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Increased Amplitude of Thalamocortical Low-Frequency
Oscillations in Patients with Migraine
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For many years, neurobiological theories have emphasized the importance of neuronal oscillations in the emergence of brain function. At
the same time, clinical studies have shown that disturbances or irregularities in brain rhythms may relate to various common neurolog-
ical conditions, including migraine. Increasing evidence suggests that the CNS plays a fundamental role in the predisposition to develop
different forms of headache. Here, we present human imaging data that strongly support the presence of abnormal low-frequency
oscillations (LFOs) in thalamocortical networks of patients in the interictal phase of migraine. Our results show that the main source of
arrhythmic activity was localized to the higher-order thalamic relays of the medial dorsal nucleus. In addition, spontaneous LFOs in the
thalamus were selectively associated with the headache attack frequency, meaning that the varying amplitude of dysrhythmia could
predispose patients to recurrent attacks. Rhythmic cortical feedback to the thalamus is a major factor in the amplification of thalamo-
cortical oscillations, making it a strong candidate for influencing neuronal excitability. We further speculate that the intrinsic dynamics
of thalamocortical network oscillations are crucial for early sensory processing and therefore could underlie important pathophysiolog-
ical processes involved in multisensory integration.
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In many cases, migraine attacks are thought to begin centrally. A major obstacle to studying intrinsic brain activity has been the
identification of the precise anatomical structures and functional networks that are involved in migraine. Here, we present
imaging data that strongly support the presence of abnormal low-frequency oscillations in thalamocortical networks of patients in
the interictal phase of migraine. This arrhythmic activity was localized to the higher-order thalamic relays of the medial dorsal
nucleus and was selectively associated with headache attack frequency. Rhythmic cortical feedback to the thalamus is a major
factor in the amplification of thalamocortical oscillations, making it a strong candidate for influencing neuronal excitability and
higher-level processes involved in multisensory integration. j
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2004). Not all of these features are present in every attack or in
every patient (Hansen et al., 2016; Viana et al., 2015), but increas-

Introduction
Migraine is one of the most prevalent disorders throughout the

world (Vos et al., 2012). Attacks are usually characterized by
unilateral, pulsating head pain that is associated with nausea and
can include sensitivity to light, sound, and touch (Headache Clas-
sification Subcommittee of the International Headache Society,
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ing evidence suggests that the mechanisms responsible for the
clinical symptomatology may in part involve dysfunction of the
CNS (Goadsby et al., 2009; Burstein et al., 2015; Ferrari et al.,
2015).

Human electrophysiology studies have revealed consistent ab-
normalities in cortical responsivity to external stimuli during the
different phases of the migraine cycle (de Tommaso et al., 2014).
This is usually characterized by habituation deficits in stimulus
repetition and reflex responses (Coppola et al., 2013), which ap-
pear to have a strong familial pattern of inheritance (Sdndor et al.,
1999; Siniatchkin et al., 2000; Siniatchkin et al., 2001; Di Clem-
ente et al., 2007). These cortical habituation deficits have been
observed across several sensory modalities, leading to the hy-
pothesis that migraine patients may have a reduced preactivation



Hodkinson et al. e Thalamocortical Dysrhythmia in Migraine

status in sensory cortices between attacks (Schoenen, 1996). Ef-
forts to modulate cortical excitability using noninvasive neuro-
stimulation techniques has revealed selective efficacy for
reducing attack frequency and intensity in patients (Teepker et
al., 2010; Antal et al., 2011; Vigano et al., 2013; Diener et al,,
2015). These findings have led to the proposal that alterations in
the trigeminovascular system may cause neuronal dysexcitability
in genetically susceptible individuals (Coppola et al., 2007a; Pi-
etrobon and Moskowitz, 2013; Ferrari et al., 2015) through a
direct relationship with thalamocortical rhythmicity (Coppola et
al., 2007a). Alternatively or cocomitantly, the migraine attack
may arise from defective brainstem and diencephalon circuits
that fail to regulate neuronal excitability at multiple levels of the
trigemino-cortical pathway (Bahra et al., 2001; Akerman et al.,
2011; Boyer et al., 2014).

A major obstacle to studying intrinsic oscillatory activity lies
in identification of the precise anatomical structures and func-
tional networks that are involved in migraine. Although the high
temporal resolution of electrophysiological methods makes them
particularly well suited for studying rapidly evoked changes in
brain function, EEG/event-related potential methods lack strong
spatial resolution capabilities. Recently, low-frequency oscilla-
tions (LFOs) have gained increased attention based on observa-
tions using functional magnetic resonance imaging (fMRI)
(Biswal et al., 1995; Fox et al., 2005; Fox and Raichle, 2007). Using
these modalities, researchers have consistently identified coher-
ent spontaneous low-frequency fluctuations (typically at fre-
quencies <0.1 Hz) during both resting-state and active-task
conditions that are thought to reflect cyclic modulation of corti-
cal excitability and long distance neuronal synchronization
(Deco et al., 2011; Power et al., 2014). Despite the increased
awareness of LFOs in resting-state fMRI data, the amplitude and
regional characteristics of spontaneous LFOs have not been ex-
amined in patients with migraine.

In the present study, we compared the spatial distribution of
the fractional amplitude of low-frequency fluctuations (f/ALFF)
(Zangetal., 2007; Zou et al., 2008; Zuo et al., 2010) systematically
in a large cohort of migraine patients (n = 40) and matched
healthy controls (n = 40). Resting-state fMRI measurements
based on the blood-oxygen-level-dependent (BOLD) signal are
believed to reflect the intensity of the input and intracortical
processing of a given area rather than its spiking output (Logo-
thetis, 2008), providing a basis for a more localized measure of
the LFO phenomena (Zuo et al., 2010). We hypothesized that
internally generated LFO activity would be disrupted in patients
with migraine, leading to an abnormal interictal state-dependent
flow of information between the thalamus and cortex. This in
turn should be reflected in the symptomatology of the migraine
patients, as predicted by their clinical status (i.e., headache fre-
quency and/or disease duration) at the time of the scan.

Materials and Methods

Participants. A total of 80 adult volunteers (40 episodic migraine patients
and 40 healthy controls) were selected for this study (mean age * SD:
32.7 * 9 years, range 1850, right-handed). The participants were indi-
vidually age and sex matched (age = 1 year, 10 males/30 females). Mi-
graine patients reported a mean migraine (disease) duration of 15 * 9
years, range 3—39 years). The attack frequency was recorded as episodes
per month (6.9 £ 5). Most patients reported migraine without aura (n =
24), but some reported migraine with aura (n = 16). Laterality of head-
ache pain was reported as either unilateral (n = 10 right-sided, n = 10
left-sided) or bilateral (n = 20). Informed written consent was obtained
from all participants. The Institutional Review Board at McLean Hospi-
tal, Harvard Medical School approved the study. All experiments
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fulfilled the criteria of the Helsinki accord for human research
(http://www.wma.net/en/30publications/10policies/b3/).

Inclusion/exclusion criteria. Before enrollment, participants underwent
physical and neurological examinations. Migraine patients had to meet
the following criteria to be enrolled into the study: (1) episodic migraine
as classified in the International Classification for Headache Disorders
(ICHD) Second Edition (II) (Headache Classification Subcommittee of
the International Headache Society, 2004); (2) episodic migraine for =3
years; and (3) no migraine 72 h before the study session and no symp-
toms of developing a migraine 24 h after the scans.

In addition, a detailed medical history was taken from both patients
and controls. Patients were excluded if they had continuous background
headache or pain, chronic migraine, or were taking daily medication
including prophylactic migraine treatment. Healthy controls were ex-
cluded if they had any type of migraine or first-degree relatives with a
history of any type of migraine. Females were excluded if they were
pregnant.

MRI data acquisition. Participants were scanned in a 3 T whole-body
MRI scanner with a standard 12-channel receive-only head coil (Siemens
Healthcare). For reference purposes, a high-resolution T1-weighted an-
atomical scan was acquired using a 3D magnetization-prepared rapid
gradient echo sequence (MPRAGE, TI = 1100 ms, TR/TE = 2000/3.5
ms, flip angle = 8° FOV = 256 mm?, matrix = 256 X 256, 224 slices,
voxel size 1 X 1 X 1 mm). Resting-state fMRI data were acquired using a
2D gradient-echo echoplanar imaging sequence (GE-EPI, TE/TR = 30/
2010 ms, flip angle = 90° FOV = 224 mm?, matrix = 64 X 64, number
slices = 34, slice thickness = 4 mm, no gap, voxel size = 3.5 X 3.5 mm 2
number of volumes = 300, total scan time = 10 min, 5 s). Slices were
acquired in interleaved-ascending order, parallel to the anterior commis-
sure—posterior commissure line. All participants were instructed to keep
their eyes open.

Image preprocessing. All imaging data were preprocessed using SPM12
(http://www fil.ion.ucl.ac.uk/spm) and customized scripts written in
MATLAB Version R2015a (The MathWorks ). In accordance with pre-
viously described ALFF (Zang et al., 2007) and f/ALFF (Zou et al., 2008)
studies, the steps involved in the pipeline included: (1) dropping vol-
umes: the first four volumes of each run were discarded to allow for
T1-equilibration effects; (2) slice timing correction: compensation for
slice-dependent time shifts were corrected per volume; (3) motion cor-
rection: rigid body translation and rotation from each volume to the first
volume were used to correct for head motion; (4) spatial normalization:
normalization was achieved by computing affine and nonlinear trans-
forms of the mean motion-corrected image to the Montreal Neurological
Institute (MNI) BOLD EPI template; (5) spatial smoothing: data were
resampled to 2 mm isotropic voxels and spatially smoothed using a 6 mm
full-width half- maximum Gaussian kernel; and (6) motion regression:
spurious nonspecific variance were removed through the use of the six
parameters obtained by rigid body head motion correction and their first
derivatives.

No temporal filtering or tissue-based signal regression was imple-
mented during the preprocessing. Motion scrubbing was also excluded
because the removal of noncontiguous time points alters the underlying
temporal structure of the data and thus should not be implemented
before fast-Fourier transformation.

Computing f/ALFF. ALFF (Zang et al., 2007) and f/ALFF (Zou et al.,
2008) are related measures that quantify the amplitude of LFOs. Here, we
used the f/ALFF measure because it has been shown to suppress nonspe-
cific signal components in resting-state fMRI data, providing improved
sensitivity and specificity to detect regional spontaneous brain activity
(Zuo et al., 2010). In addition, it has been shown that gross pulsatile
effects can be attenuated using f/ALFF (Zuo et al., 2010), which should
help to exclude artifacts that disproportionately affect subcortical and
periventricular regions. Before the statistical analyses, each individual
f/ALFF map was Z-transformed (i.e., by subtracting the mean voxelwise
f/ALFF obtained from the individual’s entire brain and then dividing by
the corresponding SD). Assessments of the temporal stability of {/ALFF
values have shown that there is no significant difference between either
raw or standardized f/ALFF maps (Kiiblbock et al., 2014). However,
standardized Z-score distributions are more likely to be normal than the
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Figure 1.

. 2

Amplitude of spontaneous LFOs in the resting brain. The statistical maps illustrate the detectable fractional amplitude of f/ALFFs across all subjects in the sample (n = 80). Data are

separated into 4 frequency bands: slow-5 (0.01-0.027 Hz), slow-4 (0.027-0.073 Hz), slow-3 (0.073—0.198 Hz), and slow-2 (0.198 - 0.250 Hz). Al statistical images are displayed with a cluster
probability threshold of p << 0.05, corrected for multiple comparisons (familywise error, FWE). The sagittal image on the right displays the position of slices in standard MNI space (gray lines). R

(right) and L (left) indicate image orientations for slices in the Z plane.

distributions of the raw measures and therefore will be more suitable for
examination using parametric statistics.

We would like to emphasize that the f/ALFF approach is different from
most resting-state functional connectivity studies, which focus on map-
ping the spatial distribution of temporal correlations in the resting-state
fMRI signal. Further details of the retest reliability of the f/ALFF tech-
nique have been described previously (Zuo et al., 2010; Kublbock et al.,
2014).

Isolated frequency bands. Distinct oscillators generate the different fre-
quency bands, each with specific properties and physiological functions.
Penttonen and Buzsaki observed that the neuronal oscillation classes are
arrayed linearly when plotted on the natural logarithmic scale (Pent-
tonen and Buzsaki, 2003; Buzsaki and Draguhn, 2004). We applied Buz-
sdki’s nomenclature to subdivide the low-frequency range into four
discrete bands: slow-5 = 0.010-0.027 Hz; slow-4 = 0.027-0.073 Hz;
slow-3 = 0.073—-0.198 Hz; and slow-2 = 0.198—-0.250 Hz. For each of
these subdivisions, we repeated our primary f/ALFF analysis and com-
pared the spatial distribution of the signals between the migraine and
control groups.

Group voxelwise analysis. Each of the amplitude images was combined
across subjects for display purposes. Group-level statistical comparisons
were performed under the framework of the general linear model using a
random-effects two-tailed ¢ test (as implemented in the SPM software
package). The presented maps are thresholded at p < 0.05, familywise
error rate corrected with a cluster-defining primary threshold of p < 0.01
(T = 2.43).

Region of interest (ROI) analysis. We hypothesized a priori that projec-
tions from the thalamus would entrain a core of low-frequency cortical
activity. To define an unbiased thalamic mask, we selected the left and
right thamalus from the Harvard—Oxford subcortical probabilistic 2 mm
structural atlas. The prior probability images were thresholded at 20%

and binarized to create a single bilateral ROI mask of the thalamus. For
each participant, this anatomically defined ROI was used to calculate
power spectra density (PSD) of the LFO in the thalamus. In addition, the
linear dependence between the amplitude of the LFO and the patient’s
clinical characteristics (i.e., age, headache frequency, and disease dura-
tion) was examined using Pearson’s correlation coefficients (significance
level a = 0.05).

Results

Spatial distribution of LFO

The oscillatory fMRI waves showed a distinct pattern of activity
across the four low-frequency bands (Fig. 1). Most notably,
slow-5 and slow-4 oscillations occurred predominantly in the
gray matter, whereas slow-3 and slow-2 oscillations were local-
ized to the white matter. This anatomical segregation of the fre-
quency bands (i.e., slow-5/4 vs slow-3/2) is highly consistent with
prior evidence that physiological processes (e.g., respiratory and
aliased cardiac signals) fall within the ranges of slow-2/3 (Cordes
et al., 2001), whereas the oscillatory signals upon which resting-
state functional connectivity is based are primarily located in
slow-5/4 (De Luca et al., 2006; Salvador et al., 2008). Accordingly,
we found that the areas exhibiting the largest LFO amplitudes in
the gray matter (slow-5 and slow-4) were localized to midline
structures on the medial wall, which is consistent with prior dem-
onstrations of higher metabolic and neuronal activity during rest
(Raichle et al., 2001; Raichle and Mintun, 2006; Vaishnavi et al.,
2010) and approximate brain regions that comprise the most
prominent intrinsically connected network known as the “de-
fault mode” network (Buckner et al., 2008). In contrast, the cer-
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Figure 2.

Frequency-dependent changes in the amplitude of LFOs in migraine. The statistical maps illustrate the differences in fALFF between migraine patients and healthy controls. Data are

separated into 4 frequency bands: slow-5 (0.01—0.027 Hz), slow-4 (0.027—0.073 Hz), slow-3 (0.073—0.198 Hz), and slow-2 (0.198 — 0.250 Hz). All statistical images are displayed with a cluster
probability threshold of p << 0.05, corrected for multiple comparisons (familywise error, FWE). The sagittal image on the right displays the position of slices in standard MNI space (gray lines). R

(right) and L (left) indicate image orientations for slices in the Z plane.

ebellum and medial temporal lobes had LFO amplitudes
significantly below the brain mean, which might reflect a change
in the ratio of neurons to non-neuronal cells (Azevedo et al.,
2009; Vaishnavi et al., 2010).

Frequency-dependent changes of LFO in migraine
Group-level statistical comparisons of the LFO amplitudes across
the four frequency bands are shown in Figure 2. The results were
as follows: slow-5 (0.01-0.027 Hz): higher amplitude in the sen-
sorimotor area (SMA) (medial precentral gyrus) and lower am-
plitude in prefrontal cortex (including middle frontal gyrus,
straight gyrus); slow-4 (0.027-0.073 Hz): higher amplitude in
medial temporal lobe (entorhinal area), operculum, thalamus,
ventral diencephalon/hypothalamus, and SMA (medial postcen-
tral gyrus) and lower amplitude in right area of the cerebral white
matter; slow-3 (0.073—0.198 Hz): higher amplitude in prefrontal
cortex (including superior frontal gyrus, middle frontal gyrus,
medial orbital gyrus, frontal pole) and lower amplitude in SMA
(precentral and postcentral gyrus), operculum, middle temporal
gyrus, and brainstem; and slow-2 (0.198—0.25 Hz): higher am-
plitude in angular gyrus and lower amplitude in the SMA. A full
list of local clusters and their respective coordinates are provided
in Table 1.

Identification of LFOs in the thalamus
Figure 3A shows the whole-brain statistical map of the frequency-
dependent changes in band slow-4. The cortical regions showing

disruptions in LFO activity included the insula, operculum,
dorsal anterior cingulate cortex, and SMA. The only two sub-
cortical regions that showed altered LFO activity were the
ventral diencepahalon (hypothalamus) and thalamus. To
characterize the spatial patterns underlying the thalamic oscil-
latory activity, the atlas by Morel and Krauth (Morel et al.,
1997) was used to identify the thalamic nuclei involved (Fig.
3B). The thalamic subdivisions were consistent with the me-
dial dorsal nucleus and small portions of anterior nucleus. We
acknowledge that Figure 3B cannot be expected to match the
precision of previous histology studies. Based on the imaging
protocols, we can only approximately locate the major tha-
lamic nuclei within the MNT template.

Power spectra analysis of thalamic LFO in migraine

Using the a priori defined ROI of the thalamus, we calculated the
PSD of the oscillatory fMRI waves for all of the migraine patients
and healthy controls (Fig. 4A, B). For illustration purposes, the
power spectra were averaged across the participants in each
group (Fig. 4C,D). Comparing across the groups, there was a
significant increase in the low-frequency bands slow-5 and
slow-4, as well as a significant increase in slow-2 (Fig. 4E). These
findings were confirmed by plotting a natural logarithmic scale of
power against the log of the entire frequency range (Fig. 4F)
(Penttonen and Buzséki, 2003).
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Table 1. Peak MNI coordinates for anatomical regions that had significantly higher and lower f/ALFF amplitude in migraine patients (n = 40) compared with controls

(n = 40)
MNI coordinates (mm)
Frequency band Contrasts Tscore Zscore Cluster extent X y z Anatomical region
Slow-5 (0.01-0.027 Hz) Migraine > controls 3.97 3.61 599 4 —24 56 Right precentral gyrus medial segment
Migraine << controls 481 424 1038 6 62 —20 Right gyrus rectus
43 3.87 48 44 10 Right middle frontal gyrus
3.99 3.63 259 —28 28 34 Left middle frontal gyrus
Slow-4 (0.027-0.073 Hz) Migraine > controls 4.89 429 1948 10 —38 58 Right postcentral gyrus medial segment
4.72 417 534 10 -8 -8 Right ventral diencephalon + thalamus*
4.06 3.68 -8 -10 -8 Left ventral diencephalon + thalamus*
4.42 3.95 1078 —30 0 —24 Left entorhinal area
429 3.86 —46 =22 16 Left central operculum
Migraine << controls 432 3.88 361 20 6 22 Right cerebral white matter
4.15 3.76 16 —14 18 Right cerebral white matter
3.77 3.46 22 —20 22 Right cerebral white matter
Slow-3 (0.073—-0.198 Hz) Migraine > controls 5.65 48 4888 26 56 —4 Right middle frontal gyrus
5.6 477 20 58 —18 Right medial orbital gyrus
5.44 4.66 18 70 6 Right frontal pole
4.4 3.94 354 —14 48 24 Left cerebral white matter
434 3.89 —6 46 46 Left superior frontal gyrus
3.98 3.62 —24 60 26 Left superior frontal gyrus
3.96 3.61 293 —44 34 32 Left middle frontal gyrus
Migraine << controls 52 451 1991 6 —20 62 Right precentral gyrus medial segment
5.1 443 10 —38 56 Right postcentral gyrus medial segment
512 4.45 3137 2 -22 —30 Brainstem
4.83 4.25 —18 —36 -32 Left cerebellum white matter
493 432 281 40 —18 12 Right transverse temporal gyrus
418 3.78 34 -2 16 Right parietal operculum
3.93 3.58 50 -22 20 Right parietal operculum
4.42 3.96 758 —54 —46 2 Left middle temporal gyrus
431 3.87 —58 —32 14 Left planum temporale
Slow-2 (0.198 —0.25 Hz) Migraine > controls 572 4.85 375 —50 —56 26 Left angular gyrus
5.58 4.76 —38 —64 46 Left angular gyrus
Migraine << controls 4.25 3.83 537 4 —20 58 Right precentral gyrus medial segment

All statistical images were thresholded at T > 2.4, with a cluster probability threshold of p << 0.05 corrected for multiple comparisons (FWE).

*Contiguous cluster of voxels extending across two subcortical regions.

Correlations between thalamic LFOs and clinical variables
Finally, we investigated the relationship between the LFOs in the
thalamus and the patients’ self-reported (retrospective) symp-
toms. Associations between PSD and clinical variables (i.e., age,
headache frequency, and disease duration) were computed for
each of the frequency bands separately using a Pearson correla-
tion (Fig. 5). We found that the amplitude of the PSD in slow-4
was significantly correlated with the patients’ self-reported head-
ache attack frequency (per month) at the time of the scan. There
was no relationship between the thalamic PSD and the age of the
patients or their disease duration. Testing confirms that the data
follow a normal distribution and are free from outlier effects
(Jarque—Bera test: age, p = 0.186; frequency, p = 0.081; duration,
p = 0.087).

Discussion

Previous studies using electrophysiological techniques have dem-
onstrated that brain function of migrainie patients is altered
across all phases of the migraine cycle (for review, see de Tom-
maso etal., 2014). These findings have led to the proposal that the
symptomatology may in part involve dysfunction of the CNS.
Here, we present the first imaging data that strongly support the
presence of abnormal LFOs in thalamocortical networks of
patients in the interictal phase of migraine. We discuss the
possible mechanisms by which aberrant LFO activity may con-
tribute to the dysfunctions and symptoms ascribed to the mi-
graine condition.

Thalamocortical dysrhythmia in migraine

Beyond confirming prior demonstrations of higher LFO ampli-
tudes within cortical gray matter (Biswal et al., 1995; Cordes et al.,
2001), our results provide compelling evidence that intrinsic LFO
activity is abnormal in patients with migraine between attacks.
Across the frequency range, there was a characteristic shift in
synchronized oscillations between slow-3 (0.073—0.198 Hz) and
slow-4 (0.027-0.073 Hz), favoring the lower-frequency state
(Fig. 2). It is well established that power density is inversely pro-
portional to frequency ( f) in the mammalian cortex. This 1/f
power relationship implies that perturbations occurring at slow
frequencies can cause a cascade of energy dissipation at higher
frequencies, so widespread slow oscillations can modulate faster
local systems. While the exact biological mechanisms of these
infra-slow brain oscillations remain unknown (Hughes et al.,
2011), it has been suggested that slow waves may be dependent on
the time course of Ca®"-mediated K" conductance of cortical
neurons (Buzséki et al., 1988) and hyperpolarizing potentials of
thalamocortical cells (Liithi and McCormick, 1998; Steriade,
2001; McCormick, 2002). Thalamic astrocytes also exhibit
spontaneous intracellular Ca>* oscillations, which occur in a
similar frequency range to the LFOs of thalamocortical neurons
(Parriand Crunelli, 2001; Parri et al., 2001). Projections from the
thalamus to the cortex are complex and still not fully understood.
However, a useful working model suggests that the higher-
frequency oscillations are confined to a small neuronal space,
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Figure3. A, Increased amplitude of the LFOs in thalamocortical circuits. The statistical maps illustrate the differences in fALFF between migraine patients and healthy controls in the frequency

band slow-4 (0.027-0.073 Hz). B, Increased amplitude of the LFOs in higher-order thalamic relays. Localization of the thalamus according to the Harvard—Oxford subcortical atlas (green line). An
axial section based on a histological atlas of the human thalamus is shown with nuclei outlined by black lines (Morel et al., 1997). Al statistical images are displayed with a cluster probability
threshold of p << 0.05, corrected for multiple comparisons (familywise error, FWE). R (right) and L (left) indicate image orientations for slices in the Zplane. VD, Ventral diencephalon; Thal, thalamus;

Ins/OP, insula/operculum; dACC, dorsal anterior cingulate cortex; MDThal, medial dorsal thalamus.

whereas very large networks are recruited during slow oscillations
(Contreras and Llinas, 2001; Steriade, 2001; Csicsvari et al.,
2003). Of the cortical areas exhibiting increased LFO amplitudes
in migraine, we note that many of these brain areas and their
experimentally observed frequency ranges show considerable
overlap with abnormalities observed in patients suffering from
chronic pain (Malinen et al., 2010; Baliki et al., 2011; Hong et al.,
2013; Ottiet al., 2013; Alshelh et al., 2016) (Fig. 3A). In addition,
we observed dysrhythmia in several subcortical diencephalon
structures (including hypothalamus and thalamus), which are
known to play a key role in migraine and its associated symptoms
(Akerman et al., 2011; Noseda et al., 2011; Kagan et al., 2013;
Burstein et al., 2015). Considering the evidence, we suggest that
the increased LFO activity likely underpins increased thalamo-
cortical oscillations and the presence of interictal thalamocortical
dysrhythmia in migraine (Coppola et al., 2007b).

Increased LFOs in the medial thalamus

Rhythmic cortical feedback to the thalamus is a major factor in
the amplification of thalamocortical oscillations (Steriade, 2001;
Destexhe and Sejnowski, 2003; Steriade and Timofeev, 2003).

Here, we took advantage of the relatively high spatial resolution
of resting-state fMRI to examine the spatial and temporal char-
acteristics of the oscillatory activity in the thalamus structure
(Figs. 3, 4). Our results indicate that the main source of arrhyth-
mic activity was localized to the higher-order relays of the medial
dorsal nucleus. These nuclei have been shown to relay informa-
tion from one cortical area to another cortical area via an exten-
sive network of feedback projections (Guillery, 1995; Sherman
and Guillery, 2002), which may serve a modulatory role in sen-
sory processing. These driver versus modulator components of
the thalamus (Sherman and Guillery, 1998) may be important in
separating migraine (which is idiopathic in nature) from chronic
neuropathic pain disorders. For example, recent work in patients
with trigeminal neuropathy appears to show increased LFOs in
the ascending (lateral) pain system, which is essential for medi-
ating the sensory-discriminative features of neuropathic pain
(Alshelh et al., 2016). A critical mechanism in migraine may
therefore involve higher-order thalamic relays (including the me-
dial dorsal nucleus) adjusting cortical synchrony and oscillatory
patterns in the cortex (Sherman and Guillery, 1996; Li et al., 2003;
Ramcharan et al., 2005; Van Horn and Sherman, 2007). Indeed,
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Figure4.

Power spectra analysis of LFOs in the thalamus. 4, B, Individual PSD of LFOs in the thalamus of migraine patients (n = 40) and healthy controls (n = 40). C, D, Group averages (== SEM)

of PSD in the thalamus. E, F, Expanded PSD covering the four frequency bands for linear and log scaled data. Red line indicates migraine; blue line, controls).

there appears to be a requirement for a particular architecture
and connectivity of the thalamus in mediating ongoing corti-
cal functions (Sherman, 2016), which may be altered in pa-
tients with migraine (Ellerbrock et al., 2013; Coppola et al,,
2014; Chongand Schwedt, 2015; Magon etal., 2015). We favor
the hypothesis that aberrant synchronization of oscillatory
activity plays a role in disrupting higher-order multisensory
processing in migraine, affecting the efficacy of information
transmission across distributed brain networks (Singer, 1999;
Engel et al., 2001). Further studies are needed to establish a
causal role for the higher-order thalamus in regulating the
synchrony between cortical neurons and cranial vascular
nerves that are central to migraine pathophysiology (Edvins-
son, 2011; Villanueva and Noseda, 2013).

Association between thalamic LFOs and headache frequency

Neural correlates of the clinical symptoms and manifestations of
migraine are potentially useful measures to aid stratification of
patients. Here, we revealed that spontaneous LFOs in the thala-
mus are selectively associated with headache attack frequency,
but not the duration of illness or age of the patients (Fig. 5). The
varying amplitude of dysrhythmia could be an inherited genetic
defect that alters LFO in the thalamus, thus predisposing patients
to recurrent attacks. Alternatively, it might be the consequence of
repeat attacks on the brain, thus making patients more vulnerable
to progression from occasional to frequent migraines (Borsook et
al., 2012). Related to the frequency of the attacks is the identifi-
cation of trigger factors or premonitory features that reliably pre-
dict headache onset in migraine (Lipton et al., 2014; Pavlovic et
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Figure 5.

Correlations comparing clinical reported variables and PSD in the thalamus. Each patient’s average PSD was calculated according to the four frequency bands and plotted against their

age, current frequency of attacks, and disease duration. Pearson’s correlation coefficient ( R) and associated p-values ( P) are reported for comparison.

al., 2014). We speculate that the neuronal oscillations are impor-
tant in this process and could help to explain the sensitivity of the
brain to such triggers at any given time. Moreover, it is still not
clear how preventative therapies work, although from experi-
mental models, evidence is accumulating that they may act cen-
trally through a modulation of thalamic activity (Shields and
Goadsby, 2005; Andreou et al., 2010; Andreou and Goadsby,
2011). The mechanisms underpinning these complex changes are
far from being understood and we recognize that these intricate
processes not only differ in the interictal phase of migraine, but
also vary according to the phases of the migraine cycle in the same
patient. Nevertheless, because the diagnosis of migraine is based
on patient history (Headache Classification Subcommittee of the
International Headache Society, 2004), these data establish an
important link between interictal brain function and the clinical
status of migraine patients at the time of their scans.

Limitations and future perspectives

There are several limitations of our study that should be noted. First,
concerns have been raised surrounding the potential effects of phys-
iological processes (i.e., cardio-respiratory events) that may intro-
duce artifactual signals in the low-frequency range (Birn et al., 2006;
Changetal., 2009; Yan et al., 2009; van Buuren et al., 2009). We were
unable to perform simultaneous measurements of cardiac and respi-
ratory activity during the resting-state scan. However, recent work
quantifying the test—retest reliability of f/ALFF measurements in re-
sponse to breath holding—a process that strongly manipulates the
hemodynamic contributions of the BOLD signal—has demon-
strated good reproducibility (Zuo et al., 2010). Further mitigating
this concern is the fact that we used f/ALFF instead of ALFF, which
has been shown to be more effective at reducing signal artifacts in
perivascular, periventricular, and periaqueductal bordering regions
(Zuoetal., 2010). Second, migraine patients use a variety of analgesic
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drugs over many years, which might confound the observed func-
tional brain changes. Having demonstrated that neither the patient’s
age nor disease duration is associated with the oscillatory activity, we
suggest that certain comorbid factors such as the duration of treat-
ment can be excluded. However, we do not control for the intake of
different classes of medication. This remains an important issue for
clinical pain and headache research.

Conclusion

Converging lines of evidence suggest that the CNS plays a crucial role
in the predisposition to develop different forms of migraine
(Goadsby et al., 2009; Pietrobon and Moskowitz, 2013; Burstein et
al., 2015; Ferrari et al., 2015). Here, we present the first imaging data
that demonstrate the presence of abnormal LFOs in thalamocortical
networks of patients with migraine, confirming an abnormal inter-
ictal state of thalamocortical dysrhythmia. Given that spontaneous
LFOs in the thalamus are selectively associated with headache attack
frequency, this suggests that the varying amplitude of dysrhythmia
could be an innate genetic defect that predisposes patients to recur-
rent attacks. Alternatively, it might be the consequence of repeated
attacks on the brain, thus making patients more vulnerable to pro-
gression from occasional to frequent migraines. Rhythmic cortical
feedback to the thalamus is a major factor in the amplification of
thalamocortical oscillations, making it a strong candidate for influ-
encing neuronal excitability. We further speculate that the intrinsic
dynamics of thalamocortical network oscillations are crucial for
early sensory processing and thus could underlie important patho-
physiological processes involved in multisensory integration.
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