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Developing neuronal networks display spontaneous bursts of action potentials that are necessary for circuit organization and tuning. While
spontaneous activity has been shown to instruct map formation in sensory circuits, it is unknown whether it plays a role in the organization of
motor networks that produce rhythmic output. Using computational modeling, we investigate how recurrent networks of excitatory and inhib-
itory neuronal populations assemble to produce robust patterns of unidirectional and precisely timed propagating activity during organism
locomotion. One example is provided by the motor network in Drosophila larvae, which generates propagating peristaltic waves of muscle
contractions during crawling. We examine two activity-dependent models, which tune weak network connectivity based on spontaneous activity
patterns: a Hebbian model, where coincident activity in neighboring populations strengthens connections between them; and a homeostatic
model, where connections are homeostatically regulated to maintain a constant level of excitatory activity based on spontaneous input. The
homeostatic model successfully tunes network connectivity to generate robust activity patterns with appropriate timing relationships between
neighboring populations. These timing relationships can be modulated by the properties of spontaneous activity, suggesting its instructive role
for generating functional variability in network output. In contrast, the Hebbian model fails to produce the tight timing relationships between
neighboring populations required for unidirectional activity propagation, even when additional assumptions are imposed to constrain synaptic
growth. These results argue that homeostatic mechanisms are more likely than Hebbian mechanisms to tune weak connectivity based on
spontaneous input in a recurrent network for rhythm generation and robust activity propagation.
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How are neural circuits organized and tuned to maintain stable function and produce robust output? This task is especially
difficult during development, when circuit properties change in response to variable environments and internal states. Many
developing circuits exhibit spontaneous activity, but its role in the synaptic organization of motor networks that produce rhythmic
output is unknown. We studied a model motor network, that when appropriately tuned, generates propagating activity as during
crawling in Drosophila larvae. Based on experimental evidence of activity-dependent tuning of connectivity, we examined plau-
sible mechanisms by which appropriate connectivity emerges. Our results suggest that activity-dependent homeostatic mecha-
nisms are better suited than Hebbian mechanisms for organizing motor network connectivity, and highlight an important
difference from sensory areas. j
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where it triggers correlated synaptic release from neighboring axonal
terminals (Katz and Shatz, 1996; Tritsch et al., 2007; Huberman et
al., 2008; Feller, 2009). This timing information is evaluated by post-
synaptic neurons to sharpen their connectivity profile through Heb-
bian plasticity and thus improves network function during this early
phase of circuit development.

Locomotor circuits also generate spontaneous activity during
embryogenesis in many organisms, including chick, mouse, fish,
and fly (O’Donovan, 1999; Hanson and Landmesser, 2004; Crisp
etal., 2008; Kirkby et al., 2013). These circuits are not topograph-
ically organized, yet endogenous activity patterns and synaptic
release are required for coordinated motor behavior to develop
(Crisp etal., 2011; Warp et al., 2012; Giachello and Baines, 2015).
In Drosophila, motor neurons receive variable amounts of pre-
synaptic input, suggesting that connectivity is plastic and ac-
quires functional patterns in a homeostatically regulated manner
(Tripodi et al., 2008; Couton et al., 2015). The underlying mech-
anisms that might evaluate this early spontaneous activity and
establish appropriate neuronal connectivity are unclear.

Computational modeling offers an efficient approach to expl-
ore the nature of the mechanisms that could underlie activity-
dependent tuning of connectivity in a generic motor network that
achieves a particular function. Here we study the organization of one
such motor network that generates rhythmic behavior, the ventral
cord locomotor network of Drosophila larvae. Larvae crawl by peri-
staltic waves of muscle contractions, which propagate along their
body axis (Berni et al., 2012; Heckscher et al., 2012). These coordi-
nated waves travel from posterior to anterior during forward
locomotion, and from anterior to posterior during backward loco-
motion. The locomotor behavior is produced by central pattern gen-
erators, which are segmentally repeated and modulated by sensory
feedback, but can produce coordinated output even when sensory
neurons are removed (Suster and Bate, 2002; Fox et al., 2006; Crisp et
al., 2008). Mature crawling behavior of Drosophilalarvae is preceded
by uncoordinated, yet neurally controlled, muscle contractions and
incomplete peristaltic waves during late embryogenesis, which grad-
ually improve coordination before hatching (Suster and Bate, 2002;
Crisp et al., 2008). Manipulating endogenous activity during this
period can significantly affect the output of the circuit, suggesting
that this activity helps to refine connectivity (Crisp et al., 2011; Gi-
achello and Baines, 2015).

We previously established a model for wave propagation,
which produces propagating activity patterns with appropriate
timing as during crawling in Drosophila larvae (Gjorgjieva et al.,
2013). Although distinct connectivity parameters were shown to
produce propagating waves of activity, the solution regions are
complex (Gjorgjieva et al., 2013; their Fig. 5), and it is unclear
how they arise during development. Here, we examine two
different activity-dependent mechanisms, which can tune net-
work connectivity during development: (1) a Hebbian plasticity
model, where coincident activity between neighboring neuronal
populations strengthens connections between them; and (2) a
homeostatic model, where synaptic connections are modified to
maintain a constant level of excitatory postsynaptic activity based
on spontaneous input. We show that homeostatic mechanisms
are more appropriate than Hebbian mechanisms to organize
connectivity in these motor networks. We demonstrate the case
by comparing peristaltic wave properties for the two models
based on the final configuration of network connectivity pro-
duced by the models. We also demonstrate the robustness of
activity-dependent tuning of connectivity by varying the proper-
ties of spontaneous activity to predict how manipulations of this
activity during embryogenesis might impact output of the ma-
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Table 1. Network parameters for wave propagation®
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“Default parameter values for the model simulations.
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ture network. Thus, our work highlights the relative importance
of homeostatic mechanisms for establishing functional connec-
tivity in developing motor networks, in contrast to sensory net-
works where connectivity is more tightly constrained enabling
the formation of accurate sensory maps.

Materials and Methods

Network model. The network model was based on the interaction of
recurrently coupled excitatory and inhibitory populations to produce
robust propagation of activity with appropriate timing relationships
as observed experimentally during crawling in Drosophila larvae
(Gjorgjieva et al., 2013). Such unidirectional propagation of activity is
also observed in other experimental systems (see Discussion). Our model
is an abstraction of neural circuits that might generate larval crawling and
captures the observed coordination at the segmental level. The model
contains eight coupled units of excitatory and inhibitory populations to
represent the activity in the eight abdominal segments of the larva (see
Fig. 1A).

The activity in each segment was modeled with a Wilson-Cowan unit
(Wilson and Cowan, 1972), consisting of two neuronal populations: ex-
citatory ( E) and inhibitory (I). These two populations represent the joint
activity of all central neurons in the central pattern generator circuit for
crawling but are sufficiently general to represent excitatory and inhibi-
tory neurons in other systems. The differential equations for the time-
dependent variation of averaged excitatory and inhibitory neuronal
activities are as follows:

ek = —E+ (ky — E) Gp(aE + ¢l + P,,) (1)
ml = —I+ (k,—I) G/(eE + fI), (2)

where the functions G and G, represent sigmoidal response functions of
the excitatory and inhibitory neuronal populations given by the
following:

1 1
1+ exp[—A(x — 0)] T+ exp(A6)

G(x) = (3)
where A represents the maximum slope of the sigmoid (or if G represents
an activation function, it denotes the speed of activation) and 6 repre-
sents the location of the maximum slope (or the threshold for activation)
(Table 1). This function was chosen so that G(0) = 0 ensuring that E = 0
and I = 0 is a steady-state solution in the absence of external input
(Wilson and Cowan, 1972). The terms k and k; denote the maxima of the
response functions for the excitatory and inhibitory populations (Table
1). The time constants 7, and 7; control decay of excitatory and inhibi-
tory activities after stimulation, and determine the timescale of network
activity. The connectivity coefficients a (or e) and c (or f) represent the
average number of excitatory and inhibitory synapses per cell in the
excitatory (or inhibitory) population, respectively. The time-varying
function P, (f) denotes the external input applied to an excitatory pop-
ulation. To test whether the mature networks have sufficiently strong
connections between segments to propagate a wave, waves were initiated
by providing constant input P,,, = 1.7 to the most posterior (anterior)
segment for forward (backward) waves. During development in both
Hebbian and homeostatic models, P,,, (f) was a time-dependent func-
tion representing the spontaneous input into each segment (see below).

To model wave propagation, we coupled eight Wilson-Cowan E-I
units. Two types of connections were created between neighboring seg-
ments. First, bidirectional excitatory connections (b) between excitatory
populations of neighboring segments allow activity to propagate along
the segments. Second, inhibitory connections (d) from the inhibitory
population in one segment to the neighboring (anterior and posterior)
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excitatory populations terminate activity in each previously active seg-
ment and ensure unidirectional wave propagation (see Fig. 1). This net-
work was equipped with symmetric bidirectional connectivity such that
forward and backward propagating waves were generated with similar
properties, consistent with experiments (Gjorgjieva et al., 2013). We list
example parameter values that generate a functional wave in Table 1.

A “contraction” in the model was defined as suprathreshold activity
(activity above a threshold, 0.2 or 0.3) of the excitatory population (see
Fig. 1B, inset, horizontal dashed line). Such contractions were used to
implement the activity-dependent weight refinement in the Hebbian and
homeostatic development models. We examined the timing relation-
ships between neighboring segments during propagating waves of su-
prathreshold activity in the model by analyzing two quantities: The duty
cycle was the total time that each excitatory activity is suprathreshold
relative to the wave duration. The interburst interval was the time from
the initiation of suprathreshold activity of one segment to the initiation
of suprathreshold activity of the neighboring segment, normalized by
wave duration.

Weights are labeled with a superscript “f” or “b” to denote their re-
spective role in forward or backward wave propagation, but they are both
present in the network at all times (see Fig. 1). Thus, there were 28
modifiable weights: seven b} weights connecting E,, to E; seven b
weights connecting E; to E;,, ,; seven d; weights connecting I, to E;,, ,; and
seven d> weights connecting I, to E;, where i = {1, ... 7}.

The model was initialized with weak connectivity incapable of gener-
ating waves. We considered two scenarios: (1) All the weights started
identically b = —d = 2; this was 10% of the values used to generate robust
waves (Gjorgjieva et al., 2013). (2) The weights were independent ran-
dom samples drawn from a uniform distribution in the range between 0
and 5 for excitatory weights, and —5 to 0 for inhibitory weights. The final
value of the weights was somewhat dependent on the initial conditions;
and in general, the steady-state weights showed greater variability when
starting from random initial conditions. However, the stability of the
weights was unaffected. The other weights within the same segment (a, c,
e, and f) were kept fixed as in Table 1. All parameters were dimensionless,
and time in the model was measured in arbitrary time units (t.u.).

Developmental time. For both activity-dependent models, simulations
of development were conducted for a total time of 2 X 10° t.u. The total
simulation time depends on the time constant of weight update, the
nature of spontaneous activity, and how spontaneous activity changes
during development. The notion of “developmental time” in the model is
useful in describing the gradual improvement of coordination in the
activity patterns of the developing network.

Generating spontaneous activity. As there is little quantitative charac-
terization of spontaneous activity in the Drosophila motor network dur-
ing development, here we made simple approximations to generate
spontaneous activity. Inputs of strength R, for duration T; were applied to
each excitatory population E; (see Fig. 1). When the spontaneous input
into a given population E; was sufficiently strong, E; became suprathresh-
old. At the time of threshold crossing, activity-dependent mechanisms
become active to modify the weights. The duration of each spontaneous
input, T, was a random number drawn from a uniform distribution,
U(x;,, x,), determining the total time for which the input of strength R;
was applied to E; before choosing a new spontaneous input. Sampling the
duration of spontaneous input from a distribution ensured that neuronal
activity in different populations crossed threshold at different times as we
did not want to introduce correlations in spontaneous activity. Because
network connectivity is recurrent, the network itself generates a signifi-
cant proportion of activity when the weights are sufficiently strong. This
automatically generates correlations between the activations of neigh-
boring segments, even though spontaneous activity itself is uncorrelated.
The strength of spontaneous input, R;, was also a random number; this
input was applied to E; for time T,. We used a truncated Gaussian distri-
bution with mean yw and variance %, [N(u, 0)];, to ensure that sponta-
neous input remained positive.

The parameters of the distribution for T; did not greatly affect the
frequency of suprathreshold events in a given excitatory population (data
not shown). In contrast, R; had a strong effect upon the frequency of
threshold crossings in the model network. This was partially because
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weights were modified precisely at the time when population activity
crossed threshold. Therefore, we explored the effect of the distribution of
R; on the outcome of weight development in the two plasticity models.

During development of Drosophila embryos, frequent random activity
uncoordinated across segments gradually becomes replaced by coordi-
nated activity ranging across several neighboring segments, with all con-
traction activity ceasing shortly before hatching when the larva emerges
from the egg shell and starts to crawl (Crisp et al., 2008). This is consistent
with a model where spontaneous activity decreases during development.
To model this effect, we considered decreasing either the mean or the
variance of the Gaussian distribution for R;. In the Hebbian model, we
decreased the SD in steps; however, the model was insensitive to how
spontaneous activity was reduced. The homeostatic model was also ro-
bust to the decrease of spontaneous activity, although the speed of de-
crease of spontaneous activity affected the speed at which weights
stabilized.

The Hebbian bidirectional model. Weight updates followed the rate-
based formulation of Hebbian plasticity: if presynaptic precedes postsyn-
aptic activity, then the corresponding weight is potentiated or else the
weight is depressed (see Fig. 2 A, B). For any two populations connected
by a weight, the activity that crossed threshold first was presynaptic. For
instance, if E;,, crossed threshold before E, then bf was potentiated,
whereas b was depressed. To implement potentiation, a small constant,
A, >0, was added to the weight as follows:

bi(t + Af) = bi(t) + AL (4)

and similarly, if the constant for weight depression was denoted by
A_>0, b:-’ weakened:

Bt + Ar) = () — A_. (5)

Unless otherwise noted, A, = A_ = 0.1.IfE, crossed threshold before
E,. ,, then b strengthened:

Bt + Ar) = bX(1) + AL (6)
and b} weakened:
bi(t + At) = bi(r) — A_. (7)

For the inhibitory weights, if I; crossed threshold before E,. ,, then d(f)
strengthened:

df(t + A =di() — A, (8)
whereas if E;, , crossed threshold before I,, then df(f) weakened:
it + A0 =diH) + A_. 9)

And, similarly, if I, crossed threshold before E, then d’(f)
strengthened:

APt + Ar) = dP(1) — A, (10)
whereas if E; crossed threshold before I, ;, then d(f) weakened:
AP(t+ Ar) = dP(1) + A_. (11)

For a weight to be modified, activity of the presynaptic and postsynaptic
populations connected by the weight had to be simultaneously suprath-
reshold. Weight changes were applied immediately after the second of
the two populations connected by the weight crossed threshold. How-
ever, the model was robust to this requirement, and the weight could also
be updated as the activity of each population dropped below threshold.
The Hebbian efficacy model. In the Hebbian efficacy model, synchro-
nous threshold crossing of activity in neighboring populations re-
sulted only in weight potentiation and no depression. To ensure that
weights did not grow without a bound, weight increase was limited by
the frequency of contraction of the neuronal populations connected
by the synaptic weight. Such activity-dependent control of the
weights was motivated by the regulation of activity-dependent de-
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pression in developing motor networks (Fedirchuk et al., 1999; Crisp
et al., 2008).

To implement this activity-dependent synaptic depression, a “synaptic
efficacy” variable was introduced in the Hebbian model (Froemke and
Dan, 2002). This efficacy variable € depressed to 0 at the time when the
activity of a neuronal population crossed threshold (see Fig. 2C). Then, in
Equations 4 and 6, when the excitatory activity in two populations
crossed threshold, the excitatory weights, b} and b}, were modified by
€el(HA, and €(H)A,, respectively. Similarly, instead of Equations 8 and
10, the inhibitory weights, d; and d}, were strengthened by ni(f)A, and
(DA, respectively, with efficacies as follows:

< Lrefs

£> by (12)

0,
€(t) or mi(1) = {1 — et 1T

Here, t° denotes the time when activity of the two neuronal populations
connected by the weight crossed threshold (see Fig. 2C). The efficacy was
held at 0 for a refractory time period t,, after which it recovered to 1 with
a time constant of 7,,.. The refractory period was implemented to ensure
that, after the weights had strengthened sufficiently to generate waves,
threshold crossings of the activity in neuronal populations during prop-
agating waves did not further modify the weights. The value of 7, was
chosen such that the period between two consecutive waves was larger
than the refractory period ¢,

To equalize the frequency of threshold crossing among the different
excitatory populations, an additional “end drive” was applied to the end
excitatory populations, Eg and E; (see Fig. 5). This drive was applied to
one of Eg or E; chosen randomly for a duration T; = 3 t.u. instead of the
spontaneous input R;. We assumed that the strength of this end drive
increased as spontaneous activity decreased during development, reach-
ing a final value of 1.7.

The homeostatic model. The homeostatic model was inspired by the
Bienenstock-Cooper-Munro theory of synaptic plasticity (Bienenstock
etal., 1982). Weight modification was bidirectional (potentiation or de-
pression) to maintain a constant averaged activity of each excitatory

population, r;, as follows:

Tii(t) = —r1),
where r(t) = ri(t) + 1 when E;(t) crosses threshold. (13)

The time constant 7, was chosen to be much longer than the timescale of
neuronal dynamics. Weight potentiation or depression depended on
whether the average excitatory activity in a given segment was greater or
smaller than a threshold for synaptic modification, 6. The homeostatic
model is activity-dependent; thus, in the absence of spontaneous activity
(m — 0), the weights in the network will not be modified. The threshold
is defined to be a function of the averaged excitatory activity itself:

0(ri(1)) = (V"(”y, (14)

o

where r, = 2.0 was a constant and p > 1 (here, p = 1.5). The modification
function ¢ depends on r,(t) and 6,(;(¢)) as follows:

ri(t)\}
d(ri(0), 0(ri(1))) = ri(t) — 8(ri(t)) = rit) — ( " ) .
(15)

Then, synaptic weight change was implemented according to the
following:

bilt + Ar) = bi(1) + £(r (1) (16)
for the forward excitatory weights, and
APt + Ar) = dP(0) — Ed(r(1)) (17)

for the backward inhibitory weights for which E; is postsynaptic (i = {1,
2,...,7}). Similarly,
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bi(t + A1) = (1) + Eb(r (1) (18)
for the backward excitatory weights, and
di(t + Ar) = di(1) — &(ri.1(1) (19)

for the forward inhibitory weights for which E; , is postsynaptic
(i=1{1,2,...,7}). The constant £ was a small positive number to ensure
that weights change slowly relative to the timescale of neuronal dynamics
(e.g., 0.001). In the limit of r;(¢) << r,

‘ (N\P
@ << 1 and 0(r,(t) = (@) < ri(1).

Ty

Thisleads to ¢(ri(t), 6(r,(t))) > 0because p > 1, and potentiation of the
weights. In the limit of () >> r,,

ri(t)

o

ri(t)
>> 1 and 0(r,(1)) = < p

P
) > ry(t).

Thisleads to ¢(ri(t), 6(r(t))) < 0and depression of the weights. In both
models, the weights were prevented from changing sign in agreement
with Dale’s law (Strata and Harvey, 1999).

Results

Can spontaneous activity successfully tune a bidirectionally con-
nected recurrent network with weak connectivity by using local
activity-dependent mechanisms that modify connection strength
to produce functional output? Here we studied the generation of
unidirectional (forward and backward) propagating waves of ac-
tivity resembling those observed during crawling in the Drosoph-
ila larval motor network. Two main principles provided the basis
for our developmental model: (1) the model should use local
activity-dependent mechanisms to tune connection strength;
and (2) the connections should achieve a stable configuration at
the end of development such that the network generates propa-
gating waves of activity with regular timing relationships (inter-
burst intervals and duty cycles) in different segments.

We used a recurrent network with bidirectional connectivity,
which can generate forward and backward propagating waves
when appropriately tuned (Fig. 1) (see also Gjorgjieva etal., 2013;
their Fig. 3). The model was initialized with weak connectivity
between different segments incapable of generating waves. Weak
connectivity in the network is likely specified by activity-
independent mechanisms, which guide axons toward their cor-
rect target partners. These guidance mechanisms are widespread
throughout the central nervous system (Dickson and Gilestro,
2006; Huberman et al., 2008; Klein and Kania, 2014; Hand and
Kolodkin, 2015). Each excitatory population in the model net-
work was triggered by patterned spontaneous input (see Materi-
als and Methods), and depending on its strength and duration,
increased the activity of the populations in random segments
above threshold at different times. We sought to determine the
nature of activity-dependent plasticity rules that modify the
strength of excitatory and inhibitory weights, b and d, connecting
neighboring segments using the spatiotemporal activation pat-
terns of different segments. Having as a goal to produce robust
propagating waves of activity with precise timing relationships,
we compared a Hebbian with an activity-dependent homeostatic
model for connection tuning based on local activity patterns.

The Hebbian bidirectional model does not generate
functional weight distributions

Weight modification in the Hebbian model was based on Hebb’s
mechanism (Hebb, 1949): if the population activity in two neigh-
boring segments is simultaneously above threshold, the weights
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between the neuronal populations should
increase (Fig. 2A,B). Even though spon-
taneous activity in the model was uncor-
related across segments, correlations
between the activations of neighboring
segments exist because of the network’s
recurrent connectivity. Hebb’s idea has
been translated into various forms of
correlation-based rules for synaptic mod-
ification, which commonly assume that
synapses change strength in proportion to
the correlation of presynaptic and post-
synaptic activity. This includes spike
timing-dependent plasticity, where the
magnitude of synaptic potentiation and
depression depends on the order of pre-
synaptic and postsynaptic action poten-
tials, as well as their timing (Markram et
al.,, 1997). Hebbian plasticity has been
successfully applied to activity-driven
refinement of developing circuits and
learning in neuronal networks in many
brain regions, including hippocampus,
neocortex, and cerebellum (Bliss and
Lome, 1973; Bliss and Collingridge, 1993;
Malenka and Nicoll, 1999; Martin et al.,
2000; Malenka and Bear, 2004).
Correlation-based Hebbian rules have
been often used to model map formation
in the visual system (Miller et al., 1989;
Miller, 1992). Therefore, we first charac-
terize the role of Hebbian rules in connec-
tivity tuning in the recurrent networks for
motor output studied here.

A common challenge that Hebbian
mechanisms face is unbounded growth of
synaptic weights. Although upper bounds
on synaptic strength can be imposed, and
most biological systems probably have a
saturation constraint limiting synaptic
growth, it is unlikely that this upper
bound is always fixed to the same value
and that the system knows this value a pri-
ori. To prevent unbounded synaptic
growth, we considered two implementa-
tions of the Hebbian model. One imple-
mentation is based on bidirectional
plasticity, which evokes synaptic potenti-
ation if presynaptic activity comes before
postsynaptic activity, and depression if
the order of activity is reversed (as in spike
timing-dependent plasticity). This model
has been referred to as the Hebbian bidi-
rectional model (see Materials and Meth-
ods). The Hebbian bidirectional model
fails to produce stable bidirectional con-
nections because the weights develop in
a biased way: some potentiate, whereas

others decrease to zero, uncoupling neighboring populations

(Fig. 3).

What is the reason for this bias? Because random spontaneous
input is applied to each excitatory population in the network with
initially small b and d, some weights randomly potentiate more
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Anetwork model for the emergence of coordinated output. 4, A network model for peristaltic wave propagation with

eight segments, each consisting of an excitatory (E) and an inhibitory (1) neuronal population. The connections within the same
segment (solid lines), a, ¢, e, and f, labeled only for the most posterior segment, are fixed during development. Nearest-neighbor
segments are connected with excitatory, b (blue, arrows), and inhibitory, d (red, dots), connections. Dashed lines indicate that
these connections are plastic during development. The weights in the forward and backward direction are identified by super-
scripts “f” and “b,” respectively. Each segment receives spontaneous random input of strength R; for a duration of 7, as illustrated
on the left. B, An example of suprathreshold excitatory activity (threshold for detection of suprathreshold activity is 0.3) of each
segment upon driving £g with P, = 1.7 foranetwork with parametersasin Table 1. Time is measured in arbitrary time units (t.u.).
Inset, Excitatory activity (blue) and inhibitory activity (red) for segment A8 with a threshold indicated by the dashed line.
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The Hebbian model for synaptic modification. A, Weight changes induced by Hebbian plasticity: A snapshot of 50 t.u.

of activity during early development. When activity in neighboring neuronal populations exceeds threshold simultaneously
(dashed ellipses), based on the order of threshold crossing, the respective forward or backward weights are updated, here &° and
d°. B, Excitatory and inhibitory activity in two neighboring segments simultaneously above threshold is shown as a function of
time. €, As the activity of two neuronal populations crosses threshold (dashed line), at times denoted by ¢ € (arrows), the efficacy
€;(t) is reset to 0 for a refractory period of ¢, and then exponentially recovers to 1 with a timescale 7,,,.

than others. However, each pair of neighboring excitatory popu-

lations is connected by weights for wave propagation in both

directions, so whenever the weight for one direction potentiates,
the corresponding weight in the other direction depresses. This
creates a feedback loop, in which stronger weights produce more
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frequent suprathreshold activity, further amplifying the same sets
of weights, whereas the weights in the opposite direction decay to
zero (Fig. 3). Therefore, it is not possible to strengthen synaptic con-
nections in both directions between neighboring excitatory popula-
tions appropriately for wave generation because of the asymmetric
integration window of the Hebbian model. This is consistent with
various models of spike timing-dependent plasticity (Abbott and
Nelson, 2000; Song and Abbott, 2001). Nonlinear plasticity rules
can generate functional bidirectional connectivity, but such
models are based on detailed spiking and voltage trajectories of
individual neurons (Clopath et al., 2010).

The Hebbian efficacy model requires balancing of activity
across the network
We therefore considered an alternate implementation of the
Hebbian model where synaptic potentiation is induced if presyn-
aptic activity occurs before postsynaptic activity, augmented by
activity-dependent synaptic efficacy to prevent unbounded
weight increase (Fig. 2C), but without any synaptic depression.
This model has been referred to as the Hebbian efficacy model.
The amplitude of weight modification in the Hebbian efficacy
model is inversely proportional to the frequency of threshold
crossings in segments connected by that weight (see Materials
and Methods). The model produces bidirectional weights that
become ordered in the direction of wave propagation (Fig. 4A).
Thus, of all excitatory weights for forward propagation, the most
posterior (bg) becomes the largest, whereas the anterior wei-
ghts (bf — b)) become the smallest. We found this to be due to a
combination of (1) the difference in total input (synaptic and
spontaneous) received by each excitatory population, and (2) the
preference for synaptic potentiation of the forward weights in-
duced by the order of excitatory segment activation, a hallmark of
Hebb’s rule. Indeed, segment A8 has only one neighbor and re-
ceives overall less drive than the other segments in the network;
thus, its efficacy is the largest, evoking the highest potentiation of
b. Although the most anterior segment, Al, also has only one
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neighbor, it can also be driven from its neighboring segment (A2)
in the forward direction so b’ has a lower efficacy and does not
potentiate as much. The weights at the anterior end and the mid-
dle of the network are most frequently activated; they have the
lowest efficacy and are potentiated the least.

We examine this in greater detail. The threshold crossing fre-
quency of excitatory activity (necessary to trigger weight change)
depends strongly on the strength of the weights at a given time point
during the development simulation (Fig. 5A). When weights are
small, threshold crossing is purely the result of spontaneous drive,
which is approximately uniform across all segments; thus, all seg-
ments exhibit approximately the same number of threshold cross-
ings (Fig. 5A, blue). When the weights are sufficiently strong to
generate waves, then the activation of any one segment propagates to
all remaining segments, activating all of them uniformly. Hence, all
segments again exhibit approximately the same number of threshold
crossings (Fig. 5A, red). The biggest discrepancy between the fre-
quency of suprathreshold activity in different segments occurs at
intermediate synaptic strength (Fig. 5A, yellow). In this scenario, the
end segments of the network, which have only one neighboring seg-
ment, receive the lowest synaptic input and so have the lowest overall
input. Weights connecting neuronal populations whose activity
crosses threshold more frequently due to the higher overall drive (in
the middle of the network) have smaller efficacies compared with the
weights at the ends of the network. Therefore, the former weights
potentiate less than the latter. The outcome of this process produces
variable steady-state weights (Fig. 4A). Taking the steady-state
weights at the end of the developmental period fails to produce prop-
agating waves of activity across the network (data not shown).

If Hebbian-style activity-dependent mechanisms indeed tune
synaptic connectivity in the bidirectionally connected network,
then to equalize the total amount of input received by each seg-
ment, the end segments must receive additional spontaneous in-
put (Fig. 5B). Furthermore, as spontaneous activation of all
segments decreases during development (Crisp et al., 2008), then
the intensity of additional spontaneous drive to the end segments
must increase. The increase in the end drive during development
might correspond to the biological system progressively testing
more frequently whether the network is fully assembled to pro-
duce waves. Thus, toward the end of development, the only drive
to the network is to the end segments, which will initiate either
forward or backward waves (Fig. 5B).

Weight distributions from the Hebbian efficacy model
produce variable waves even with balanced activity

The Hebbian efficacy model with additional end drive successfully
produces stable and functional weight distributions (Fig. 4B). To
examine the progression of network output during development, we
recorded the spatiotemporal activity patterns in the network over a
given period (Fig. 6A-E) at the developmental time points denoted
in Figure 4B (arrows). The network output gradually becomes more
coordinated similarly to motor development in Drosophila (Crisp et
al., 2008). Furthermore, partial motifs of coordinated output, which
involve the simultaneous suprathreshold activity of excitatory pop-
ulations in several neighboring segments, typically originate at one
end of the network. This makes a concrete experimental prediction
for how coordinated activity emerges gradually during development
if the Hebbian efficacy model with additional end drive organizes the
network.

The Hebbian efficacy model with balanced activity across the
segments generated stable weight distributions, even when the
initial conditions for the weights were randomly distributed in a
given range, albeit still weak (Fig. 4C). Increasing that range of



3728 - J. Neurosci., March 30, 2016 - 36(13):3722-3734

initial conditions fails to produce stable
weights (data not shown). To determine
whether the steady-state weights can in-
deed generate waves, forward waves were
initiated by driving the most posterior
population Eg in 20 networks where the
weights developed from random initial
conditions (Fig. 6F). The resulting waves

>

forward
excitatory weights
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have variable interburst intervals and
variable duty cycles across the different
segments that often fall outside the exper-
imentally measured ranges (Fig. 6G,H ).

Figure 4.

developmental time

efficacy model (Eq. 12), where T,

rec

developmental time developmental time

Weight development in the Hebbian efficacy model. A, The network weights were modified using the Hebbian

=20tu.andt,

ref

= 20 t.u. All weights start at the same initial condition (b = —d = 2). B,

Same as in A but with additional end drive applied to one of the end segments chosen randomly with equal probability (reaching

Wave sensitivity to spontaneous
activity patterns in the Hebbian

efficacy model

How sensitive is weight development and
wave generation in the Hebbian efficacy
model to changes in the properties of spontaneous activity? Modest
changes to the distribution for generation of spontaneous input
strength R; preserve the interburst intervals but retain the irregular
duty cycles during wave propagation (Fig. 7). Some cases, however,
produce a stable configuration of weights too small to generate ro-
bust waves (Fig. 7, bottom). More substantial variations in the spon-
taneous input strength result in more significant variability of the
final weight distributions and ultimate failure of the network to gen-
erate waves. Similarly, stable weight distributions and propagating
waves are produced only for a small subset of efficacy time constants
and recovery parameters. Mistuning these parameters either desta-
bilizes the weights so that they never saturate to a stable value or
stabilizes the weights too early before they are sufficiently strong for
wave generation (data not shown).

Conclusion for the Hebbian model(s)

For our networks with predetermined connectivity spanning
only neighboring segments, we conclude that the basic require-
ment for coincident presynaptic and postsynaptic activity in the
Hebbian models is insufficient to generate functional weight dis-
tributions that produce propagating waves with the appropriate
timing relationships. Although model performance improved
with the introduction of new assumptions (synaptic efficacy and
additional spontaneous drive to the end segments), the final
weight distributions and waves were highly variable. This sug-
gests that Hebbian mechanisms likely play a minor role in tuning
the motor network for wave propagation.

The homeostatic model

When experimentally challenged with perturbations in synaptic
structure and function, neurons have the remarkable ability to reg-
ulate their synaptic strengths to bring activity back to a normal range.
Various homeostatic mechanisms that maintain neuronal stability
have been identified in invertebrates and vertebrates (Pérez-Otanio
and Ehlers, 2005; Davis, 2006; Marder and Goaillard, 2006; Turri-
giano, 2008; Pozo and Goda, 2010; Marder, 2012). One of the best-
defined systems for analysis of the homeostatic mechanisms that
regulate synaptic efficacy is the Drosophila neuromuscular junction.
The neuromuscular junction exhibits a strong homeostatic response
to changes in postsynaptic excitability (Petersen et al., 1997; Davis et
al., 1998). In contrast to the popular view that homeostatic plasticity
is a slow phenomenon involving many neurons simultaneously,
neurons may also undergo rapid synaptic tuning (Pozo and Goda,
2010).

1.7 at the end of the simulation). Spatiotemporal patterns of excitatory activity at the times denoted with arrows are shown in
Figure 6. €, Same as in B but with random initial conditions starting in the range of 0 and 5. In all cases, spontaneous activity was
generated with R, ~ [N(0.5, 0.8)] . and T; ~ U(2, 3). Every 8000 time units, the SD (o~ = 0.8) of the distribution for R, was
decreased by 0.05. Only excitatory weights in the forward direction are shown as per Figure 3.

Therefore, we considered a different model to regulate synaptic
strength: a homeostatic mechanism that maintains network activity
at stable levels based on spontaneous input. In our implementation
of the homeostatic model, synaptic weights are potentiated or de-
pressed to maintain a constant average activity of the excitatory post-
synaptic population in each segment (see Materials and Methods).
Spontaneous input is necessary for synaptic change. As such, our
homeostatic model falls under the category of local activity-
dependent models, which require that each neuronal population
computes a running average of its activity and the weights are mod-
ified to maintain that quantity (Zenke et al., 2013). A different class
of homeostatic models are nonlocal models, which require that all
incoming weights to a neuronal population are kept normalized,
even in the absence of activity (such as synaptic scaling) (Turrigiano
etal., 1998).

The mechanisms for bidirectional homeostatic plasticity (simul-
taneously inducing potentiation and depression) have recently been
demonstrated for the Drosophila neuromuscular junction (Gaviio
et al., 2015), and also in Drosophila central neurons. The motor and
visual system of developing larvae also shows bidirectional structural
homeostasis (Tripodi et al., 2008; Yuan et al., 2011), as well as the
mushroom body of the adult (Kremer et al., 2010). In our homeo-
static plasticity model, weights potentiate or depress to maintain
excitatory activity in all segments (postsynaptic to both excitatory
and inhibitory weights) at the same target level. For instance, weights
potentiate or depress based on whether the average excitatory activ-
ity r;in a segment 7 is larger than a modification threshold, 6 (r;);
the threshold itself is a nonlinear function of the slow average
of postsynaptic activity, as proposed in the Bienenstock-
Cooper-Munro plasticity model (Bienenstock et al., 1982)
(Fig. 8A,B). To determine the steady-state activity, we can
solve for the case when the weights are also at a steady state.
Then from Equation 15,

ri(t)\’
Sr() =r (0 - (") =0 (20)
0
The steady-state excitatory activity is as follows:
_P
Teq = 1,070 (21)

When r, = 2.0 and p = 1.5, then r,, = 8.0 (Fig. 8A). Varying p
affects the value of the steady-state excitatory activity r.q (Eq. 21)
and the steady-state weights in the network (Fig. 8C). For in-
stance, when p = 1.7, maintaining r,, = 5.4 requires smaller
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weights in the network (Fig. 8D). Similarly, when p = 1.3, main-
taining r.q = 20.2 requires larger weights (Fig. 8E). The timescale
7, also has an effect on the steady-state weights. Increasing T,
results in lower average excitatory activity, r; (Eq. 13), and smaller
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waves generated with the steady-state weights at the end of each simulation in A.

steady-state weights (Fig. 8F). Therefore, the parameters in the
homeostatic plasticity model determine the average activity of the
excitatory populations and the strength of the steady-state
weights in the network necessary to maintain that activity.
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neous activity was generated with R, ~ [N(0.5,0.4)], and T, ~ U(2, 3). Activity remained
constant during development. (—F, Weights shown as per Figure 3, but only forward excitatory
weights for illustration.

The homeostatic model produces stable weight distributions
Figure 8 shows that, even at a constant level of spontaneous net-
work activity during a simulation of development, the weights
stabilize to maintain the target level of postsynaptic activity. If the
amount of spontaneous activity decreases during the develop-
mental period as the network assembles (Crisp et al., 2008), then
the weights increase more gradually toward their steady-state
value (Fig. 9A), with a time constant combining the slow synaptic
weight change and the decrease in spontaneous activity. Weight evo-
lution goes through a plateau before the network has fully assem-
bled. This plateau occurs as a result of the interaction of spontaneous
input and recurrent activity in the network when the weights
strengthen sufficiently to propagate activity to neighboring seg-
ments. Changing the properties of spontaneous activity can change
when (and whether at all) this plateau occurs (see Fig. 11).

During forward wave propagation, all but one of the excitatory
weights (b, ..., bb) have as postsynaptic activity the excitatory activ-
ity of a segment in the middle of the body (E,, ..., E;). The postsyn-
aptic activity for b\ is E,, which is coupled only to a single
neighboring segment, E,. Thus, to achieve the same target activity, bt
potentiates more strongly than the other forward excitatory weights

Gjorgjieva et al.  Homeostatic Tuning of Recurrent Networks

(Fig. 9A). The homeostatic model generates stable and functional
weight distributions, even when the weights start randomly distrib-
uted in a given range (Fig. 9B, D). In contrast to the Hebbian model,
the homeostatic model successfully generates stable weight distribu-
tions for larger ranges of initial conditions. For especially large ranges
of initial weights, functional connectivity does not emerge as some
weights continue to potentiate, whereas others depress, depending
on their initial strength (data not shown).

Last, the homeostatic model can maintain weights at a functional
range, even when network connectivity is perturbed. Following ap-
propriate weight development in our functional model network, we
“cut” all connections between segments A3 and A4 (by setting the
weights to 0), which eliminated wave generation (Fig. 9E). Allowing
the homeostatic model to act in the presence of spontaneous input
recovered functional weights and appropriately timed waves (Fig.
9C,F).

The homeostatic model generates appropriately timed
propagating waves

To examine the output of the model during development, we
recorded the spatiotemporal patterns of activation in the network
(Fig. 10A—E) at the developmental time points denoted in Figure
9A (arrows). Coordinated output gradually improves in the net-
work similar to the gradual improvement of motor output during
Drosophila development (Crisp et al., 2008).

Are the stable weight configurations produced by this model able
to generate robust propagating waves with appropriate timing rela-
tionships? Probing 20 networks, where the weights were generated
from random initial conditions, shows that the homeostatic model
can indeed generate waves with regular interburst intervals and duty
cycles across the different segments that closely match experimental
variability (Fig. 10G,H). This demonstrates that the homeostatic
model successfully tunes network connectivity to a functional state,
which can generate propagating unidirectional waves with the ap-
propriate segmental timing relationships.

Wave sensitivity to spontaneous activity patterns in the
homeostatic model

The amount of spontaneous activity, determined by the proper-
ties of the distribution of input strength into each excitatory pop-
ulation, determines the steady-state value at which the network
weights saturate. To further investigate how the steady-state
weights depend on the nature of spontaneous activity, we
examined weight development and wave generation as a function
of the mean (u) of the distribution for spontaneous input
strength, R; ~ [N (u, 0)] (similar results were obtained when
varying the SD; data not shown).

Increasing u raises the average spontaneous input strength, R;,
thus increasing the excitatory activity in each segment, E,. Be-
cause E; receives two types of input (spontaneous and synaptic
input), to maintain an average activity at the target level r,, the
synaptic input from neighboring populations must decrease; this
can be achieved by decreasing the steady-state strength of the
weights (Fig. 11). Waves generated by the network using the final
steady-state weights become longer as u increases, and excitatory
activity remains above threshold for a shorter time in each seg-
ment, resulting in shorter duty cycles and longer interburst inter-
vals. Increasing w = 0.5 makes the influence of spontaneous
input on excitatory activity so strong that very little drive from
neighboring segments is needed to maintain the average excit-
atory activity at target. Therefore, the weights become too small
for the network to generate waves (data not shown).
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circuit development, when the properties of
different circuit components are immature
and changing, and input from the environ-
ment unreliable. Here we studied a model
network of recurrently connected excitatory
and inhibitory neuronal populations seg-
mentally repeated in a single dimension,
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sophila larval crawling. A key feature of this
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ining sets of connectivity parameters that

enable wave generation in the network has

revealed nontrivial solution regions. We

0.5tu.

Figure 9.

when the connections are cut using the initial weights in Cat T,
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final weightsin Cat T,,q. In all cases, spontaneous activity was generated with R, ~ [(0.3,0.8)] , and 7, ~
time units, the SD (o~ = 0.8) of the distribution for R, was decreased by 0.04. Only excitatory weights in the forward direction are

shown in A-Cas per Figure 3.

This suggests that, for the homeostatic model to produce sta-
ble and functional network weights, spontaneous activity must
operate within a range. It should be sufficiently frequent to
drive excitatory activity above threshold and to enable weight
potentiation; yet it should not be too frequent to allow steady-
state population activity to be maintained by synaptic input
from neighboring populations. The model is robust to changes
in the amount by which spontaneous activity decreases during
development, and it can also generate stable and functional
weights even when spontaneous activity is constant during
development (Fig. 8).

Conclusion for the homeostatic model

These results demonstrate that, based on the properties of spon-
taneous activity, different stable weight configurations can be
achieved with the homeostatic model by maintaining a target
level of postsynaptic activity for each weight. The weights can be
reliably reproduced over multiple simulation runs and initial
conditions, and no additional assumptions are necessary to
bound synaptic growth as for the Hebbian model. A network with
the final set of weights can generate propagating waves with pre-
cise timing properties, such as regular interburst intervals and
duty cycles across the segments. This suggests that differences in
the nature of spontaneous activity during development may un-
derlie variability of network connectivity and the resulting wave
properties produced by the final network. Therefore, develop-
mental differences in spontaneous activity (endogenous or envi-
ronmental) represent one plausible way by which such variability
is achieved in the motor network of Drosophila (Berni et al., 2012;
Gjorgjieva et al., 2013).

Discussion

How are neural circuits organized to maintain stable function and
produce robust output? This task is made especially difficult during

A2
A3
A4
A5
A6
A7
A8

Weight development in the homeostatic model with decreasing spontaneous activity in development. 4, The devel-
opment of the weights under the homeostatic model (Eqs. 16 —19) from an identical initial condition (b = —d = 2). Spatiotem-
poral patterns of excitatory activity at the developmental time denoted with arrows are shown in Figure 10. B, Same as in A but
with random initial conditions starting in the range of 0 and 5. C, Starting with the final weights in B (T;), only those between
segments A4 and A3 were cut (weights set to 0) as indicated by the arrow (T,), and allowed to develop again under the
homeostatic model (7,,,). D, Forward wave generated using the final weights in B at T,. E, The network fails to generate waves
F, Forward wave generated by the recovered network using the

sought to identify plausible mechanisms by
which these parameters emerge.

Activity-dependent tuning of

network connectivity

Although there is ample evidence that
spontaneous activity patterns instruct re-
finement of circuit connectivity in sensory
systems (Huberman et al., 2008), the im-
portance of spontaneous activity for the
development of motor circuits is conflict-
ing (Marder and Rehm, 2005; Myers et al.,
2005; Li et al., 2007; Roberts et al., 2014).
Network models of spontaneous activity
in developing motor circuits have typically addressed the gener-
ation and properties of high-activity episodes interrupted by
quiet periods in the embryonic chick spinal cord (Tabak et al.,
2000, 2001; Marchetti et al., 2005; Tabak et al., 2010). However,
unlike sensory systems, it is unclear whether this activity helps
refine developing motor circuits.

Imaging of spontaneous activity during embryogenesis in
Drosophila larvae has revealed a gradual progression of motor
output, and manipulations of this activity point to the role of
activity-dependent mechanisms in the tuning of the network
(Crisp etal., 2008, 2011; Giachello and Baines, 2015). Using com-
putational modeling, we have demonstrated that spontaneous
activity can indeed tune a weakly connected recurrent network if
the appropriate activity-dependent tuning rules are used. We ex-
amined two styles of activity-dependent mechanisms for weight
development that through gradual improvement in network out-
put lead to stable weight distributions to generate propagating
waves with regular interburst intervals and duty cycles.

Hebbian-style models modify synaptic strength based on coinci-
dent presynaptic and postsynaptic activity. Although Hebbian
mechanisms instruct activity-driven refinements in the developing
visual system (Huberman et al., 2008), applying similar mechanisms
for the tuning of a motor network for wave propagation yields less
successful results. Unlike sensory systems where neurons topo-
graphically project from an input to a target layer, the motor net-
work in Drosophila larvae is segmentally organized and recurrently
connected. Although correlated activity emerges between neighbor-
ing segments, even when spontaneous input is uncorrelated, there is
no obvious notion of presynaptic and postsynaptic: the same seg-
ment can be both presynaptic and postsynaptic to different synaptic
connections. Thus, Hebbian mechanisms are less likely to play a
fundamental role in fine-tuning network connectivity. Indeed, both
Hebbian (bidirectional and efficacy) models fail to produce func-

U(2, 3). Every 8000
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the final set of weights generates a forward wave. G, H, Duty cycle and interburst interval
(mean == SD) for waves that were generated over 20 trials of wave developmentasin Figure 98.
The model is compared with experimental data as in Gjorgjieva et al. (2013).

tional bidirectional weights that generate waves with appropriate
timing relationships.

In neural systems as diverse as the crustacean stomatogastric sys-
tem and the vertebrate visual system, homeostatic mechanisms con-
trol neuronal function through the regulation of synaptic efficacy
and the modulation of intrinsic ionic conductances (Pérez-Otano
and Ehlers, 2005; Davis, 2006; Marder and Goaillard, 2006; Turri-
giano, 2008; Pozo and Goda, 2010; Marder, 2012). Several forms of
homeostatic plasticity have been proposed to stabilize network ac-
tivity, such as regulation of the strength of synaptic transmission and
synaptic scaling as a function of global network activity (Turrigiano
et al, 1998; Turrigiano, 1999; Turrigiano and Nelson, 2004;
Gonzalez-Islas and Wenner, 2006). Altered activity patterns can
scale synaptic connections through homeostatic mechanisms also in
motor circuits (Borodinsky et al., 2004). Our homeostatic model was
based on the goal to maintain a target level of excitatory postsynaptic
activity, which was achieved by modifying the synaptic weights
for which the target population is postsynaptic. Spontaneous activity
was necessary to drive weight modifications (Zenke et al., 2013).

Without any additional assumptions, the homeostatic model
achieves stable and functional bidirectional weight distributions that
generate waves with regular duty cycles and interburst intervals.
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Figure 11, Varying the mean of spontaneous input in the homeostatic plasticity model. 4,
Forward excitatory weights (as per Fig. 3). The mean (p) of the distribution for R; ~ [N(p,
o)), was varied as shown in top left of each graph. In all cases, o = 0.8 and decreased over
development by Ao~ = 0.04 every 8000 time units. Vertical dashed lines indicate the time
when the SD reached 0. B, Forward waves generated with the steady-state weights at the end
of each simulation in A.

Moreover, different wave properties can be produced from different
spontaneous activity patterns, providing a way to generate wave vari-
ability in the experimental system. Therefore, our results suggest that
activity-dependent homeostatic mechanisms are more likely to tune
weak bidirectional connectivity in a recurrent network than Heb-
bian mechanisms. During tuning, the network gradually improves
the coordination of its output, matching the gradual emergence of
coordinated output in developing Drosophila larvae. The resulting
network can produce appropriately timed network-wide waves of
activity that propagate in either direction despite bidirectional con-
nectivity. This property can be matched to the ability of Drosophila
larvae to crawl forward and backward with similar properties
(Gjorgjieva et al.,, 2013). The homeostatic model can also restore
functional weights following perturbations of connectivity in the
presence of spontaneous input with similar patterns as used for de-
velopmental tuning. Thus, if activity-dependent homeostasis con-
tinues to operate after development to keep patterned activity
robust, then the network must continue to receive external input.
This is plausible because the Drosophila larval motor network re-
ceives descending input during continuous crawling, as well as ad-
ditional proprioceptive input from the environment.
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Limitations of the plasticity models

Because no activity-dependent plasticity rules have yet been iden-
tified in developing motor circuits, it was natural to assume here
that inhibitory plasticity is similar to excitatory plasticity (nota-
bly, homeostatic adjustment of both excitatory and inhibitory
connections occurs) (Gonzalez-Islas and Wenner, 2006). In both
activity-dependent models, excitatory and inhibitory weights de-
veloped in a balanced fashion, enabling the generation of waves
propagating in either direction. Therefore, neither type of weight
is stronger than the other at any time. This is currently at odds
with experimental data, where at least initially, inhibition is not
required to generate output patterns (Crisp et al., 2008).

In addition to regulation of synaptic connectivity, which is
realized by both our Hebbian and homeostatic models, ho-
meostatic regulation may occur at the level of intrinsic neuro-
nal excitability through the modulation of intrinsic ionic
conductances. Theoretical rules for conductance regulation
have been successfully used to generate different cells types
and reliable motor output in the stomatogastric nervous
system of crustaceans (LeMasson et al., 1993; Liu et al., 1998;
Marder and Goaillard, 2006; O’Leary et al., 2014). Our current
rate-based framework precludes such studies based on
conductance-based models, although it can incorporate
changes in intrinsic excitability by modulation of the activa-
tion functions in the population model equations.

Mapping of circuit connectivity in EM volumes has revealed the
existence of long-range connectivity that spans non-neighboring
segments in the Drosophila motor network (A. Cardona, personal
communication). However, how long-range connectivity changes
during embryonic development is still unknown. Thus, we based
our models on a “minimal” network architecture where the nature
of connectivity (but not strengths) was predefined to be nearest
neighbor (Gjorgjieva et al., 2013). As we add other types of long-
range connections, we will need other kinds of mechanisms, some of
them Hebbian, in combination with homeostatic plasticity (Vi-
tureira and Goda, 2013; Zenke et al., 2013) to ensure that connectiv-
ity, short- and long-range, is refined in the appropriate manner.

Generality of the network model

Although our model is motivated by the production of motor out-
put during crawling in Drosophila larvae, it is not an anatomical
model of the Drosophila motor network and does not incorporate
any detail about the organization and neural identity of different
network elements, such as interneurons, motor neurons, and mus-
cles; instead, the activity of each segment is represented with a single
excitatory and inhibitory population. Therefore, our model does not
capture the known molecular underpinnings of the homeostatic
mechanisms that regulate synaptic efficacy and channel function in
Drosophila (Tripodi et al., 2008; Davis and Miiller, 2015). For in-
stance, what kind of a “sensor” monitors neuronal or muscle activ-
ity, and by what mechanisms is presynaptic and postsynaptic
function modulated?

Yet, the generality of the model allows it to be applied to other
circuits where activity-dependent refinement of connectivity
leads to appropriate connectivity for generating unidirectional
propagation of activity. One example is the generation of spon-
taneous waves in the developing mammalian cortex; waves are
produced by recurrent networks without a particular direction-
ality of connections but travel along stereotypical directions (Lis-
chalk et al., 2009; Conhaim et al., 2010).

In conclusion, for the fixed network architecture with nearest-
neighbor connections, Hebbian mechanisms are unlikely to play a
major role in activity-dependent tuning of connectivity in recurrent
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bidirectionally connected networks for wave propagation. By con-
trast, homeostatic plasticity mechanisms, which maintain target
levels of activity using spontaneous input, succeed in generating re-
producible patterns of stable network connectivity. As such, they are
more likely than Hebbian-style mechanisms in regulating activity-
dependent tuning of bidirectional motor networks for activity prop-
agation. Both mechanisms are likely to be necessary for the
refinement of networks with long-range connectivity.
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