significant effect at lag 16 (Z � 3.01, p � 0.004) and a
smaller and nonsignificant lag 32 (Z � 1.49; p � 0.13). Thus, for
the longest two lags there is a modest increase in activation as a

Figure 2. Model fits for response time data. Reaction time is plotted as a function of lag for each level of repetition and word
type. Model fits for pseudowords and real words are plotted on the left and right, respectively. Each repetition level is plotted in a
different color and lag is represented as a position along the horizontal axis. The solid lines represent the fits from a linear mixed
model analysis and the filled circles are the raw cell means. Data show a similar pattern of effects for real words and pseudowords.
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function of repetition, whereas for the earlier lags this effect is
absent. The location of the ROIs and the pattern of effects for lag
and repetition, averaged across word type and hemisphere, are
presented in Figure 3, which clearly shows an activity profile that
is dominated by the lag variable.

Multivariate analysis of fMRI data
To examine whether repetition and lag are dissociable in terms of
their distributed patterns of activation, we performed BADA on
the set of 36 (6 lag � 3 repetition � 2 word type) spatially nor-
malized � images. Permutation testing with 500 randomizations
showed that only the first two principal components (PC1 and
PC2) were significant at the 0.05 � level. To test for an association
between the two significant components and the experimental
design, we computed separate Spearman rank correlations be-
tween both lag and repetition and the two significant principal
components. Statistical significance was assessed using bootstrap
resampling (500 resampling iterations; McIntosh and Lobaugh,
2004) from the original data matrix, stratified by subject. This
yielded a distribution of correlations from which bootstrap ratios
were computed. PC1 was highly correlated with lag (Spearman
rank correlation � 0.83, Z � 21.6, p � 0.0001), but not signifi-
cantly correlated with repetition (Spearman rank correlation �
�0.06). PC2 was significantly correlated with repetition (Spear-
man rank correlation � 0.82, pseudo-Z � 23.07, p � 0.0001) but
not with lag (Spearman rank correlation � �0.15). Thus, as can
be seen in Figure 4, PC1 was strongly associated with lag and PC2
was strongly associated with repetition. The associated voxel
loadings for the two significant components are shown in Figure
5, revealing activation in the LIPC-AG extending in to the poste-
rior temporal cortex that was positively correlated with PC1; and
negative loadings in the anterior insula and middle frontal gyrus
(for a full listing of areas, see Table 1). PC2 was associated with
strong negative loadings in the anterior insula, dorsolateral pre-
frontal cortex, and superior temporal cortex, indicating de-
creased activation with increasing repetition (i.e., repetition
suppression). Positive loadings for PC2 were observed in the su-
pramarginal gyrus bilaterally and in the medial frontal cortex
(Table 2). The overall dissociation between components associ-
ated with lag and repetition in the multivariate structure of the

data, suggests that the two manipulations have their effect on
largely independent neural processes.

Whole-brain search for a region tracking “memory strength”
Although the foregoing multivariate analysis showed that lag and
repetition effects are captured by orthogonal components in the
full data matrix, it is nevertheless possible that activity in local
areas show some reliable sensitivity to both variables, and might
therefore be more closely associated with a general measure of
memory strength than either lag or repetition. To derive an index
of memory strength from behavioral performance measures, we
used a combination of RT and accuracy data as described in
Materials and Methods. The ordering of the conditions is visual-
ized in Figure 6, where one can see a very regular ordering of
memstrength across conditions such that the condition with the
highest memstrength is at lag 1 and repetition 6 (Fig. 6, largest
circle) and the condition with the lowest memstrength is lag 32
repetition 1 (Fig. 6, smallest circle).

We then sought to identify regions in the brain whose activity
profile was better predicted by memstrength than either lag or
repetition alone. To achieve this we computed a voxelwise Spear-
man rank correlation between each of the three variables (lag,
repetition, and memstrength) and each subject’s set of 36 � im-
ages (6 lag � 3 repetition � 2 word type). At the group level, we
then compared the three sets of within-subject correlations for
every voxel in MNI space to one another using paired t tests on
the Fisher Z-transformed correlations. To identify voxels in the
brain that were best modeled by one of the three variables we used
two criteria. First, to classify one of the variables as the nominally
best model for a voxel we required that it should show a significant
relationship with the BOLD activity estimate (p � 0.005, cluster
extent �18 voxels as determined by Monte Carlo simulation using
AFNI program 3dAlphaSim) and have a numerically larger mean
correlation than both of the other two measures. Second, to clas-
sify a variable as the reliably best model we required that it be
significantly correlated with the fMRI signal on its own (p �
0.005, cluster extent � 18 voxels) and have a significantly larger
(p � 0.005) average correlation than both of the other two mea-
sures. This latter requirement was quite stringent because our
performance-based memory strength variable was necessarily
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Figure 3. BOLD Activation as a function of lag and repetition in LIPC-AG ROI. A, ROIs for right and left hemispheres based on average coordinates from studies in the literature that have shown
recency effects in the lateral parietal cortex. B, Plot of activation as a function of lag (horizontal axis) and repetition (red line: repetition 1 and 2; orange line: repetition 3 and 4; yellow line: repetition
5 and 6) averaged across word type and ROI hemisphere. Rep, Repetition number.
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correlated with both lag and repetition in-
dependent variables. For that reason we
report results for three thresholds (nomi-
nal best model, reliably best at p � 0.05,
and reliably best at p � 0.005) in Table 3
and Figure 7.

The results show that the largest posi-
tive correlations were observed with the
lag variable in the LIPC-AG, bilaterally.
This relationship held even for the strict-
est significance cutoff. Negative repetition
effects (decreasing activity with increasing
repetition) were also observed in the infe-
rior and middle frontal gyrus, left intrapa-
rietal sulcus, and left and right superior
temporal cortices. These effects reflect repe-
tition suppression and were observed in
temporal lobe sites that replicate auditory–
verbal repetition effects shown in previous
research (Buchsbaum and D’Esposito, 2009).
A positive repetition effect was also seen
(nominal best model) in the left SMG (an-
terior to the positive lag effect), consistent
with the map of principal component
loadings for PC2 in the BADA analysis
(Fig. 5, PC2, orange colors). The anterior
insula and anterior cingulate cortex bilat-
erally were more strongly (negatively)
correlated with memstrength than either
lag or repetition, whereas a positive rela-
tion was observed (nominal best model)
in the SMG bilaterally and the bilateral
occipital cortex on the left.

Finally, we reran the correlation anal-
ysis for the repetition variable using � es-
timates from all six repetition conditions
(rather than collapsing across neighbor-
ing values, e.g., 1–2, 3– 4, 5– 6) to confirm
that our results were not distorted by av-
eraging over conditions. We found that
this analysis produced very similar results
and that correlation between the col-
lapsed and uncollapsed group statistical
maps were highly correlated across voxels
(Pearson correlation � 0.85).

Discussion
The aim of the present study was to inves-
tigate whether there is a common neural
substrate that captures variation in mem-
ory strength driven by both recency and
repetition. We confirmed the strong be-
havioral impact of recency and repetition
on recognition performance: both vari-
ables had large effects on both accuracy
and RT. In particular, as the number of
repetitions increased and lag decreased,
subjects’ behavioral performance im-
proved. Although both of these measures
had strong effects on behavioral performance, they had qualita-
tively different effects on patterns of brain activation. We showed,
using an a priori defined ROI analysis, that activation in the por-
tion of the LIPC-AG previously associated with recency, was here

largely due to the lag variable, although there was a significant
effect of repetition at lag of 16.

Multivariate analysis of the set of condition-wise activation
images with BADA revealed two significant orthogonal compo-
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nents. The first of these components was highly correlated with
lag (but not repetition), and the second was highly correlated
with repetition (but not lag). This finding accords well with be-
havioral research that has shown that human subjects can make
independent judgments about the frequency and recency of a
previously encountered item (Hintzman, 2010). The clear neural
dissociation between recency and repetition adds to this behav-
ioral evidence by showing that these two factors have qualitatively
distinct effects on distributed brain activity, rather than jointly
modulating activity in a single neural region or network.

Finally, we examined whether a measure of memory strength,
derived by rank-ordering mean behavioral performance across
all combinations of recency and lag conditions, was more
strongly correlated with voxelwise neural activity than with sim-
ple rank orderings determined by the independent variables lag
and repetition. We found that, with the exception of the anterior
cingulate gyrus and anterior insula, regions associated with cog-
nitive control and decision-making (Dosenbach et al., 2008;
Menon and Uddin, 2010), task-active brain areas were generally
more sensitive to the independent variables lag or repetition than
to the performance-derived composite measure of memory
strength. Thus, the frequently invoked concept of memory
strength may have little explanatory value when used generically,
that is, without reference to the particular experimental variables,
such as lag and repetition, that produce a change in memory
performance. We did observe some evidence for preferential sen-
sitivity (at the nominal significance level) to memory strength in
the SMG (Fig. 6, bottom row), near a region that has previously

been associated with the level of confidence in recognition mem-
ory (Moritz et al., 2006; Kim and Cabeza, 2009). However, the
strength of the correlation, although numerically greater, was not
reliably different from that of repetition or lag, and therefore
must be treated with caution.

Implications for the role of the parietal lobe in
memory retrieval
There is now a great deal of converging evidence from functional
neuroimaging research implicating the parts of the parietal lobe
in key components of memory retrieval. Indeed, understanding
the role of the parietal cortex in memory has become a pressing
matter in cognitive neuroscience research because of its seem-
ingly disproportionate importance in functional neuroimaging
studies compared with evidence from studies of patients with
lesions to the area (Berryhill et al., 2007; Simons et al., 2008;
Olson and Berryhill, 2009; Ciaramelli et al., 2010; Berryhill, 2012;
Hower et al., 2014). To date, most of the neuroimaging work has
focused on the relation between brain activity and behavioral
performance, or introspective judgments about the quality of a
retrieved (long-term) memory (e.g., hits vs misses, source mem-
ory attribution, remember/know judgments). It has been pointed
out, however, that reliance on subjective decisions the strength or
quality of retrieved memories has the drawback that they are
measured rather than manipulated variables (de Zubicaray et al.,
2011), and thus are susceptible to confounding factors, such as
item effects. Nevertheless, current empirical consensus is that the
LIPC-AG is most active when subjects are able to retrieve contex-

Figure 6. Plot of ranked memory strength variable for all factorial combinations of lag and repetitions. Plot shows the behaviorally derived memstrength variable that is based on the averaged
rank order of RT accuracy measures for all combinations of lag and repetition. Larger circles indicate higher memory strength, with the largest circle at lag of 1 and repetition 5 and 6 (top left circle
of plot) and the smallest circle at lag 32 and repetition 1 and 2 (bottom right circle in plot). For each condition, average accuracy (as percentage correct) and RT (in milliseconds) are displayed in the
bottom left of the cell.
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tual details about the encoded event
(Henson et al., 1999; Kahn et al., 2004;
Wheeler and Buckner, 2004; Wagner et
al., 2005; Yonelinas et al., 2005; Rissman et
al., 2010; Levy, 2012; Kuhl and Chun,
2014). In contrast, a more dorsally situ-
ated region in the intraparietal sulcus of
the parietal lobe has been shown to covary
with increasing familiarity ratings in the
absence of recollection (e.g., Vilberg and
Rugg, 2007).

As mentioned in the Introduction,
however, we and others (Nee and Jonides,
2008; Greve et al., 2010; Buchsbaum et al.,
2011a) have shown that the LIPC-AG is
highly sensitive to recency, especially
when the retrieved item is within the “fo-
cus of attention” (McElree and Dosher,
1989; Cowan, 2001), for example, in the
lag-1 condition of the present study. Thus,
any successful explanation of memory-
related activity should not restrict its
scope to long-term memory retrieval.
Rather, one should look for a common
explanation for the heightened activation
associated with recency and successful
recollection, as well as evidence from
other cognitive domains. One potential
interpretation of the common site of acti-
vation associated with (short-term) re-
cency and (long-term) recollection is that,
indeed, retrieval of a recent item is more
likely to involve recollection than retrieval
of a less recent item. According to this
view, recency effects and recollection ef-
fects as obtained in remember/know and
related paradigms are manifestations of
the same underlying process (Göthe and
Oberauer, 2008). Considered along these
lines, LIPC-AG sensitivity to lag may be a kind of “recollection
effect” that happens to occur at very short delays.

This explanation is complicated, however, by the general lack of
effect of repetition on LIPC-AG activation. For instance, it has been
shown that repetition of musical pieces (Gardiner et al., 1996) and
words (Jones and Jacoby, 2001) increase the likelihood that an item
is endorsed as “remembered” in a remember/know paradigm.
However, it has also been shown that mere repetition has a min-
imal cumulative impact on the specificity and precision of mem-
ory trace. For example, the phenomenon of “registration without
learning” reveals that repetition need not be associated with an
increase in the total number of features or details stored in a
memory trace (Hintzman et al., 1992; Sheffert and Shiffrin, 2003;
Kim et al., 2012). Thus, in contrast to judgments of frequency,
which increase monotonically with repetition, the ability to dis-
criminate a similar lure from a target item increases very little
after the initial presentation (Malmberg et al., 2004), a finding
that argues that the specificity of a mnemonic representation
does not invariably increase with item repetition. When attention
is directed in such a way as to encourage subjects to attend to
features of a stimulus, however, then repetition has a beneficial
impact on recollective memory. It is possible that in the present
study, because of the absence of “similar lures,” subjects fell into
a retrieval mode that relied on familiarity judgments, setting the

conditions for registration without learning to have occurred. As
we have shown previously (Buchsbaum et al., 2011b), however,
recency-related LIPC-AG effects are automatic, occurring even
when subjects were not attending to the recently repeated item.

Thus, registration without learning phenomenon may explain
the failure of repetition to increase activation in the LIPC-AG,
especially under our preferred interpretation that this region in-
dexes the degree of contextual specificity during mnemonic re-
trieval. It is useful here to observe that most definitions of
recollection, and episodic memory more generally, state that it
involves memory for what has happened at “particular places at
particular times” (Tulving, 2002). However, in the case of mem-
ory judgments for an item that has been encountered multiple
times within the experiment, then with respect to recollection of
a repeated item, one must ask, “Which time?” That is, which
particular repetition, which instance of experience, is recollected?
On the other hand, indeed, is it some mnemonic amalgamation
of the several repeated instances? We propose that in the case of
recent repeated items (e.g., lag 1 or 2), the answer to this question
is likely to be the last instance encountered. However, for longer
lag trials (e.g., 16 and 32), where the temporal distance (Glenberg
and Swanson, 1986; Brown et al., 2007) between successive rep-
etitions is larger, the probability that the most recently encoded
instance is recollected substantially decreases. Thus, the distinc-

Figure 7. Correlations between brain activity and lag, repetition, and memory strength. Top, Brain areas that are most highly
correlated with lag. Middle, Areas most highly correlated with repetition. Bottom, Areas most strongly correlated with memory
strength. Warm colors show brain areas that increase with recency, increase with repetition, and increase with memory strength.
Cool colors show the inverse correlations. Three levels of evidence are shown: Z � 0 indicates variables was the nominally best
model (numerically higher or lower correlation than other variables), Z � 1.96 and Z � 2. 8 indicate variable was reliably ( p �
0.05 and p � 0.005) better than the other two variables. For reference, the crosshairs on the top two surfaces (Lag) indicate the
location of the center of the LIPC-AG ROIs shown in Figure 3.
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tion between lag and repetition on activity in the LIPC-AG may
relate to the contextual specificity of the retrieved instance. Per-
formance increases associated with repetition may be explained
as a summation of several individually weak memory traces
(Hintzman, 1988) that together contribute to a context-free fa-
miliarity signal, whereas lag effects may be due primarily to the
predominance of a single strong memory trace that stands out
against background signal distribution.

In summary, we have shown that repetition and recency, two
factors that have large effects on memory performance, give rise
to dissociable patterns of activation in the brain. Furthermore, we
have shown that the LIPC-AG is sensitive to recency but not
repetition, a finding that supports the hypothesis that this area
indexes the degree of contextual specificity during memory
retrieval.
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