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Microfluidic technology has become a valuable tool to the scientific community, allowing researchers to study fine cellular mechanisms
with higher variable control compared with conventional systems. It has evolved tremendously, and its applicability and flexibility made
its usage grow exponentially and transversely to several research fields. This has been particularly noticeable in neuroscience research,
where microfluidic platforms made it possible to address specific questions extending from axonal guidance, synapse formation, or
axonal transport to the development of 3D models of the CNS to allow pharmacological testing and drug screening. Furthermore, the
continuous upgrade of microfluidic platforms has allowed a deeper study of the communication occurring between different neuronal
and glial cells or between neurons and other peripheral tissues, both in physiological and pathological conditions. Importantly, the
evolution of microfluidic technology has always been accompanied by the development of new computational tools addressing data
acquisition, analysis, and modeling.

Introduction
Neurons are highly complex cells comprising detailed electro-
chemical and structural features shaping their function. The cell
soma extends processes that become highly branched reaching
different cellular targets and tissues with distinct chemical and
physical features (Millet and Gillette, 2012). Understanding how
molecular and physical cues modulate the neuronal cell dynamics
is a challenging task due to the difficulty in reproducing in vivo
microenvironment in vitro.

Since 1970, different in vitro techniques were developed for
neuronal cultures to mimic the in vivo settings. Robert Campenot
was a pioneer in this era where neurons could be probed, con-
trolled, and cultured under greater constraints (Campenot,
1977). In Campenot devices, neurons cultured in one compart-
ment extend their axons to a second compartment, allowing the
control over distinct neuronal regions (Campenot, 1977; Kim-
pinski et al., 1997). This breakthrough in neuronal culture al-
lowed researchers to perform biochemical analysis and precise
physicochemical treatments on isolated axonal fractions. Indeed,

the potential of nerve growth factor to enhance local neurite out-
growth was first discovered using these devices (Campenot, 1977;
Kimpinski et al., 1997).

The combination of Campenot’s original concept with phys-
ical sciences and engineering-evolving microtechnologies has
revolutionized the way such devices were designed, allowing the
production of complex, integrated, and highly controllable de-
vices (Millet and Gillette, 2012). The first compartmentalized
microfluidic devices (CMDs), derived from microelectronic
technology, were mainly used for studies at microscale in the
areas of chemistry and physics (Whitesides, 2006; Young and
Beebe, 2010; Md Yunus, 2013). It was only in the late 1990s that
these devices started to be applied to life sciences: first for bio-
analysis in genetics (e.g., sizing and sorting of DNA fragments)
(Chou et al., 1999) and proteomics and later by combining cell
culture and microfabrication as a goal for the development of
miniaturized devices (Md Yunus, 2013).

The first studies directing microfluidic technology, micropat-
terning, and microfabrication toward a neurobiological question
appeared in 2003 by Anne M. Taylor from Noo Li Jeon’s labora-
tory (Taylor et al., 2003). For the first time, a two-compartment
microfabricated neuronal culture device was described, allowing
a spatial and fluidic segregation of neuronal soma from axons
(Park et al., 2006). This simple, yet pioneering, design became a
key reference for many other researchers and laboratories world-
wide, and the backbone for the commercialized devices available
today.

The success of the microfluidic platforms in biological studies
relied mainly on features, such as the low price of the fabrication
materials and the easy manipulation. Through rapid prototyping
and soft lithography, a commonly used technology to develop
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geometrically flexible molds, original microfluidic designs can
now be created (Whitesides, 2006). Moreover, the possibility of
manipulating small amounts of reagents and/or cells, its in-
creased portability, and high reproducibility proved to be an im-
portant improvement compared with the traditional culture
systems, allowing researchers to perform high throughput anal-
ysis (Young and Beebe, 2010; Gao et al., 2012; Tehranirokh et al.,
2013; Xiong et al., 2014). Together, these features have allowed
microfluidic technology to spread rapidly through a broad range
of research areas, offering engineers and biologists flexibility over
the system and experimental design, given the plethora of fabri-
cation options. Also, biological phenomena, such as flow condi-
tions found in capillaries in vivo (McDonald et al., 2000; Gao et
al., 2012; Sackmann et al., 2014) or chemical gradients, are now
easily reproduced using microfluidic technology. This novel ap-
proach is enabling new insights into neurobiological events pre-
viously unachievable through traditional cell biology techniques
(Park et al., 2013b).

Ranging from the minimalistic single-cell approach to the
complexity of “human-on-a-chip” format, there is now a wide
variety of CMD being fabricated daily on different laboratories
worldwide.

This review provides an overview of microfluidic technology
impact on the neuroscience field. Current developments of mi-
crofluidic platforms in a broad range of research applications
from fundamental neurobiology, such as for the study of cellular
interactions between different tissues’ cells, to clinics, where it is
emerging as a tool for fine-tuning clinical settings and drug
screening will be discussed. Moreover, the use of novel compu-
tational tools to improve the readouts of microfluidic-based plat-
forms will also be addressed.

Design and methods
The cellular microenvironment entails highly complex signals
that are determinant for cells/tissues/organs function and fate.
Cells are sensitive to patterns, factors concentration, mechanical
changes of the substrate (e.g., stiffness), sheer stress, chemical
properties (e.g., ligand density and orientation), and spatiotem-
poral gradient cues (e.g., topographic features, patterning of sur-
faces with substances with different cellular affinities) (Folch and
Toner, 2000; Meyvantsson and Beebe, 2008; Hasan et al., 2014;
Sackmann et al., 2014). For the correct development of in vitro
models that can mimic the in vivo microenvironment, all these
factors must be taken into consideration. An accurate knowledge
of the state of the art of microscale technology is of major impor-
tance so that the best tools that better suit the proposed applica-
tions can be considered (Young and Beebe, 2010; Md Yunus,
2013). Microfluidic platforms are systems that can integrate mul-
tifactorial conditions and be specifically upgraded to tailor the
desired cellular microenvironment (Whitesides, 2006; Young
and Beebe, 2010; Sackmann et al., 2014). Presently, the number of
new devices with different designs have increased exponentially,
as the methodologies used for fabrication have evolved by merg-
ing the knowledge of both biologists and engineers, ultimately
leading to the cutting edge devices available nowadays.

Microfluidic devices can be assembled on different substrates
by reversible or irreversible bondage (McDonald et al., 2000).
The majority of the devices are fabricated by bonding the device
irreversibly to glass or polymer by activating both surfaces
through air or oxygen plasma. This bond will allow sustaining
higher pressures within the system but hampers the surface func-
tionalization and patterning with cells or materials and impairs
sample retrieval for the following analysis. The costs of the plat-

forms are substantially increased when considering microelec-
tronic arrays as substrates. Other approaches, such as reversible
magnetic bonding, were successfully explored, demonstrating
superior performances compared with previously published re-
versible techniques to microfluidic-sized devices (Rasponi et al.,
2011; Biffi et al., 2012a).

Poly(dimethylsiloxane), a silicon-based elastomeric material,
has become the most suitable material to mold CMD due to its
optical properties, gas permeability, biological compatibility, and
low costs (Whitesides, 2006; Young and Beebe, 2010; Sackmann
et al., 2014). These features led to a significant improvement in
microfluidic design, including the introduction of pneumatically
or hydraulically controlled valves (Unger et al., 2000; Gao et al.,
2011; Brunello et al., 2013), which was only possible due to poly-
(dimethylsiloxane) flexibility. This allowed researchers to control
the flow rate and direction within the chambers, enabling the
regulation of the spatiotemporal gradients of soluble factors. By
incorporating gradient generators, a range of concentrations can
be generated by merging, mixing, and splitting two or more inlet
flows. Different conditions can be created in parallel or in a com-
binatorial manner to study the dose–response and timing of
biomolecules on cell fate (Zhang and van Noort, 2011; Lai et al.,
2012; Wu et al., 2013; Cosson and Lutolf, 2014a; Hasan et al.,
2014; Sackmann et al., 2014; Taylor et al., 2015).

Controlled gradients are used along with microfluidic tech-
nology to test the responsiveness of cells to different proteins or
drugs and to support long-term culture and differentiation (Li et
al., 2012; Cosson and Lutolf, 2014b; Mahadik et al., 2014). It is
extensively used to appraise axonal guidance and neuron sensi-
tivity to chemoattractive or chemorepellent cues (Kothapalli et
al., 2011; Dupin et al., 2013; Sackmann et al., 2014). Flow patterns
are used to increase the perfusion and, therefore, the viability and
time of culture, of several in vitro systems, mainly those compris-
ing 3D environments (Vukasinovic et al., 2009; Lai et al., 2012).

Studies aiming to explore cellular functions should address
and control the substrate pattern because substrate patterning
has the potential to impact cell adhesion, shape, architecture,
guidance, contractility, polarity, migration, differentiation, and
division (Théry, 2010; Sackmann et al., 2014). Through mi-
cropatterning, it is possible to interfere with cell behavior, ma-
nipulate, and fine-tune several biological aspects. The use of
patterned surfaces mimicking the organization of in vivo tissues
leads to a better differentiation and higher survival rate of cul-
tured cells in vitro (Théry, 2010; McUsic et al., 2012). In neuro-
biology, patterning of different proteins has been used to
improve neurons adhesion and survival and axonal pathfinding
(Rhee et al., 2005; Shi et al., 2010).

Single-cell analysis of cellular contents on a microchip has also
become a significant tool for revealing the biological functions of
individual cells. It is important to monitor and understand single
biological responses facing relevant physiological stimuli. These
might be undetectable when obtaining averages of cell popula-
tions (Gao et al., 2012) by using the conventional biological
techniques.

Miniaturized devices for fundamental neuroscience
The proper function of the nervous system relies on the forma-
tion of highly specific connections called synapses. Throughout
neuronal development, axons have to grow and navigate through
a milieu of substrates until they reach their target where synapto-
genesis occurs. As such, axonal guidance is a critical process in
establishing the complex neuronal architecture in which axons
appropriately integrate and accurately respond to multiple sig-
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nals present in the extracellular environment, ultimately direct-
ing them toward their appropriate targets to establish normal
connectivity. CMDs offer a simple, yet powerful, way to easily
isolate axonal fractions and control the variables underlying ax-
onal growth and pathfinding as well as synapse formation and
function. Furthermore, as the neuronal cell connectivity is inti-
mately linked through electrical signals, the upgrade of the mi-
crofluidic platforms by incorporating electrophysiological
recordings has increased the potential of these platforms on the
field.

Over the last decade, several studies took advantage of micro-
fluidic technology to further understand the mechanisms under-
lying axonal behavior, such as axonal transport, local protein
synthesis, and synaptogenesis (Wu et al., 2005; Cox et al., 2008;
Taylor et al., 2009; Gumy et al., 2011; Lu et al., 2012; Park et al.,
2014a; Kung et al., 2015). In a recent study, Lu et al. (2012)
slightly modified an already described CMD, including a larger
compartment to avoid neuronal death in the closed compart-
ment, as a way to investigate the role of mitochondrial transport
in axonal degeneration during Parkinson disease. With this ap-
proach, researchers were able to improve the culture settings of a
fragile neuronal culture, perform live cell imaging, and analyze
the movement of labeled axonal mitochondria in axons over
time, arising as a promising system to better understand axonal
degeneration (Lu et al., 2012), once again demonstrating the ver-
satility of these microfluidic devices. In another study, research-
ers developed a platform containing axon guidance features that
direct them to grow in straight and parallel lines. The unique
feature of this microchip is that it has a radial array of shallow
microchannels patterned on its bottom layer that not only enable
spatial and fluidic isolation of neuronal soma and dendrites from
axons but also physically guide them to grow in straight lines,
therefore simplifying the axon length quantification process and
allowing axon-specific drug screening as well as axonal regener-
ation studies (Park et al., 2014a).

Microfluidic devices have been of utmost importance in un-
covering the fine mechanisms underlying axonal outgrowth and
pathfinding. Local translation in axons, particularly in growth
cones, is now widely accepted, and this was mainly due to the use
of microfluidic devices in studies using isolated axonal fractions.
Recently, local protein degradation is now under discussion. Tak-
ing advantage of the inherent characteristic of CMD to isolate cell
soma from axons, researchers have recently demonstrated that
the NGF-induced axonal outgrowth in DRG neurons uses intra-
axonal ubiquitin-proteasome system activity and induces ubiq-
uitination in growth cones. With this study, researchers suggest
that axonal tuning responses may include an asymmetric local
protein synthesis and degradation within the growth cone, thus
allowing them to tune their response toward guidance cues
(Deglincerti et al., 2015).

Regarding synapse function, an interesting example was
shown by Coquinco et al. (2014), where a 3-compartment micro-
fluidic device was used to create a model to study in vitro synaptic
competition. In this model, axons originated from two separated
compartments establish connectivity to a common neuronal
population in a third and central compartment. By inhibiting
neuronal activity on one side of the chamber, axons in the central
compartment derived from the untreated neurons outgrew and
formed a higher number of synapses compared with the inhibited
culture. With this experimental model, they demonstrated that
decreased neuronal activity within one population can influence
the synapse formation and growth of axons of a competing neu-
ronal population (Coquinco et al., 2014).

Interaction of different cell populations
CMDs have been shown to be highly advantageous to understand
the complex network circuit in the CNS. More interestingly, it
has been used to understand the communication between pe-
ripheral neurons and non-neuronal tissues. Communication be-
tween neurons and different cell populations is of massive
interest to understand how nervous system controls tissues, both
in homeostatic and pathological conditions, and the feedback
loop mechanisms.

The establishment of in vitro coculture systems of central or
peripheral neurons can be the starting point and the basis for
stronger outcomes in developmental and regeneration studies.
Although most of the in vitro approaches comprise intra-system
cocultures (e.g., coculture of neuronal system cells: neurons and
oligodendrocytes) (Park et al., 2012), or neurons and Schwann
cells (Li et al., 2012), still, it is now often observed intersystems
cocultures (e.g., nervous and skeletal system: neurons and osteo-
blasts) (Neto et al., 2014; Pagella et al., 2014) or nervous and
muscular system: neurons and myocytes (Takeuchi et al., 2011;
Southam et al., 2013) and nervous system and cancer cells (Lei et
al., 2016) (Figs. 1, 2). Furthermore, it is now possible to assess
single-cell interaction, in microfluidic devices, between different
types of cells. Dinh et al. (2013) developed a compartmentalized
neuron arraying microfluidic device, showing the feasibility of
protein patterning within these devices and the possibility of ar-
raying neurons and HEK293 cells, opening new avenues for other
heterotypic cocultures to model different neurobiological
interactions.

Central neurons and glial cells
Within the CNS, the major studies are focused on the myelina-
tion process. Myelin is an insulating layer that wraps the axon and
enhances signal transduction by allowing electrical impulses to be
transmitted efficiently along the nerve cells. Diseases associated
with the impairment of the myelination or with the loss of myelin
leads to a weakening of the signal transmission, ultimately result-
ing in debilitating diseases, such as multiple sclerosis.

The molecular basis of axon-glia signaling that triggers and
regulates the formation of myelin sheets remains largely un-
known. The integration of cocultures in CMD allowed the appro-
priated in vitro tool to unravel such interaction. Recent studies
have demonstrated the benefits of using a multicompartment
neuron-glia microsystem to study the process of myelination un-
der different experimental conditions in vitro (Lee et al., 2012;
Park et al., 2012; Yang et al., 2012). Yang et al. (2012) showed that
an intermittent electrical stimulation protocol induces signifi-
cant myelin segment formation. This achievement might be clin-
ically relevant as it is known that functional electrical stimulation
promotes regeneration following experimental spinal cord injury
(Yang et al., 2012). In a different approach, Park et al. (2009)
verified that, after the addition of oligodendrocytes to the axonal
compartment of in vitro cultured neurons, the oligodendrocytes
aligned with axonal fibers in a pattern similar to the one found in
white matter tracts in vivo. Finally, in another related study, re-
searchers developed an attractive CMD that allows different ex-
perimental coculture settings as well as up to six different
pharmacological treatments to be performed in parallel in a sin-
gle device (Park et al., 2012). With this platform, researchers were
able to simultaneously study axon-glia communications, oligo-
dendrocyte development and differentiation, as well the axonal-
specific responses to different stimuli. Authors demonstrate that
mature oligodendrocytes are required to obtain a robust myelin
sheath instead of oligodendrocyte progenitor cells. Furthermore,
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they also showed that the astrocytes stimulated oligodendrocyte
development and are detrimental when added to a preestablished
axonal layer (Park et al., 2012).

Combining CMD with stem cells, novel therapeutic ap-
proaches for treating demyelinating diseases, such as multiple
sclerosis and leukodystrophies, can be explored. In a recent study,
researchers cocultured neurons and oligodendrocytes derived
from mouse embryonic stem cells in a modified CMD to establish
a new and interesting myelin formation in vitro model (Kerman
et al., 2015). With this assay, they were able to follow the myeli-
nation process over several days and obtain real-time imaging
data. The large datasets of high-resolution images could then be
analyzed by an automated quantification algorithm, therefore
arising as a powerful tool to better understand the myelination
process and to unravel new therapeutic targets to treat demyeli-
nating disorders (Kerman et al., 2015).

Peripheral neurons and muscle
Motorneurons are specialized peripheral neurons with an un-
usual spatial arrangement in which its subcellular structures are
exposed to very distinct extracellular microenvironments. On
one side, the motorneuron soma is located centrally within the
spinal cord surrounded by glial cells, whereas the axon terminal is
located in the periphery in direct contact with muscle tissue,
forming the neuromuscular junction, a highly specialized struc-
ture responsible for signal transmission (Hyun Sung Park et al.,
2013; Southam et al., 2013). Neuromuscular signaling is a two-
way crosstalk involving anterograde electrochemical signal, re-
sulting in muscle contraction, and retrograde neurotrophic
signaling to support neuronal condition. The survival and func-
tion of motorneurons and the innervated muscle tissue are highly
dependent on each other (Liu et al., 2008; Park et al., 2013a;
Bhatia and Ingber, 2014; Zahavi et al., 2015). Therefore, degener-

Figure 1. Coculture systems in CMDs. A, Schematic representation of CMD showing the neuronal soma cultured in a separate compartment (left) projecting axons toward the right compartment
where different cell types can be cultured. B, Cocultures of DRG neurons (red) and osteoblasts (green). C, Cocultures of trigeminal ganglia neurons (TGG; left) and stem cells (right). Nuclear mitotic
apparatus (NuMA) is stained with violet and �III-tubulin (Tuj1; green). Adapted with permission from Pagella et al. (2015). D, Coculture of superior cervical ganglia neurons (SCG, left) and
cardiomyocytes (right). E, Coculture of DRG neurons (green) and cancer cells (red). F, Coculture of CNS neurons (red) and glial cells (phase). Myelin basic protein (stained in green) and neurofilament
(NF) (red). B, D, E, F, Adapted with permission from The Royal Society of Chemistry (Neto et al., 2014; Takeuchi et al., 2012; Lei et al., 2016; and Park et al., 2012, respectively).
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ation of the neuromuscular junction is a key and early pathological
feature of many motorneuron diseases and myopathies. In motor-
neuron disease, dysfunction of the spinal motorneuron results in
muscular atrophy, even though the role of muscle–neuron interac-
tions is yet to be fully characterized (Southam et al., 2013).

The spatial arrangement of motorneurons and the crosstalk
between neurons and muscle cells arise as a technical challenge
for researchers aiming to study this system accurately in vitro.
CMDs are being extensively explored to unravel the mecha-
nisms of the formation, stabilization, and degeneration of the
neuromuscular junction (Croushore and Sweedler, 2013;
Hyun Sung Park et al., 2013; Southam et al., 2013; Uzel et al.,

2014; Zahavi et al., 2015). Takeuchi et al. (2011) proposed the
first CMD designed to mimic the neuromuscular system. In
addition to the individualized compartments, separating the
neurons from the myocytes, its design also included micro-
electrode arrays embedded in the substrate, which were used
to stimulate neurons locally and record the activity of both
neurons and muscle cells. Additionally, to simulate the neu-
romuscular junction, in vitro coculture comprising motor-
neurons and skeletal muscle cells has already been shown
using CMD (Southam et al., 2013).

The use of CMD to investigate the mechanisms by which dif-
ferent cues act on neuromuscular cocultures has also been de-

Design Engineering feature Cell types Biological output Reference 

 

Conventional design for the 
CMD 

 
Composed of two 

compartments separated by 
microgrooves. 

 
Allows the segregation of 

axons from soma. 

Cortical and hippocampal 
neurons 

First evidence of pre-synaptic RNA 
localized to developing axons. 

Taylor et al. 
2005 

DRG neurons Role of the ubiquitin-proteasome 
system in axonal growth. 

Deglincerti et 
al. 2015 

Co-culture of motorneurons, 
glial and skeletal muscle cells 

In vitro model of the lower motor 
neuron–neuromuscular junction 

circuit. 

Southam et al. 
2015 

Co-cultures of DRG neurons 
and prostate, pancreatic or 

breast cancer cells 

In vitro model of the process of 
perineural invasion of tumours. Lei et al. 2016 

 

Large open compartment. 
 

Prevents neuronal death in in 
sensitive cultures. 

 
Increases cellular density. 

Midbrain dopaminergic neurons Assessment of mitochondrial 
transport in axonal degeneration. Lu et al. 2012 

Co-culture of cortical neurons 
and oligodendrocytes 

Real-time imaging data of the 
myelination process. 

Kerman et al. 
2015 

 

Radial array of microgrooves 
to assess axonal growth. 

 
Multiple compartment 
configuration to enable 
multiple drug screening. 

CNS neurons 
Differential effect of ECM 

components and neurotrophic 
factors in axonal growth. 

Park et al. 
2014a 

Co-culture of CNS neurons and 
OPC and astrocytes 

Evaluation of the myelination 
process of under multiple 
experimental conditions 

Park et al. 
2012 

 

3-compartment microfluidic 
device. Cortical neurons Effect of neuronal activity on a 

synapse competition in vitro model. 
Coquinco et al. 

2014 

Microelectrode arrays 
embedded in the substrate. 

 
Allows neuronal stimulation. 

Co-culture of SCG neurons and 
cardiomyocites 

In vitro model of the neuromuscular 
system 

Takeuchi et al. 
2011 

Functional connections between 
sympathetic neurons and 

differentiated cardiomyocytes. 

Takeuchi et al. 
2012 

 

Small open compartment to 
allow organotypic cultures. 

 
Longer culture time periods. 

Co-culture of DGR ganglions 
and osteoblasts 

In vitro tool to study the interplay 
between neuronal signalling in bone 

microenvironment. 

Neto et al. 
2014 

Co-culture of trigeminal 
ganglions and dental pulp stem 

cells 

Behaviour of neurons during the 
development of orofacial tissues 

and organs. 

Pagella et al. 
2014 

Co-culture of spinal cord 
explants and muscle cells 

GDNF spatial function, signalling 
and transport. 

Zahavi et al. 
2015 

Figure 2. Examples of the different CMD designs applied in neurobiological research. ECM, Extracellular matrix; OPCs, oligodendrocyte progenitor cells; SCG, superior cervical ganglion; GDNF, glial
cell-derived neurotrophic factor. Artwork adapted by permission from Macmillan Publishers (Taylor et al., 2005), Elsevier (Lu et al., 2012; Park et al. 2014a; Coquinco et al., 2014), and The Royal
Society of Chemistry (Takeuchi et al., 2011; Neto et al., 2014).
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scribed. It has been shown that glial-derived neurotrophic factor
acts differently whether it is applied to motorneuron soma, where
it triggers cell survival, or to its axons, where it promotes growth
and branching. In addition, it was possible to see, for the first
time, retrograde transport of secreted glial-derived neurotrophic
factor from muscle to the neuron (Zahavi et al., 2015). Further-
more, CMDs have also been successfully used to perform cocul-
tures with autonomic neurons and cardiomyocytes (Takeuchi et
al., 2011, 2012; Uzel et al., 2014; Oiwa et al., 2016). Takeuchi et al.
(2012) showed that pharmacological blockage of �-adrenergic
receptor, by local administration of propranolol antagonist,
compromised the synaptic transmission between superior cervi-
cal ganglia neurons and cardiomyocytes.

Peripheral neurons and skeletal cells
In skeletal biology, there is an interest in the role of the peripheral
nervous system in bone homeostasis. Innervation plays a key role in
the development and regeneration of organs and tissues (Chenu and
Marenzana, 2005; Franquinho et al., 2010; Elefteriou et al., 2014).
Furthermore, it has been shown that neurons present in bone tissues
actively contribute to the regulation of bone cell proliferation, mi-
gration, and differentiation (Chenu, 2004; Fukuda et al., 2013; Xu
2014). Nevertheless, the relevant molecular mechanisms of neuron–
bone cell interactions remain to be elucidated. We have presented a
unique tool that mimics the bone microenvironment using CMD.
Our team has adapted this platform for the organotypic coculture of
mice DRG and osteoblasts, derived from mice bone marrow cells
(Neto et al., 2014). We were able to culture osteoblasts within the
microfluidic platform in 2D collagen layer and 3D arginyl-glycyl-
aspartic acid-modified alginate hydrogel. The incorporation of the
most abundant protein in the bone (collagen) and the 3D matrix
provided a better substrate and environment suitable for the culture
of osteoblasts. It is worth mentioning that the ability of incorporated
biomaterials within these platforms is of extreme importance also
from a tissue engineering perspective. We were also able to perform
immunostaining for different neuronal markers and neuropeptides,
such as �III-tubulin, synapsin, and calcitonin gene-related peptide.
Furthermore, to show the close interaction between sensory neurons
and cocultured osteoblasts within the CMD, we have successfully
performed scanning and transmission electron microscopy (Neto et
al., 2014). Additionally, we developed a MATLAB-based algorithm
(The MathWorks) to determine and quantify the axonal outgrowth
driven by the different substrates (see Computational methods). We
have presented a feasible and accurate system to study the neuronal
signaling in bone microenvironment by integrating the microfluidic
technology with biomaterials, 3D matrices, and optical and elec-
tronic microscopy.

Our system was a starting point to the development of new
collaborations and other approaches concerning bone innerva-
tion. Dental tissue innervation was addressed by our collabora-
tors that successfully performed organotypic cultures of dental
pulp stem cells and trigeminal ganglion (Pagella et al., 2014). The
CMDs allowed to maintain the tissues in culture for longer peri-
ods than were previously described in the literature. It was ob-
served that, in culture, the tooth germs kept the ability to repeal
or attract neurons as it is described for in vivo.

Peripheral neurons and cancer cells
An increasing number of studies have been suggesting that the
crosstalk between neurons and cancer cells may plays a pivotal
role in cancer growth and progression, there are few robust
and reliable in vitro models suitable to study this interaction.
To address this subject, Lei et al. (2016) took advantage of the

traditional microfluidic device previously described by Taylor
et al. (2005) to simulate the migration of different cancer cells
associated with neurites, to mimic the process of perineural
invasion of tumors in vivo (Lei et al., 2016). With this simple,
yet interesting approach, they showed that neuronal processes
were able to operate as a support for cancer cells guidance and
migration. Furthermore, they also demonstrated that the
blockade of signaling between neuronal and cancer cells im-
pairs their migration along the neurites, suggesting a possible
application of this tumor-on-chip model drug screening (Lei
et al., 2016).

Computational methods
To collect the full potential of the progress made in microfluidic
technology, an advance in the control, analysis, and quantifica-
tion methods is also in place. It has become imperative to com-
bine experimental readouts with computational tools to acquire,
quantify, analyze, and model data. The ability of microfluidic-
based platforms to spatially isolate distinct neuronal components
has allowed researchers to develop computational algorithms
that analyze, in an unbiased and automated manner, cellular
mechanisms that otherwise would be time-consuming, tedious,
and prone to human error. Computational methods focused on
leveraging microfluidic-based platforms are currently being de-
veloped in complementary domains. These include the follow-
ing: (1) control (Prieto et al., 2012; Frank and Tay, 2015), signal
processing and data analysis, namely, specialized image process-
ing algorithms targeting morphometric analysis of neuronal
structures (Chokshi et al., 2010; Shi et al., 2011; Li et al., 2014;
Neto et al., 2014; Park et al., 2014a; Kerman et al., 2015); (2)
computer modeling, bridging microfluidics experimental data
and theoretical models (Ebbesen and Bruus, 2012; Li et al., 2015;
Nguyen et al., 2016) but also toward the optimization of micro-
fluidic platforms using techniques, such as computational fluid
dynamics (Santillo et al., 2007; Huang et al., 2010); and (3) auto-
mated control systems to manage sensors and actuators on ad-
vanced microfluidic platforms (Kothapalli et al., 2011; Biffi et al.,
2012a; Moreno et al., 2015) (Fig. 3).

The newly available image processing algorithms have been
particularly important in studies regarding axonal behavior,
namely, in outgrowth, guidance, and degeneration. By taking
advantage of the main features of the microfluidic platforms (e.g.,
compartmentalization and chamber transparency), these algo-
rithms are appealing to researchers, as they can provide user-
independent, robust, and automatic quantifications of various
elements regarding neurite development and behavior (Frimat et
al., 2010). Our team also recently developed AxoFluidic (avail-
able at www.tinyurl.com/AxoFluidic), a free, open-source pro-
gram written in MATLAB designed to quantify axonal growth in
microfluidic devices. Its algorithms quantify the axonal out-
growth along a longitudinal axis, taking into account the three
distinct domains of the microfluidic device in the output profile.
Furthermore, it calculates axonal length after a neurite skeleton-
ization process, increasing the robustness of the outgrowth met-
rics to heterogeneous axonal calibers and changes in the intensity
along an axon. AxoFluidic played a major role in demonstrating
that a higher amount of DRG axons was able to reach the axonal
compartment when collagen and laminin were used as substrates,
whereas in alginate they reached longer distances (Neto et al.,
2014). Axonal tracing algorithms have also been shown to take
advantage of a microfluidic device upgraded to allow axons to
grow in separate and parallel lines (Park et al., 2014a). Briefly, this
algorithm can calculate axonal length by measuring the distance
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from the point where axons exit the microgrooves, to their end-
points, detected by scanning the image from the far end of the
axonal compartment in a direction to the microgrooves.

Axonal degeneration has also been addressed by combining
computational modeling and microfluidic technology. The Ax-
onQuant algorithm (Li et al., 2014) allows a high-throughput,
automatic, and quantitative analysis of axonal morphology in a
manner independent of neuronal and axonal density. To develop
this algorithm, researchers have redesigned a microfluidic cham-
ber system to fit in a multiwell format to facilitate the application
of the algorithm. The algorithm itself uses an artificial neural
network trained with the features obtained from decomposed
images of axonal bundles and can assess axonal health by deter-
mining the percentage of imaged axons that are continuous or
segmented. This algorithm is able to analyze automatically large
numbers of axonal bundles in a nonbiased manner and without
manual selection of areas of interest. This algorithm allows a
large-scale and high-throughput screening of genetic factors and

pharmacological compounds that may alter axonal morphology,
thus providing new insights into the mechanistic basis for axon
degeneration (Li et al., 2014).

Aside from axonal behavior, other computational models
have been described taking advantage of microfluidic technolo-
gies to, for example, improve the automatic quantification of the
degree of myelination (Kerman et al., 2015). This method over-
comes limitations of the methods available to the date, which
includes the time-consuming manual counting and tracing of
oligodendrocyte membranes, which often prevented the analysis
of different conditions or the entire experimental area. Taking
this into account, a fluorescence-based computer platform was
developed on ImageJ that can identify and quantify myelin for-
mation within a whole compartment, as well as detect changes in
myelin formation. In this method, myelin quantification was
based on the colocalization between neurons and oligodendro-
cytes, by counting its overlapping pixels, allowing the collection
of several parameters, which enrich the analysis.

Figure 3. Schematic representation of neurons cultured in microfluidic platforms and then submitted to different computational analysis. Morphometric analysis: signal processing and data
analysis, namely, specialized image processing algorithms of neuronal structures. Mathematical models: computer modeling, bridging experimental microfluidics data, and theoretical model.
Automated control systems: manage sensors and actuators on advanced microfluidic platforms.
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The highly controlled environments offered by microfluidic
technology have also allowed researchers to develop and param-
eterize mathematical models on complex cellular mechanisms.
The ability to compartmentalize and accurately apply different
experimental conditions has allowed researchers to isolate and
describe individual components, or dynamics, of the mechanism
of interest. This provides proper conditions to construct, param-
eterize, and validate biophysically detailed in silico models. A re-
cent study focusing on axonal guidance clearly embodies the
advantages of combining modeling with the controlled microflu-
idic environments (Nguyen et al., 2016). They presented a simple
mathematical model explaining the highly stochastic axonal tra-
jectories in a microfluidic-based in vitro system, resolving the
mystery of the relative weak turning angle axons suffer when in
the presence of a gradient and why axons often grow in straight
lines. To achieve this, the authors have created an in silico model
focused on the combined influence of axonal anchor points to the
substrate, on the tendency to turn toward a gradient, and on the
random movement noise. Moreover, to test this model quantita-
tively, a new microfluidic assay was developed for studying ax-
onal response to gradients. By using time-lapse imaging, the
behavior of axons from nerve fibers of rat brain was characterized
over several hours of growth in both attractive and repulsive
gradient conditions (Nguyen et al., 2016). The microfluidics plat-
form combined with the mathematical analysis and modeling
provided an effective approach to shed light on an important but
previously unresolved problem. Noteworthy, computational
modeling is also being used in the context of optimizing micro-
fluidic platforms themselves and improving their control. In this
research line, computational fluid dynamics, in particular, has
been playing a crucial role in the characterization of microfluidic
devices and their operating conditions (Santillo et al., 2007;
Huang et al., 2010).

A third domain of computational methods associated with
microfluidic-based platforms is also gaining momentum. As mi-
crofluidic platforms become more complex regarding sensing
and actuation, it becomes necessary to have advanced control
system capable of leveraging the platform’s capabilities. Several
standard microfluidic platforms are have now been upgraded and
are able to automatically modulate distinct environmental set-
tings (such as pressure, fluxes, temperatures, electrical stimula-
tion, and concentrations) and record specific biological outputs
(such as segregated molecules, gradients, electrophysiological
signals). To fine (automated) control of these platforms is per-
formed using specialized software and scripts in programming
languages as LabVIEW or MATLAB (Erickson et al., 2005; Ma-
jumdar et al., 2011; Frank and Tay, 2015). To improve the control
and readout of neuronal cultures, for example, the integration of
microfluidic devices on microelectrode arrays has become ex-
tremely advantageous as it allows the stimulation and recording
of neuronal electrical activity. When connected to a microfluidic
platform, microelectrode arrays became even more attractive
given the high control and precision over the cell microenviron-
ment and its subcellular compartments (Gross et al., 2007; Biffi et
al., 2012a). Recording of electric signals from growing axons in
microfluidic devices, including propagation speed and direction
of the action potentials, were described using specifically modi-
fied platforms (Dworak and Wheeler, 2009; Kanagasabapathi,
2009; Biffi et al., 2012a; Lewandowska et al., 2015). Still, and for
more complex microenvironments such as neuronal networks,
the challenge in the field is not only related to the miniaturization
process, but also with the amplitude of the biological response.
This results in an extremely challenging and arduous interface

between the user and the miniaturized platform, ultimately re-
quiring the development of accurate and highly elaborated soft-
ware to decode the biological responses and specialized
computational systems to perform real-time control of sensors
(measuring devices) and actuators (action devices). Biffi et al.
(2012b) have reported the development of a spatially and tempo-
rally controlled drug stimulation microfluidic device for neuro-
nal networks. The device compartmentalization allows the
recording of twin population subsets on the same chip when
stimulated differently. For each compartment, the number of
channels displaying spikes or bursts, burst duration, frequency,
and network bursting rate could be analyzed in a single chip (Biffi
et al., 2012b).

Pharmacological manipulation and drug screening
Microfluidic platforms are intended to reproduce complex mi-
croenvironments in simple devices, allowing researchers easy ac-
cess to pharmacological manipulation, image acquisition, and
data retrieval. Its complexity, however, has grown in such scale
that researchers are now able to simulate different organs or
whole biological systems in vitro that would be otherwise unman-
ageable at the macroscale level.

The organ-on-a-chip approach enables the development of
novel in vitro disease models and arises as a promising alternative
for animal testing (Ghaemmaghami et al., 2012; Esch et al., 2015).
Aside from inexistent ethical dilemmas, it overcomes animal us-
age high cost, the often complexity of tissue and cell isolation, the
need to use knock-out or transgenic animals, and the uncertain
translation of animal results to humans. Furthermore, the possi-
bility of using cells isolated directly from patients assures the
biological relevance of studies, allowing a step forward on the
comprehension of the disease. Taking this into account, a con-
siderable effort has been made to the development of organ-on-
a-chip systems, including liver, intestinal, vascular, cardiac, lung,
and brain platforms, to study not only physiological but also
pathological processes, ranging from lung or intestinal cancer to
diabetes and Alzheimer’s disease (Leclerc et al., 2007; Nahmias et
al., 2007; Bhise et al., 2014; Ebrahimkhani et al., 2014).

To date, there is an increased demand for an in vitro brain
model that better mimics the in vivo microenvironment. Most of
the in vitro studies of neurologic diseases lack essential features
that characterize brain tissue. Among others, the complex brain
network of fibers, responsible for the electrical transmission of
information, as well as the presence of the surrounding intersti-
tial liquid, responsible for nutrient delivery, waste clearance, and
neural differentiation, are features difficult to introduce to an in
vitro system.

Nevertheless, several platforms aiming to mimic brain func-
tion have already been described. Park et al. (2015) described a
brain model in which the cell– cell communication and intersti-
tial flow are preserved, allowing long-term in vitro observation
without the need for peripheral devices. By using this platform,
they showed that neurospheroid structures differentiated from
neural progenitor cells, under a dynamic interstitial flow, were
larger and presented a more robust neural network than the ones
cultured under static conditions. This system can also be adapted
to better understand neuronal function under pathologic condi-
tions or to develop strategies for treatment of neurological dis-
eases, such as Alzheimer’s disease. With this device, researchers
demonstrated a way to mimic normal and diseased brain on a
single platform, by simultaneously culturing neurospheroid
structures with and without amyloid-�, the peptide considered as
the cause of Alzheimer’s disease. This approach showed the neu-
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rotoxic effects of amyloid-� underflow by analyzing key features
that characterize Alzheimer’s disease in vivo, such as cell viability,
neural destruction, and synapse dysfunction (Park et al., 2015).

As we can easily understand from the study mentioned above,
organ-on-chip technology can also be used to develop cost-
effective in vitro models for drug screening. These microfluidic
platforms allow researchers to predict more reliably the efficacy,
toxicity, and pharmacokinetics of drug compounds in humans,
as well as to perform novel phenotypic screening assays. Berdi-
chevsky et al. (2010) developed an in vitro brain platform capable
of retaining the complex neural network connections and elec-
trophysiological behavior while allowing pharmacological ma-
nipulation in distinct compartments. In this platform, cortex and
hippocampal brain slices were cocultured in neighboring com-
partments, interconnected by microfluidic channels. Axons were
allowed to form functional synaptic connections, mimicking the
neural pathway between these two different brain regions. Fur-
thermore, by culturing pairs of hippocampal slices, it was also
possible to create a model of axonal sprouting in the CA1 hip-
pocampal subregion, which could be further used to study epi-
lepsy caused by excessive axonal sprouting in the CA1
hippocampal area. Finally, the fluidic isolation between the two
compartments allows the pharmacological treatment of a single
slice, enabling the study of the synaptic activity in the establish-

ment, strengthening, and maintenance of neuronal circuits. This
brain-on-chip platform clearly demonstrates the potential of mi-
crofluidic technologies to explore higher-order functions of
complex tissues as well as a way to screen for new pharmacolog-
ical tools to target neurological diseases.

Aside from the advance in vitro models of brain biology, mi-
crofluidic technology can also be applied in the development of
high-throughput assays. Technologies for large-scale, genetic,
and chemical synapse assays are necessary for fundamental re-
search, and can lead to the identification of new drugs.

Over the years, synapse function has been the focus of many
different therapeutic approaches, as many neurological disorders
derive either from its abnormal functionality or affect directly its
normal connectivity. Shi et al. (2011) developed a compartmen-
talized and highly sensitive synapse microarray device able to
screen small synaptogenic molecules. Composed of two com-
partments spatially isolated from each other and connected by
microchannels, researchers were able to induce synapse forma-
tion at specific sites, by introducing an array of microholes to the
device. By using this platform, a decrease in the time needed to
observe synapse formation was achieved, facilitating this way the
execution of large-scale screens and acquisition of large amounts
of data. Importantly, they were able to detect changes induced by
chemicals in synapse function at very low concentrations. Up-

Figure 4. Microfluidic platforms to study neuronal networks and brain function in physiological and pathological conditions. A, Schematic representation of the hippocampus-hippocampus
coculture in separated compartments. Axons in microchannels stained with DiI (b�; red) and hippocampus slice counterstained with anti-NeuN (c�; green) to reveal the position of the CA1 pyramidal
layer. B, Schematic of the synapse microarray technology (top and bottom left). Fluorescence image of neurites in the synapse microarray (white, bottom right) and synapsin (red). Adapted with
permission from Macmillan Publishers (Shi et al., 2011). C, Schematic diagram of a 3D brain-on-a-chip showing the potential to simulate interstitial flow for physiological and pathological scenarios.
A, C, Adapted with permission from The Royal Society of Chemistry (Park et al., 2014a, and Berdichevsky et al., 2010, respectively).
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grades in assay sensitivity and efficiency were key features for the
detection of faint changes in synaptic function (Shi et al., 2011).
Also, this platform could be easily upgraded to be applied to the
study of other neuronal functions, such as neuronal development
and cell– cell interactions (Fig. 4).

Microfluidic device high throughput technology arises as an
incredibly attractive tool of excellence for pharmacological
screening given its portability, price, and amount of reagents/
biofluid volume needed for drug testing. Drug screening is a
complex, lengthy, and repetitive process that takes a significant
deal of money. Daily, dozens of new potential therapeutic com-
pounds require testing to predict its efficacy and toxicity. The
combination of several analytical techniques in a microfluidic
device, including electrical, enzymatic, fluorescent, and immu-
noassays, allows the simultaneous testing of multiple variables,
such as cell viability, activity, phenotype, secreted factors, and
metabolites (Gao et al., 2012).

In conclusion, microfluidic platforms have contributed tre-
mendously to the evolution of the neurobiological in vitro plat-
forms. Over the last years, an effort has been made to develop and
continuously upgrade CMD to allow a faster translation to clin-
ics. The development of accurate, sophisticated, and relevant
tools to mimic both physiological and pathological conditions
and the progress made on the interesting combination of com-
putational models and microfluidic technology have been crucial
to accurately translate biological responses to in vivo settings.

Microfluidics and microfabrication are highly versatile tech-
nologies, as perceived both by the wide range of studies available
and the variety of designs found within the different research
fields. Because of its features, studies exploring these technologies
have grown exponentially and allowed different research areas to
converge and work together toward common goals: engineers
might use their background to improve the features of CMD to
better control biological systems, whereas biologists work their
way to miniaturize/simplify their hypothesis to fit these plat-
forms. Other examples of success in merging different fields in a
CMD technology context has already been achieved in areas, such
as physics, electronics, mathematics, informatics, engineering,
neurobiology, oncobiology, and stem cell research.

To date, neurobiology is the area that has advanced the most by
taking advantage of the use of CMD. Because of the highly special-
ized neuronal architecture, efforts have been made to improve neu-
ronal cultures and to establish new in vitro models to address
different biological questions. Nevertheless, striking developments
and discoveries are emerging in other fields alongside with neurobi-
ology research, namely, in the regenerative medicine and biomate-
rials areas. These disciplines introduced interesting and complex
upgrades to CMD with the incorporation of 3D microenvironments
and structured cultures, for a controlled spatial relation between
cells, or biomaterials for greater control over mechanical features
(for review, see Bettinger and Borenstein, 2010; Domachuk et al.,
2010; Kobel and Lutolf, 2011; Barata et al., 2016).

Even though many studies require complex systems, others re-
quire the simplest and minimalist environments, to reduce the
number of incorporated variables. Single-cell approaches, for fun-
damental molecular studies, diverge from the development of the
3D organs-on-a-chip where complexity is the ultimate goal. Re-
searchers must be mindful of this duality and weight, not only the
biological hypothesis behind, but also the user-end community. It is
crucial to remember that a user-friendly device will be easier to trans-
late and implement across different laboratories, and it is imperative
to keep balanced the commitment between the complexity of the in

vitro system, the practicality of its use, and the cost production when
considering an upscale to industry.

It is essential to be conscious that microfluidic systems still
pose some challenges that need to be addressed. Constant up-
grades, including the incorporation of bioanalytical stations for
biological analysis, such as in situ detection of DNA/RNA/se-
creted proteins, will help to overcome some technical issues re-
lated to the low cell number, multiple cell types, and/or 2D/3D
environment used. Moreover, the improvement on the readout
of data obtained from these microfluidic systems using compu-
tational models will certainly support the achievement of faster
and reliable outcomes. It is of the utmost importance that the
development of new microfluidic devices must answer a scientific
biological questions to guarantee results accuracy and faster
translation to in vivo scenarios.

Undoubtedly, microfluidics have captured the complexity of
human systems, and these devices are rapidly evolving, absorb-
ing, and integrating cutting edge technology to be applied to the
most challenging settings.

Overall, we believe that the merge of complementary fields of re-
searchwill leadtonewandrelevant improvementsofmicrofluidic tech-
nology, ultimately resulting in more accurate biological data.
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