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Divisive Gain Modulation of Motoneurons by Inhibition
Optimizes Muscular Control

X Mikkel Vestergaard and X Rune W. Berg
Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen, Denmark

When using muscles, the precision with which force is delivered is as important as the delivery of force itself. Force is regulated by both
the number of recruited motoneurons and their spike frequency. While it is known that the recruitment is ordered to reduce variability
in force, it remains unclear whether the motoneuron gain, i.e., the slope of the transformation between synaptic input and spiking output,
is also modulated to reduce variability in force. To address this issue, we use turtle hindlimb scratching as a model for fine motor control,
since this behavior involves precise limb movement to rub the location of somatic nuisance touch. We recorded intracellularly from
motoneurons in a reduced preparation where the limbs were removed to increase mechanical stability and the motor nerve activity served
as a surrogate for muscle force. We found that not only is the gain of motoneurons regulated on a subsecond timescale, it is also adjusted
to minimize variability. The modulation is likely achieved via an expansive nonlinearity between spike rate and membrane potential with
inhibition having a divisive influence. These findings reveal a versatile mechanism of modulating neuronal sensitivity and suggest that
such modulation is fundamentally linked to optimization.
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Introduction
The nervous system has a remarkable ability to adapt to different
situations covering a large dynamic range (Carandini and Heeger,
2012). In the motor system, there are often only few motoneurons
available to control muscle contraction from twitches to forceful
movements. For instance, the human muscle medial gastrocne-
mius delivers tension from 0.63 to 203.5 g, i.e., a 300-fold dy-
namic range accomplished by a mere few hundred motoneurons
(Garnett et al., 1979). Motoneurons, which are outnumbered by
interneurons 1:5 in turtles (Walløe et al., 2011), are scarce con-
sidering the task of covering this large dynamical range. There-
fore, gain modulation of motoneurons could be beneficial, but
whether it occurs on the appropriate timescale and in a manner
that optimizes motor control is unknown.

Experiments suggest that variability of force is minimized
(Jones et al., 2002) and an optimal control theory (Harris and
Wolpert, 1998) suggests the variability in force during muscle
contractions, �F, scales with the force itself, F, such that the rel-
ative variability, �F/F, is approximately constant. A similar opti-
mization principle known as Weber’s law is widespread in

sensory systems. Here, perceptual sensitivity is kept constant
such that the “just noticeable difference” (�S) is proportional to
absolute stimulus intensity (S) and �S/S � constant. Weak stim-
uli can be differentiated better while still responding to strong
stimuli (Hatze, 1979).

How is such optimization implemented in the motor system?
The force is regulated both by the number of active motoneurons
and by their spike frequency. Variance in force is minimized
during recruitment by having an exponential increase of twitch
force across motor units (Fig. 1a). The motor units are recruited
in an orderly fashion from smallest to largest (Milner-Brown et
al., 1973; Fig. 1b). This is known as the size principle (Henneman
and Mendell, 1981; Mendell, 2005) and this allows adjustment of
weak force more precisely than strong force while keeping the
relative variability constant.

While sensory-motor processing is optimized according to
the minimum-variance principle, it is not known whether force
regulation by spike-rate modulation also follows this principle.
We conjecture that if spike-rate modulation is participating in
minimizing variance, then the gain, which scales the variability in
spike rates, would be modulated in proportion to force (Fig. 1c).
We tested this in motoneurons in turtles performing hindlimb
scratching. A skin nuisance can elicit a specific motor pattern for
the hindlimb to scratch the exact location. This requires fine
motor control, especially during the rub phase (Mortin et al.,
1985). The limbs were removed to ensure sufficient stability for
intracellular recordings, though the somatosensory system was
left intact. This allowed calculation of the spike-rate response to
current input (RI function) and neuronal gain. We tested
whether neuronal gain was modulated on subsecond timescales.
Further, we investigated whether gain modulation enhances
force control. Finally, we investigated mechanisms behind gain
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modulation, especially the role of inhibition, since it has recently
been implicated to be present on motoneurons during muscle
contraction in both cats (Johnson et al., 2012) and turtles (Pe-
tersen et al., 2014).

Materials and Methods
Integrated preparation. Sixty-three adult red-eared turtles (Trachemys
scripta elegans) of both sexes were used in this study. Each animal was
placed on crushed ice for 2 h to ensure hypothermic anesthesia, then
killed by decapitation and blood substituted by perfusion with a Ringer’s
solution containing the following (in mM): 120 NaCl, 5 KCl, 15 NaHCO3,
2MgCl2, 3CaCl2, and 20 glucose, saturated with 98% O2 and 2% CO2, pH
7.6. The carapace containing the D4 –D10 spinal cord segments was
isolated by transverse cuts as described previously (Alaburda and
Hounsgaard, 2003; Alaburda et al., 2005) and the cord was perfused with
Ringer’s solution through the vertebral foramen via a steel tube and
gasket pressing against the D4 vertebra. The surgical procedures comply
with Danish legislation and were approved by the controlling body under
the Ministry of Justice.

Electrophysiology. Each scratch episode lasted �20 s. A new trial was
initiated after a 5 min rest. Electroneurogram (ENG) recordings were
performed with suction electrodes of the hip flexor nerve and dD8 at the
level of D9 –D10 vertebrae. The ENGs were recorded with a differential
amplifier Iso-DAM8. The bandwidth was 300 Hz–1 kHz. The transverse
cut was performed at the caudal end of D10 of the spinal cord to get access
to the motoneurons. For most cells, intracellular recordings were made
with sharp electrodes (�40 – 60 M�) but for a subset of cells they were
made with whole-cell patch electrodes (�6 M�). Sharp electrodes were
filled with a mixture of 0.9 M potassium acetate and 0.1 M KCl. Patch
electrodes were filled with the following (in mM): 122 K-gluconate, 5
Na2-ATP, 2.5 MgCl2, 300 � 10 �3 CaCl2, 5.6 Mg-gluconate hemi Mg salt,
5 K-HEPES, 5 H-HEPES, 103 KOH, and 1 EGTA. In most experiments,

the electrodes also contained 4% w/v biocytin. All experiments were
conducted in current-clamp mode with a Multiclamp 700B amplifier
(Molecular Devices). Data were sampled at 10 kHz with a 16 bit analog-
to-digital converter, controlled and displayed with Clampex software.
Glass pipettes were pulled on a P-1000 (Sutter Instruments). Motoneu-
rons were accessed from the surface at a typical depth of 50 –300 �m.

Identification of motoneurons. Motoneurons were mainly identified by
their location in the ventral horn, size (via Rm), size of action potentials,
and spiking relation with nerve activity. A subset was filled with biocytin
for histological processing. The tissue containing the motoneuron was
carefully removed and left in PBS with 4% paraformaldehyde for 24 – 48
h. The tissue was then rinsed with and stored in PBS. The tissue section
was mounted in an agar mount and sliced into several 100 �m slices
using a microtome (Leica, VT1000 S). The slices were incubated for 3– 4
h at room temperature with cyanine-3 conjugated (Cy3) to streptavidin
(1:500 or 1:250; Jackson ImmunoResearch) in blocking buffer (PBS with
5% donkey serum and 0.3% Triton X-100). The slices were washed with
PBS and incubated overnight at 4°C with primary choline acetyltrans-
ferase (ChAT) antibodies and goat anti-ChAT antibodies (1:500;
AB144P, Millipore) diluted in blocking buffer. The slice was washed
three times with PBS and incubated for 1 h at room temperature with the
secondary antibody Alexa488 conjugated to donkey anti-goat antibodies
(1:1000; Jackson ImmunoResearch Laboratories) diluted in blocking
buffer. After three washes with PBS, the slice was mounted and cover-
slipped using ProLongGold antifade reagent (Invitrogen) and cured
overnight at room temperature before microscopy. Micrographs were
produced using a confocal microscope, Zeiss LSM 700 with diode lasers,
on a Zeiss Axiolmager M2 using a 20�/0.8 Apochromat objective (Zeiss).
The fluorophores were excited/detected at the following: Cy3 at 555 nm/
559 –700 nm, Alexa488 at 488 nm/405–544 nm, and DAPI at 405/420 –
700 nm. The pinhole was 35 �m, resulting in an optical section of 2 �m.
For all the channels a 5 � 6 mosaic was made. During the z-stack of Cy3
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Figure 1. Ordered recruitment and gain modulation according to minimal variance principle. a, The innervation number, i.e., the number of muscle fibers a given motoneuron innervates (twitch
force) in a typical muscle (human first dorsal interosseous muscle; Feinstein et al., 1955; Enoka and Fuglevand, 2001). Left, The innervation number is increasing exponentially with the ordered
motoneuron number. Right, The distribution of innervation numbers among motor units. b, The cumulative muscle force ( F) produced by an ordered recruitment is also exponentially shaped and
the slope represents the variability in force (�F ). c, A single motoneuron can regulate force around its mean activity (magenta dot) by changing its discharge rate. If the gain is linear (broken line),
there is a growing mismatch between both the force (shaded area) and the gain, i.e., the slope, compared with the curve of minimum variance. This mismatch can be eliminated by adjusting gain
such that gain � force, which is the prediction of the present study.
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fluorescence, 15 optical slices with slight overlap gave a total optical
section of 28 �m. A maximum-intensity projection of the Cy3 z-stack
was done and superimposed on the DAPI and Alexa488 image. The DAPI
and Alexa488 image was taken in the middle of the Cy3 z-stack. Images
were handled with ZEN 2011 software (Zeiss) in the LSM and 8 bit TIFF
format.

Evoking scratch-like behavior. To activate the scratching motor pattern,
mechanical touch was applied to the carapace by a fire-polished tip of a
bent glass rod mounted to the membrane of a loudspeaker (Alaburda et
al., 2005). The stimulus was controlled by a function generator (TT2000,
Thurlby Thandar Instrument) and the stimulus was given as a 10-s-long
sinusoidal movement. Stimuli were applied on the border of the carapace
marginal shields M9 –M10 and the soft tissue surrounding the hindlimb.
This area is the receptive field for pocket scratching (Mortin et al., 1985).

Data selection criteria. Some of the data (12 of 63 motoneurons) used
in the present study have been part of previous published investigations,
where they were analyzed in a different context for a different purpose
(Berg et al., 2007, 2008). Out of the collected data, 25 neurons were used
for the main analysis and seven were used for the strychnine experiments.
Thirty-five cells recorded as part of the main study had to be discarded
according to the following reasons. To perform the analysis, the scratch
motor pattern had to contain �2 cycles. The number of cycles varied
from turtle to turtle and could also vary from trial to trial, but rarely with
	1 cycle. These cycles had to have a larger variance between cycles than
their variance across trials, such that any covariance among ENG record-
ings and gain could be established. If cycles had larger variance across
than within trials, they were excluded from the analysis. This was typi-
cally the last cycle. The average number of removed cycles was 0.92 cycles
per trial per animal. The total number of cycles per trial varied from 3 to
10 across animals and the average number of included cycles based on the
above criteria per trial across animal was 5.7 cycles. The quantitative
criteria for removing cycles from the trials are based on the rectified and
filtered ENG peak-cycle values across and within trials, which we indicate
ENGij. The indices refer to the ith trial and jth cycle. The mean for cycle j
is �j � �i
1

N ENGij/N, where N is the total number of trials. Similarly,
the mean cycle ENG for trial i is �i � �j
1

K ENGij/K, where K is the
number of cycles. The trial variance of cycle j, �j

2, and the variance of ENG
across cycles averaged over trials, �cycles

2 , respectively are estimated as
follows:

� j
2 �

1

K�i
1

K

�ENGij��i�
2 (1)

�cycles
2 �

1

KN�
i
1

K �
j
1

N

�ENGij�� j�
2 (2)

For a cycle j to be excluded from the analysis, the trial variance had to
be larger than the variance in ENG within a trial, i.e., � j

2 � �cycles
2 (see

Fig. 3c).
In some preparations a covariance was not possible to detect either

because too few recorded trials were available to establish statistics, or the
network activity across trials was unstable, or the intracellular recording
was prevented by electrode rectification and instability. These issues were
often decided by the researcher during the experiment without rigorous
quantification. Electrode impedance was typically 40 – 60 M�. In the
strychnine experiments, some cells had to be discarded for the above
reasons or because of insufficient response to strychnine application,
likely depending on the depth-recording electrode and flow rates.

Strychnine experiments. Ringer’s solution flowed from rostral toward
caudal direction through the spinal canal of the animal, which was placed
upside down so that the solution was flowing against gravity. A micro-
tube was placed close to the cut surface to locally support the area with a
different flow of Ringer’s solution with phenol red dye for visual inspec-
tion. Once the experiment was ready, strychnine (strychnine hydrochlo-
ride, Sigma-Aldrich) was added to this second flow (10 �M), thus only
affecting a few cells on the surface where the intracellular recording elec-
trode was placed. Datasets where strychnine was applied were selected
based on the effect on the membrane potentials (Vms) following the
application. If the presence of clear IPSPs vanished or the distribution of

Vm had a depolarizing shift following the application of strychnine, the
data were included in the population. If there was no such effect, the
recorded cell was assumed to be too deep below the surface for the su-
perfusion medium to reach, and the data were excluded.

Data processing. All estimation and data processing was done in Matlab
(version 2012b, Mathworks). All correlation coefficients were calculated
as Pearson product moment correlation coefficients. The linear fits (see
Figs. 2, 4 – 6) were generic least square fits performed with Matlab pro-
cedures, including their 95% confidence limits (see Figs. 2d, 4d,e). When
correlating the gain with the mean Vm (see Fig. 5a,b), which was averaged
over a 200 ms time window around the peak Vm, some cells could be
hyperpolarized enough to avoid spikes. For the cells that could not be
hyperpolarized enough, spikes were instead removed from the trace as a
compromise, for which the mean was estimated. The spikes were re-
moved 2 ms before and 15 ms after the spike peak. To determine whether
there was a significant increase in slope and intercept following strych-
nine application (see Figs. 8, 9), binomial statistics were applied. The
cycles and cells were classified as having either a decrease or an increase
(above or below the unity line) such that the population revealed an
increase/decrease (Berg et al., 2008). If no effect were present, the obser-
vations (before vs after strychnine) should have equal probability ( p 

0.5) of being above or below the unity line. Therefore, the mean value of
the fraction of increase should be at 50% (see Figs. 8, 9) with an SE given
by Berg et al. (2008) as follows:

SE � �p � �1 � p�/k � �0.25/k (3)

where k is the number of observations. The 95% confidence limits are
then 1.96 � SE.

Spike-rate estimation and ENG filtering. The time-dependent firing
rate was estimated by kernel estimation. First the spikes were identified
by threshold. The exact time was defined to be the peak of the spike. A
kernel k(t) was convolved with the spike times x(t) to estimate the firing
rate as a function of time as follows:

rate�t� � �
��

�

x�t � t��k�t��dt� (4)

We used the Gaussian kernel as follows:

k�t� �
1

�2�w
e�

t2

2w2 (5)

with a bandwidth w 
 40 ms, except in Figure 5, where it was w 
 50 ms.
The same kernel was used to characterize the ENG activity, where the
measured nerve signal was rectified and filtered using the Gaussian ker-
nel with a bandwidth of w 
 75 ms.

Spike intensity versus Vm. The metric we use for estimating the spike
intensity as a function of Vm is the following. First we empirically deter-
mined the Vm distribution before the spike (1.5–1.7 ms prior). Then we
normalized this distribution with the total amount of time spent at each
Vm value. This is the probability of getting a spike within a small time
window for a given Vm. This is defined as the spike intensity as a function
of Vm (Jahn et al., 2011), analogous to intensity of a Poisson process, and
is approximately the spike rate when the spiking can be considered a
renewal process. The shape of the spike intensity is highly nonlinear with
upward curvature. This is often referred to as expansive nonlinearity
(Hansel and van Vreeswijk, 2002; Miller and Troyer, 2002; Murphy
and Miller, 2003). An exponential R�Vm� � ce	Vm was fitted to cap-
ture the curvature, where the curvature is represented in the exponent
	, which have units of 1/mV, and c is a constant of units 1/s. Such
expansive nonlinearities have also been investigated in the visual cor-
tex, where they are often characterized as a power–law relationship,
i.e., R�Vm� � k�Vm � Ea�


, where 
 is the scaling parameter, often
ranging from two to five (Hansel and van Vreeswijk, 2002; Miller and
Troyer, 2002). This exponent is also a measure of the expansive curvature
of the nonlinearity. We also fitted a power law to the spike intensity for
comparison (see Fig. 6 B, C). The question of whether a power-law fit is
better than an exponential (Jahn et al., 2011) is difficult to answer, since
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�2 orders of magnitude of data are required to make a clear distinction
between the two. The curvature dependence on synaptic fluctuations was
assessed by the SD of the distribution of Vm traces before the spike in the
diffusion regime, i.e., where there was no link to the Vm and the spike
occurrence. This distribution was chosen 15 ms before the spike (see Fig.
6A). The analysis and fits were performed in Matlab with generic fitting
functions.

Results
Subsecond gain modulation of motoneurons
To investigate whether the input/output (IO) gain of motoneu-
rons is being modulated, we recorded intracellularly from mo-
toneurons. Small injected constant current was used as input to
imitate the summation of many synaptic currents and the spike
rate was defined as the output. Motoneurons were often identi-
fied via histological colocalization of the recorded cell (stained
red with biocytin) and ChAT-positive cells (green) in the ventral

horn (Fig. 2a). During the scratching motor behavior, these cells
received rhythmic synaptic input from a premotor network (Fig.
2b), while the injected current was constant (Iinj 
 0 nA in this
case). The scratching motor program was initiated by a tactile
stimulus delivered on the skin (onset is indicated by a triangle).
We initiated the scratching motor program over multiple trials
with different constant current injections and estimated the peak
spike rate for each cycle (Fig. 2c). The peaks were used since they
were well defined in time and therefore gave the smallest variabil-
ity across trials (Fig. 2c, cycle 2). The peak spike rate could then be
plotted for each cycle and current injection (Fig. 2d). This formed
the basis for estimating the RI function of each cycle, which per-
mitted verification of a systematic modulation of gain from cycle
to cycle. Though the slope of the RI function is likely not constant
for all input, we suggest that the injected current represented only
a small perturbation such that a linear response is a valid approx-
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imation. We therefore quantified the gain as the slope of the
linear fit in the RI function (shown in gray). We found that the
motoneuron gain was different from cycle to cycle [(Fig. 2d,e,
compare broken lines (d), bars (e)].

To compare gain modulation across motoneurons, which
may have different biophysical properties, we quantified the ex-
tent of gain modulation using the metric gain span, which we
defined as the maximum minus minimum gain normalized by
the mean. The neuron had relatively large span of 41% (Fig. 2e).
We repeated the experiment and analysis for a population of
motoneurons (n 
 25) and found that the gain modulation of the

sample cell was in the lower end. The gain
span across the population was from 40 to
200% [Fig. 2f, sample cell location indi-
cated (�)]. As a more conservative alter-
native to gain span, we used the coefficient
of variation (CV), i.e., the SD of gain nor-
malized by its mean. The CV across the
population had a range from 20 to 100%
(Fig. 2g). These results indicate that neu-
ronal gain was modulated from cycle to
cycle in all spinal motoneurons. Since the
cycle period was often �1 s the process
responsible for the gain modulation must
have dynamics on a timescale of �1 s. For
this reason, we characterize the modula-
tion as subsecond gain modulation.

Gain modulation optimizes motor
control
What would be the purpose of having
such a large range of motoneuron gain?
Since neuronal gain is the amplification of
the spike-rate output to a given synaptic
input, the same input variability will be
amplified to a larger spike-rate variability
for high-gain conditions compared with
low-gain conditions. The spike-rate vari-
ability of motoneurons is converted into
variability in muscle force (�F; Diderik-
sen et al., 2012), so higher gain in the
motoneuron is associated with higher
variability in force. When the motor sys-
tem is optimized to keep the relative vari-
ability constant (�F/F � constant), we
would expect less variability in the spike
rate when the total force is low compared
with when the total force is high. Thus, the
gain of motoneurons, which represents
the amplification of fluctuations from the
premotor system to fluctuations in force,
should correlate with the total force (Fig.
1c), i.e.,

gain � force (6)

Our prediction is therefore that a mo-
toneuron participating in controlling a
stronger force will have a steeper gain
function than when participating in con-
trolling a weaker force (Fig. 1c). The force
was quantified as the rectified and filtered
motor nerve ENG, since this signal repre-
sented the motoneuron population activ-

ity. The ENG signal likely contains the activity of different kinds
of motor units, including the fast-twitch fatigable, fast-twitch
fatigue-resistant, and slow motor units, which all have different
muscular properties (Burke, 1981). A distinction between the
classes is not necessary in the present study since the crucial as-
sumption applies to all motor units. The assumption is a mono-
tonic relationship between the ENG activity and the output force,
i.e., the stronger the nerve activity the larger the force. A mono-
tonic relationship between rectified and integrated ENG/electro-
myogram and force is well established (Burke, 1981; Henneman

b

a

c

Excluded cycles

2 sec

1 2 3 4 5 6 7 8 9 10

EN
G

 [A
.U

.]

0.6

0.8

1.0

1.2

1.4

Trial A

Trial B

Trial C

Trial D

Tr
ia

l V
ar

ia
nc

e 
[A

.U
.]

0

2

4

6

Cycle number

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Excluded cycle

Figure 3. Motor pattern activity induced by repeated tactile stimulation is highly reproducible across trials. a, Hip flexor nerve
activity of four consecutive trials of scratching shows modulation of ENG, i.e., a force correlate, across cycles, but marginal trial
variability. Peak of filtered overlay (white) is metric for trial comparison. b, The modulation of force across cycles is measured in
terms of trial-averaged ENG with small error bars (SD) compared with the cycle-to-cycle modulation. c, The variance of ENG
activity across trials is small compared with the cycle-to-cycle variance (broken line), except for cycle 10, which has a larger
trial-to-trial variance and is therefore excluded from the analysis (a, striped region).

Vestergaard and Berg • Gain Modulation Optimizes Motor Control J. Neurosci., February 25, 2015 • 35(8):3711–3723 • 3715



and Mendell, 1981; Fuglevand et al., 1993; Enoka and Fuglevand,
2001). The relationship is even linear for muscles with homoge-
neous fiber-type composition (Guimaraes et al., 1994).

We tested the hypothesis of a gain � force relationship by
relating the motoneuron RI gain with the ENG as a surrogate for
force. The ENG was regulated from cycle to cycle intrinsically by
the network during the complex pattern of motor behavior (Fig.
3a). Though the ENG changed from cycle to cycle within a trial,
the pattern was remarkably similar across trials (Fig. 3a, compare
cycles across trials). The peak value of the nerve activity in each
cycle was averaged across trials and their low SD revealed a highly
reproducible modulation of the ENG across episodes (Fig. 3b).

We used the low variance across trials as a measure of how repro-
ducible the pattern was in comparison with the variance of mod-
ulation within a trial. If the trial-to-trial variance (�j

2) was larger
than the cycle-to-cycle variance (�cycles

2 ), the cycle was excluded
from the analysis (Fig. 3c). In those cases, it was always the last
cycle(s) (Fig. 3a, striped area). The Vm of a corresponding mo-
toneuron was simultaneously recorded for each trial with differ-
ent input current (Fig. 4a,b, cycle 2 highlighted in green) to
estimate the RI function for each cycle (Fig. 4c), as described
previously (Fig. 2b,c). The ENG in each cycle was compared (in
arbitrary units) with the corresponding gain for the first three
cycles, which indicated a covariation (Fig. 4d). We plotted the
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gain for the first nine cycles against the corresponding force
(ENG) and found a significant correlation between the two (Fig.
4e); hence, gain is indeed proportional to force, as hypothesized.
A significant majority (n 
 22 of 25) of the population also had
positive correlation coefficients (Fig. 4f). Hence, the neuronal
gain was modulated in a manner consistent with a minimization
of the effects of variance by keeping the relative uncertainty con-
stant (Hatze, 1979; Senn et al., 1997; Jones et al., 2002).

Relationships among gain, spike rate, and Vm

Though integrative properties of motoneurons have been inves-
tigated extensively (Perrier and Hounsgaard, 2000; Rekling et al.,
2000; Hultborn et al., 2003; Heckman et al., 2009), it is unclear
how the gain observed in the present study was being modulated,
especially since it was too swift to involve neuromodulators. Nev-
ertheless, we noticed that the mean Vm was different from cycle to
cycle just as the gain was, and these could potentially correlate. To
investigate such a correlation, it was necessary to estimate the
mean Vm in the absence of spikes, since spikes biased the mean to
larger values. To circumvent this bias, we estimated the mean Vm

in two ways. First, we removed the spikes from those trials with
few spikes and time-averaged the Vm over a small window on the
peak of each cycle. Second, we cleared the spikes altogether by
injecting a hyperpolarizing current and then time-averaged Vm

over a window on the peaks. The mean Vm in the latter method
should have more negative values, but this will not affect the
correlation measure. Results of both estimates showed a positive
correlation with the gain of the corresponding cycle (Fig. 5a,b).
We also tested this for the population of motoneurons and the
majority (n 
 17 of 22) had a similar positive correlation (Fig. 5c,
top). The negative correlation for a subset of cells (n 
 3 of 22)
was attributable to their zero or negative correlation between gain

and ENG signal (indicated with stars). We
were unable to explain the negative cor-
relation in the remaining two cells. The
second way of estimating the mean Vm

had smaller sample size, but similar
trend (Fig. 5d).

One mechanism that has been fre-
quently suggested as a possible means for
modulating gain on short timescales in-
volves synaptic “background fluctuation”
(Ho and Destexhe, 2000; Chance et al.,
2002). If a similar mechanism were
responsible for modulating the gain of
motoneurons, we should also see a rela-
tionship between gain and the fluctua-
tions in Vm. An increasing level of
fluctuations will lead to smaller gain, so
we would expect a negative correlation
between gain and fluctuations. We tested
the hypothesis and it was not compatible
with our data, since the correlation coeffi-
cient had no consistent trend (Fig. 5c,d,
bottom). This is perhaps not unexpected
because the fluctuations would have to
decrease as the force level and mean syn-
aptic input increase, making synaptic
fluctuations to control gain difficult to
implement in the motor system. This is
problematic to reconcile with the previ-
ous finding of signal-dependent noise in
the motor system (Harris and Wolpert,

1998; Jones et al., 2002; Faisal et al., 2008; Watanabe et al., 2013)
and the general increase in Vm fluctuation for increasing synaptic
input (Kolind et al., 2012). Last, the synaptic fluctuations are
expressed as the variance in Vm, which is the second moment.
Second moments are notoriously difficult to determine, and fluc-
tuations would therefore be an inaccurate parameter to commu-
nicate in motor networks.

Instead, we suggest the increase in IO gain could be explained
by an expansive nonlinearity (Hansel and van Vreeswijk, 2002;
Miller and Troyer, 2002) between spike intensity and mean Vm

(Fig. 6a,b). An expansive nonlinearity is a class of nonlinear func-
tions like power laws and exponentials. This type of function has
an upward increase in curvature such that an interval on the
x-axis is expanded on the y-axis. Synaptic fluctuations can create
this expansive nonlinearity between Vm and spike rate by broad-
ening the threshold into the subthreshold domain (Miller and
Troyer, 2002; Mitchell and Silver, 2003). The larger the fluctua-
tion in Vm, the weaker the nonlinearity consistent with the hy-
pothesis that increased “background fluctuations” cause lower
gain (Hô and Destexhe, 2000; Chance et al., 2002). We observed
this effect as a mild negative correlation between fluctuations in
Vm and curvature of the expansive nonlinearity (Fig. 6c). Theo-
retical studies have shown that the expansive nonlinearity be-
tween spike intensity and mean Vm makes gain modulation
possible by changing the mean synaptic input without requiring a
change in fluctuations (Hansel and van Vreeswijk, 2002; Miller
and Troyer, 2002; Silver, 2010). If the gain modulation observed
in the present study was conducted by adjusting Vm, we should
see a correlation between the two, which we did (Fig. 5).

In this part of the analysis, we used the metric spike intensity
(Fig. 6b) as a better alternative to spike rate, since the relationship
between spike rate and Vm is ill defined when Vm is repeatedly
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reset after spikes. The spike intensity is the empiric probability of
obtaining a spike in a small time window for a given Vm, and this
probability is an expression of the neuronal sensitivity (Jahn et al.,
2011). It is estimated as the distribution of Vm before the spike in

the triggered histogram (Fig. 6a, green histogram) normalized by
the total time spent at each Vm (gray histogram). This is similar to
the spike rate when spiking can be approximated as a renewal
process. The spike intensity had a magnified sensitivity to excit-
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atory synaptic potentials with increasing mean Vm (Fig. 6b; Han-
sel and van Vreeswijk, 2002; Miller and Troyer, 2002). Because of
this magnification in sensitivity to Vm, and the correlation between
gain and Vm (Fig. 5), we suggest that mean Vm is the primary deter-
minant of the gain modulation observed in the present study.

Concurrent inhibition reduces Vm and spike rate
What are the important factors determining the mean Vm? The
mean Vm is set not only by excitatory synaptic input, but also by
the inhibition. Prior experiments have shown that motoneurons
often receive both excitation as well as inhibition simultaneously
during motor behaviors (Parkis et al., 1999; Saywell and Feld-
man, 2004; Berg et al., 2007; Johnson et al., 2012; Petersen et al.,
2014). Our next objective was therefore to manipulate the synap-
tic input to verify a causal link between Vm and gain. Since exci-
tation is necessary for the spiking output, manipulating
inhibition was more relevant. We chose to investigate the glycin-
ergic inhibition, since glycine is the primary inhibitory neu-
rotransmitter in the spinal cord (Rekling et al., 2000). The
competitive antagonist strychnine was applied locally to the cut
surface at the caudal end of the spinal cord. We then tested the
effects of the strychnine application and found that the spike rate
had a sizable increase (Fig. 7a, blue trace). This increase was
quantified by a rightward shift in the probability density function

(PDF) of the spike rates (Fig. 7b) and a
downward shift in the cumulative distri-
bution (Fig. 7c). The shift was measured
across the population of motoneurons as
the largest vertical difference between the
curves, i.e., the Kolmogorov–Smirnov
two-sample test statistic. The spike-rate
increase was significant in all cells (inset).
Similarly, when the glycinergic inhibition
was reduced, the PDFs shifted toward
higher values (Fig. 7d,e). Together, these
data suggest that inhibition adjusts the
spike rate and Vm and therefore could be
involved in modulating the gain of mo-
toneurons (Hansel and van Vreeswijk,
2002; Murphy and Miller, 2003).

The flow of strychnine solution was
carefully controlled such that it would af-
fect only the recorded motoneuron and
few premotor neurons in the surface. Of
the few premotor interneurons, we expect
only few, if any, to project to the recorded
motoneuron. Since most synaptic input
has widely distributed origins in rostral
segments (Berkowitz and Stein, 1994; Gu-
zulaitis et al., 2014), indirect side effects,
such as disinhibition of excitatory premo-
tor neurons and other motoneurons, were
therefore negligible. This was also evident
from the nerve activity, since it did not
increase (Fig. 7a). In this sample data
there was even a decrease in nerve activity,
which was attributable to general trial
variability or desensitization of the net-
work. In the majority of experiments,
there was no notable difference in ENG
(data not shown).

Divisive modulation by inhibition
In the previous section we used strychnine to manipulate the
synaptic input and indirectly control Vm, but a potential causal
link between Vm and the neuronal gain was not addressed. To tease
apart the effects of inhibition and Vm on the motoneuron gain, we
classified the modulation as either subtractive (rightward shift) or
divisive, i.e., decreasing the slope (Murphy and Miller, 2003; Sil-
ver, 2010). The reduction in inhibition via strychnine would have
opposite effects, i.e., additive and multiplicative (Fig. 8a). We
tested the additive/subtractive effects by plotting the abscissa in-
tercept for all cycles of each motoneuron before versus after the
application of strychnine (Fig. 8b). If there was a consistent de-
crease, there should be more points below the unity line than
above (broken line). We tested this and found an approximately
even distribution above compared with below. This suggests that
there was no clear increase or decrease of the set point of the RI
curve associated with reduction in inhibition. However, when the
same analysis was repeated for gain, there was significantly more data
points above the unit line (Fig. 8c). In summary, the fraction of
points above unity line had no significant difference regarding the
additive/subtractive modulation, whereas there was a significant in-
crease in the slope (Fig. 8d), which suggests a divisive rather than
subtractive role of inhibition.

Next, we wanted to investigate the IO gain using a different
input than injected current. Since the ENG activity represents the
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common activity of the motoneuron pool
(Senn et al., 1997), we used this activation as
a proxy for the common synaptic excitation
to motoneurons. This measure is also
more robust against variability in network
activity, e.g., desensitization of the re-
sponse to the tactile activation. We there-
fore performed an alternative analysis,
now keeping the injected current constant
and measuring the spike rate as a function
of ENG activity (RN function). The RN
function of a sample motoneuron is
shown before and after strychnine appli-
cation (Fig. 9a). Again, we tested the in-
tercept before and after strychnine by
plotting them against each other for all
cycles of all motoneurons to assess the po-
tential subtractive effect of inhibition
(Fig. 9b). Similarly, we tested whether the
effect of inhibition was divisive versus
multiplicative (Fig. 9c). We counted the
fraction of points above versus below the
unity line and found no significant change
in intercept. Nevertheless, there was a sig-
nificant increase in gain (Fig. 9d), suggest-
ing again that inhibition has primarily a
divisive effect. Together these results
demonstrate the following: (1) that there
is a causal link between gain modulation
and Vm and (2) that glycinergic inhibition
has a role in adjusting the integrative
properties of motoneurons.

As a control to verify that the seal of the
nerve recording did not change over time,
the background ENG level was measured
for all trials in all motoneurons and plot-
ted before and after application of strychnine. There was no sig-
nificant different between number of points above versus below,
suggesting that the background level did not change (Fig. 9d).

Discussion
In this study, we have addressed the presence, purpose, and
mechanism of gain modulation in spinal motoneurons. We
found first, that the gain can be modulated from cycle to cycle
often on a subsecond timescale. Second, we found that this mod-
ulation is correlated with the magnitude of force in accordance
with optimal control theory (Hatze, 1979; Harris and Wolpert,
1998; Todorov, 2004; Faisal et al., 2008) where the relative vari-
ability (�F/F) is constant throughout the dynamic range. Third,
the gain modulation is likely accomplished via an expansive non-
linearity by adjusting the mean Vm, where inhibition has a divi-
sive influence.

Gain control of neurons in the nervous system
Active gain modulation of motoneurons has been investigated,
especially in connection with slow neuromodulatory effects (Re-
kling et al., 2000; Miles et al., 2007; Heckman et al., 2009; Wei et
al., 2014), but whether gain modulation participates in optimal
motor control is still unresolved (Johnson and Heckman, 2014).

Neuronal gain modulation has been observed in other systems
(Mitchell and Silver, 2003; Silver, 2010; Wilson et al., 2012; Po-
lack et al., 2013), and the link to physiology has often been sug-
gested in connection with processing of sensory input. For

instance, normalization of tuning curves in primary visual cortex
is likely to be beneficial in widening the dynamic range of visual
sensation (Carandini and Heeger, 2012). Also, rescaling of sensi-
tivity to changing contrasts in sound is likely beneficial in audi-
tory processing (Rabinowitz et al., 2011). For motoneurons, the
receiver of the axon projections is well defined and the purpose of
each action potential is unambiguous. This offers a unique op-
portunity to establish a clear connection between modulation of
neuronal gain and physiology. In the present study we suggest
that there is such a link since the observed gain modulation is
performed in a manner that increases precision of force, similarly
to the way orderly recruitment of motor units optimizes control
of force (Stein et al., 2005).

Gain modulation is traditionally considered to be performed
by a separate system, e.g., either a “background synaptic activity”
(Hô and Destexhe, 2000; Chance et al., 2002) or a neuromodula-
tory input (Rekling et al., 2000), with the sole purpose of modu-
lating sensitivity to a driving input (Silver, 2010). Our findings
suggest that the mean Vm itself could work as gain modulator by
increasing sensitivity of synaptic potentials via the expansive
nonlinearity. This is akin to the correlation observed between
membrane depolarization during different cortical states and the
gain of layer 2/3 neurons (Polack et al., 2013), though metabo-
tropic modulation also has an influence. In this way, the observed
modulation is not a gain modulation in the traditional sense, but
rather a dynamical adjustment by both the intensity and ratio of
synaptic excitation and inhibition from the premotor network
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(Murphy and Miller, 2003). This type of input could be generated
by a simple recurrent architecture where feedforward and feed-
back excitation and inhibition is widespread. The potential ben-
efit of modulating gain in this simple way could be to abolish the
need for central orchestration and instead let the local network
adaptively adjust sensitivity.

Other mechanisms of gain modulation, such as neuromodu-
latory input from the brainstem, can activate voltage-sensitive
channels causing persistent inward currents and plateau poten-
tials in motoneurons (Hounsgaard and Kiehn, 1989; Perrier and
Hounsgaard, 2000; Heckman et al., 2009). This will likely amplify
the expansive nonlinearity in spike output and make it even more
sensitive to the Vm. The extent of this effect is dependent on the
mixture of excitation and inhibition (Kolind et al., 2012; Pow-
ers et al., 2012), and the synaptic conductance can suppress the
otherwise prominent intrinsic response properties (Alaburda
et al., 2005). Another suggested mechanism to be in play in the
motor system relates to the hypothesis of “recruitment gain”
of the motoneuron pool, where the range of thresholds for the
different motoneurons in the pool can be compressed or ex-
panded, depending on the motor task (Kernell and Hultborn,
1990).

Inhibition in the spinal cord
The observation that inhibition has a substantial influence on
motoneurons during muscle contraction has been documented
previously in control of turtle hindlimbs (Berg et al., 2007) and
rat respiratory system (Parkis et al., 1999; Saywell and Feldman,
2004; de Almeida and Kirkwood, 2010), and during voluntary
precision wrist/grip movements in monkeys (Takei and Seki,
2013; Wu and Perlmutter, 2013). Where does the inhibition
come from? One possibility is recurrent inhibition, which is om-
nipresent in the CNS (Windhorst, 1996). The most evident ex-
ample is the reflex circuitry involving the Renshaw interneuron,
which is an inhibitory interneuron that is activated by a mo-
toneuron axon collateral. These interneurons provide recurrent
inhibition directly onto the motoneurons and, it has been sug-
gested, are involved in the divisive modulation of motoneuron
gain (Hultborn et al., 1979). It has recently been shown in anes-
thetized cats that excitation and inhibition onto motoneurons is
balanced in a “push–pull” fashion when the synaptic input comes
from proprioceptive feedback, which is induced externally by
stretched muscles (Johnson et al., 2012). In the present study, we
address gain modulation when the synaptic input is provided
primarily by a central pattern generator with little or no propri-
oceptive feedback. It is relevant to note that inhibitory feedback
via Renshaw interneurons is unlikely to be important in the turtle
since motoneuron axon collaterals have not been reported
(Ruigrok et al., 1984). Recurrent connection within this network
could explain the balanced excitation/inhibition input to mo-
toneurons (Petersen et al., 2014), though the connectivity is
largely unknown. The simplest network motif that could explain
balanced excitation/inhibition is feedforward excitation/inhibi-
tion within the spinal premotor circuit, which has been reported
(Parker, 2003). The most common pattern of evoked synaptic
input to cat lumbar motoneurons has been found to be a sequen-
tial mixture of excitation/inhibition when activating pathways
from mesencephalic locomotor regions in the midbrain (Noga et
al., 2003), which also indicates the existence of such a feedfor-
ward excitation/inhibition motif. Generally, simple circuitries
with recurrent feedforward/feedback connections among the

premotor neurons, where a fraction projects to the motoneu-
rons, could also explain the balanced excitatory and inhibitory
input to motoneurons.

Precision of scratching movement
In the present study we use the scratching behavior of turtles to
address gain modulation of motoneurons. The specific motor
behavior is referred to as “pocket scratching” (Stein, 2005). Here,
the knee is rubbing against the rostral pocket region between the
carapace and the hindlimb attachment, which consists mainly of
soft skin. This skin has high sensitivity such that the motor re-
sponse can be adjusted to carefully direct the knee to the specific
location of nuisance tactile stimulation. In cyclic movement, the
knee is first moved forward to rub against the location, referred to
as “the prerub phase,” then retracted back during the “postrub
phase” to restart the cycle (Field et al., 1997). In the present study
we address gain modulation of motoneurons belonging to the hip
flexors, which have to exert a force of high amplitude and preci-
sion during the prerub and rub phases. This is contrary to the hip
extensors, which are active in the postrub phase, where they re-
tract the limb ballistically without a particular target. The move-
ment in the postrub phase has high variability, whereas the
prerub and rub phases have low variability (Mortin et al., 1985).
Therefore the motor control of hip flexors are expected to require
higher accuracy than the hip extensors, and therefore suitable
gain modulation of the hip flexor motoneurons is likely more
critical.

Experimental limitations
The preparation used in this study made it possible to estimate
motoneuron properties in an in vivo-like situation (Keifer and
Stein, 1983). The estimation of gain was based on two approxi-
mations. First, the current injections are a valid proxy for synap-
tic input. Synaptic currents are induced by changes in membrane
conductance, whereas injected current through an electrode is
not associated with any change in membrane conductance. Nev-
ertheless, the difference between synaptic current and injected
current is minor when the injected current is small compared
with the total ongoing synaptic current. The ongoing synaptic
currents are quite large in turtle spinal neurons during motor
activity, since their conductance often increases several-fold
(Alaburda et al., 2005; Berg et al., 2007). Second, the variability of
the scratch reflex is small from trial to trial compared with the
variability from scratch cycle to scratch cycle in each trial. If the
approximation of small trial-to-trial variability does not apply, it
would be harder to estimate the gain and establish a correlation
with the muscular force. Despite the potential shortcomings of
these approximations, a significant and positive correlation be-
tween gain and force was found, which suggests that the gain
modulating effect would be even more pronounced for the true
IO function and for larger force applications.
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Watanabe RN, Magalhães FH, Elias LA, Chaud VM, Mello EM, Kohn AF

(2013) Influences of premotoneuronal command statistics on the scaling
of motor output variability during isometric plantar flexion. J Neuro-
physiol 110:2592–2606. CrossRef Medline

Wei K, Glaser JI, Deng L, Thompson CK, Stevenson IH, Wang Q, Hornby
TG, Heckman CJ, Kording KP (2014) Serotonin affects movement
gain control in the spinal cord. J Neurosci 34:12690 –12700. CrossRef
Medline

Wilson NR, Runyan CA, Wang FL, Sur M (2012) Division and subtraction
by distinct cortical inhibitory networks in vivo. Nature 488:343–348.
CrossRef Medline

Windhorst U (1996) On the role of recurrent inhibitory feedback in motor
control. Prog Neurobiol 49:517–587. CrossRef Medline

Wu G, Perlmutter SI (2013) Sensitivity of spinal neurons to GABA and
glycine during voluntary movement in behaving monkeys. J Neuro-
physiol 109:193–201. CrossRef Medline

Vestergaard and Berg • Gain Modulation Optimizes Motor Control J. Neurosci., February 25, 2015 • 35(8):3711–3723 • 3723

http://dx.doi.org/10.1007/s00359-004-0568-6
http://www.ncbi.nlm.nih.gov/pubmed/15452660
http://www.ncbi.nlm.nih.gov/pubmed/15861181
http://dx.doi.org/10.1523/JNEUROSCI.4032-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23678127
http://dx.doi.org/10.1038/nn1309
http://www.ncbi.nlm.nih.gov/pubmed/15332089
http://dx.doi.org/10.1523/JNEUROSCI.3938-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21325510
http://dx.doi.org/10.1152/jn.00073.2013
http://www.ncbi.nlm.nih.gov/pubmed/24027105
http://dx.doi.org/10.1523/JNEUROSCI.1855-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25232107
http://dx.doi.org/10.1038/nature11347
http://www.ncbi.nlm.nih.gov/pubmed/22878717
http://dx.doi.org/10.1016/0301-0082(96)00023-8
http://www.ncbi.nlm.nih.gov/pubmed/8912393
http://dx.doi.org/10.1152/jn.01081.2011
http://www.ncbi.nlm.nih.gov/pubmed/23076104

	Divisive Gain Modulation of Motoneurons by Inhibition Optimizes Muscular Control
	Introduction
	Materials and Methods
	Results
	Subsecond gain modulation of motoneurons
	Gain modulation optimizes motor control
	Divisive modulation by inhibition
	Discussion
	Gain control of neurons in the nervous system

	Inhibition in the spinal cord
	Precision of scratching movement
	Experimental limitations
	References

