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Cannabinoids Activate Monoaminergic Signaling to
Modulate Key C. elegans Behaviors

Mitchell D. Oakes,' Wen Jing Law,' “Tobias Clark,' Bruce A. Bamber,' and Richard Komuniecki'
Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606

Cannabis sativa, or marijuana, a popular recreational drug, alters sensory perception and exerts a range of potential medicinal benefits. The
present study demonstrates that the endogenous cannabinoid receptor agonists 2-arachidonoylglycerol (2-AG) and anandamide (AEA) activate
a canonical cannabinoid receptor in Caenorhabditis elegans and also modulate monoaminergic signaling at multiple levels. 2-AG or AEA inhibit
nociception and feeding through a pathway requiring the cannabinoid-like receptor NPR-19. 2-AG or AEA activate NPR-19 directly and
cannabinoid-dependent inhibition can be rescued in npr-19-null animals by the expression of a human cannabinoid receptor, CB, , highlighting
the orthology of the receptors. Cannabinoids also modulate nociception and locomotion through an NPR-19-independent pathway requir-
ing an a,,-adrenergic-like octopamine (OA) receptor, OCTR-1, and a 5-HT, ,-like serotonin (5-HT) receptor, SER-4, that involves a
complex interaction among cannabinoid, octopaminergic, and serotonergic signaling. 2-AG activates OCTR-1 directly. In contrast, 2-AG
does not activate SER-4 directly, but appears to enhance SER-4-dependent serotonergic signaling by increasing endogenous 5-HT. This
study defines a conserved cannabinoid signaling system in C. elegans, demonstrates the cannabinoid-dependent activation of monoam-

inergic signaling, and highlights the advantages of studying cannabinoid signaling in a genetically tractable whole-animal model.
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ignificance Statement

a genetically tractable, whole-animal model.

Cannabis sativa, or marijuana, causes euphoria and exerts a wide range of medicinal benefits. For years, cannabinoids have been
studied at the cellular level using tissue explants with conflicting results. To better understand cannabinoid signaling, we have
used the Caenorhabditis elegans model to examine the effects of cannabinoids on behavior. The present study demonstrates that
mammalian cannabinoid receptor ligands activate a conserved cannabinoid signaling system in C. elegans and also modulate
monoaminergic signaling, potentially affecting an array of disorders, including anxiety and depression. This study highlights the
potential role of cannabinoids in modulating monoaminergic signaling and the advantages of studying cannabinoid signaling in
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Introduction

Cannabis sativa, or marijuana, has long been a popular recreational
drug because of its unique ability to alter sensory perception and
cause euphoria. More importantly, marijuana also has been reported
to exert a wide range of medicinal effects (Pacher et al., 2006).
Cannabis contains >60 bioactive compounds, or phytocannabi-
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noids, the two most common being A°-tetrahydrocannabinol (THC)
and cannabidiol (CBD). In addition, the endogenous cannabinoids
2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine
(anandamide or AEA) are synthesized within the brain and CNS.
Cannabinoids primarily activate Ga,-coupled cannabinoid recep-
tors 1 and 2 (CB, and CB,). CB, is localized primarily to the brain
and CNS (Herkenham et al., 1990; Glass et al., 1997; Martin et al.,
1998), whereas CB, is restricted to the periphery and certain leukocytes
(Munro et al., 1993). Endocannabinoids and phytocannabinoids acti-
vate the same receptors and elicit similar cellular responses de-
spite their structural differences. Both 2-AG and AEA mediate
retrograde inhibition of synaptic neurotransmission via acti-
vation of CB, on presynaptic membranes (Ohno-Shosaku and
Kano, 2014). 2-AG or AEA inhibition is terminated by monoacyl-
glycerol lipase (MAGL) or fatty acid amide hydroxylase (FAAH),
respectively, with inhibition of either, eliciting analgesic and an-
tinociceptive behavior (Piomelli et al., 2006; Long et al., 2009a;
Long et al., 2009b).
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Thus far, the majority of studies on cannabinoids have been
conducted at the cellular level, sometimes using mammalian tis-
sue explants to observe receptor activation. In contrast, our goal
was to examine the role of cannabinoids on whole-animal behav-
ior and to dissect the role of cannabinoid signaling in the modu-
lation of sensory integration and downstream decision making.
Therefore, the present study was designed to examine the effects
of cannabinoid receptor agonists on nociceptive behaviors in the
nematode (C. elegans) model system because CB, appears to sup-
press pain in mammals (Sofia et al., 1973; Yaksh and Reddy, 1981;
Tsou et al., 1995; Walker and Huang, 2002).

Our results demonstrate that mammalian cannabinoid receptor
ligands activate a conserved cannabinoid signaling system in
C. elegans and also modulate monoaminergic signaling, poten-
tially affecting an array of disorders, including anxiety and de-
pression. In contrast to published reports, C. elegans contains an
endogenous canonical cannabinoid signaling system (McPart-
land and Glass, 2001; Pastuhov et al., 2016). Inhibiting the break-
down of endogenous 2-AG or AEA mimics 2-AG or AEA
addition and inhibits nociception and feeding through a pathway
that requires the cannabinoid-like receptor NPR-19. Cannabi-
noids activate NPR-19 directly and npr-19-null animals can be
rescued by the expression of human CB,, confirming the orthol-
ogy of the two receptors. In addition, higher exogenous cannabi-
noid levels also activate an «,,-adrenergic-like receptor
(OCTR-1) and a 5-HT, ,-like receptor (SER-4) to modulate both
nociception and locomotion through NPR-19-independent
pathways. Cannabinoids activate OCTR-1 directly when ex-
pressed heterologously in Xenopus laevis oocytes. In contrast,
2-AG does not activate SER-4 directly and cannabinoids appear
to enhance SER-4-dependent serotonergic signaling by increas-
ing endogenous serotonin (5-HT). This study highlights the po-
tential role of cannabinoids in modulating monoaminergic
signaling and the advantages of studying cannabinoid signaling
in a genetically tractable, whole-animal model.

Materials and Methods

Nematode strains and construction of C. elegans transgenes. Strains were
maintained as described in Brenner (1974). The following strains were
used: N2 (Bristol), ckr-2 (tm3082), dop-1 (0k298), mod-5 (n3314), npr-3
(tm1583), npr-5 (0k1583), npr-19 (0k2068), npr-24 (0k3192), octr-1
(0k371), ser-2 (pk1357), ser-4 (0k512), and tph-1 (n4622). RNAI trans-
genes were generated by PCR fusion as described in Esposito et al. (2007)
and coinjected with f25b3.3::¢fp (to 100 ng). The octr-1 (+), npr-19 (+)
full-length genomic and npr-19:npr-19::¢fp transcriptional transgenes
were generated by PCR fusion and coinjected with f25b3.3::¢fp (to 50 ng).
The npr-19::gfp transcriptional transgene was constructed by PCR fusion
of 1.5 kb npr-19 promoter including the first intron fused to gfp::unc-54
3"'-UTR and coinjected with unc-122::rfp (to 50 ng). The npr-19::CNRI::
gfp transgene was generated by 3-piece PCR fusion of the npr-19 pro-
moter including the first intron, full-length human CNRI ¢cDNA, and
gfp::unc-54 3'"'-UTR and were coinjected with unc-122::rfp (to 50 ng).
unc-17B-driven transgenes were generated by PCR fusion of the unc-17
promoter (562 bp) to GPCR ¢cDNA and gfp::unc-54 3''-UTR and coin-
jected with unc-122::1fp (to 50 ng). npr-9::ser-4:¢fp transgene was gener-
ated by PCR fusion using native npr-9 promoter and coinjected with
unc-122::rfp (to 50 ng). PCR fusions were performed as described in
Hobert (2002).

Octanol avoidance assays. Octanol avoidance assays were performed as
described in Chao et al. (2004) and as modified by Harris et al. (2011).
For all behavioral assays, L4 stage animals were picked 24 h before assay-
ing. 2-AG and AEA plates were prepared 10 min before assay by spread-
ing 60 ul of 2-AG or AEA (in H,O) on fresh NGM plates. To measure
aversive responses to 1-octanol, the blunt end of a hair was briefly dipped
in 1-octanol and placed in front of a forward-moving worm and the time
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taken to initiate backward locomotion was recorded. Animals were first
transferred to intermediate (nonseeded) plates, left for 30 s, transferred
to assay plates, and tested after 10 min. In all assays, 20—-25 worms were
examined for each strain and condition and each assay was performed at
least three times. Statistical analysis was performed using mean = SE and
Student’s ¢ test.

Heterologous expression and electrophysiology in X. laevis oocytes.
The human CB, (CNR1), a,-adrenergic (ADRA2A), 5-HT, , (HTR1A),
GIRK1, GIRK2, and C. elegans npr-19, octr-1, and ser-4 cDNAs were
cloned between Notl and Agel restriction enzyme sites into a Xenopus
expression vector containing a T7 promoter and the Xenopus 5" and 3’
B-globin UTRs to generate pxGIRKI, pxGIRK2, pxCNRI, pxADRA2A,
PpxHTRIA, pxser-4, pxoctr-1, and pxnpr-19, respectively. Linearized plas-
mids were transcribed using an Ambion mMessage mMachine T7 kit
(Applied Biosystems). ADRA2A, CNR1, GIRK1, and GIRK2 ¢cDNAs
were from Addgene and HTR1A cDNA was from GE Healthcare. X. laevis
oocytes were from Xenopus One and Nasco. Oocytes were separated
mechanically before incubation in ND-96 (Ca*" free) medium (96 mm
NaCl, 2 mm KCl, 1 mm MgCl,, 5 mm HEPES, pH 7.6) containing 1 mg/ml
collagenase type 1A (Sigma Aldrich) for 30 min. Defolliculated oocytes
were separated and incubated in modified Barth’s medium with 1 mm Na
pyruvate, 0.01 mg/ml gentamicin, and 1 X antibiotic—antimycotic (Invit-
rogen) at 16°C overnight. Receptor cRNAs were injected at 50 ng/50 nl
and GIRKI and GIRK2 channel cRNAs were injected at 0.5 ng/50 nl.
Oocytes were incubated at 16°C for 48—72 h after injection and then
transferred to 4°C. Two-electrode voltage-clamp (TEVC) recordings
were performed 72 h after injection using an Axon Gene Clamp 500
Amplifier (Molecular Devices) as described previously (Stithmer, 1998;
Bamber et al., 2003). For TEVC recordings, standard low K * Ringer’s
solution (115 mm NaCl, 2.5 mm KCI, 1.8 mm CaCl,, 10 mm HEPES, pH
7.2) and a high K * Ringer’s solution (96 mm KCl, 2 mm NaCl, 1.8 mm
CaCl,, 10 mm HEPES, pH 7.2) were applied by gravity perfusion. Ligands
were applied by gravity perfusion initially at 1 um. Oocytes coexpressing
GIRK1/2 and GPCRs were perfused with intervals of increasing concen-
trations of 2-AG and AEA to determine ligand specificity and ECs,,. 2-AG
and AEA dose-response curves were fitted with the equation: I — I, /(1
+ 10 (los EC0—[agonist) > 1) '\ hare [ is the current at a given 2-AG or AEA
concentration, I, is current at saturation, ECy, is the 2-AG and AEA
concentration required to elicit half-maximal current, and # is the slope
coefficient. Curve fitting was performed using GraphPad Prism software.

Confocal imaging. To localize NPR-19, a transcriptional npr-19::¢fp
transgene was generated using 1.5 kb upstream of the predicted npr-19
start site, including the first intron. To identify a subset of amphid sen-
sory neurons, animals were incubated in 5 um 1,1"-dioctadecyl-3,3,3",3"-
tetramethylindodicarbocyanine (DiD; Invitrogen) for 1 h and then
transferred to a standard NGM plate seeded with OP50 for 1 h to destain.
For neuronal identification, npr-19::¢fp was coinjected with tph-1:1fp,
tdc-1::1fp, flp-8::rfp, flp-18::rfp, or ceh-36::rfp. All imaging was performed
on an Olympus IX81 inverted confocal microscope. Animals expressing
the npr-19:¢fp transgene were immobilized on agarose pads with 20 mm
sodium azide and imaged for GFP/RFP/DiD fluorescence.

Pharyngeal pumping assay. Pharyngeal pumping was assayed on NGM
plates. 2-AG plates were prepared 10 min before assay by spreading 60 ul
of 320 um 2-AG (in H,O) on fresh, predried NGM plates. For all pump-
ing assays, L4 animals were picked 24 h before assay. Animals were
moved from food plates to either a nonseeded NGM plate for control or
2-AG plates and incubated for 10 min. During assay, locomotion was
recorded using a Sony Exwave HAD color-video digital camera for 2 min.
Videos were played back in slow motion and the number of pharyngeal
pumps per minutes was counted. Statistical analysis was performed using
mean *+ SE and Student’s # test.

Feeding assay. Uptake of fluorescently labeled latex beads was performed
as described in Kiyama et al. (2012). Fluoresbrite YG Microspheres were
from Polysciences (1.00 wm; catalog #17154-10), diluted in ethanol, and
stored at 4°C. Feeding plates were made by spreading 150 ul of M9 bead
solution (1 X 10® microspheres/plate) and drying for 30 min. Wild-type and
npr-19-null animals were incubated for 10 min on plates containing 2-AG,
AEA, or no drug. Animals were transferred to bead plates + 2-AG or AEA,
allowed to feed for 30 min at room temperature, and then removed, washed
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(. elegans contains an endogenous cannabinoid signaling system requiring the cannabinoid receptor NPR-19. The initiation of aversive responses to 1-octanol was examined as

described by Harris etal. (2009). A, 2-Arachidonoylglycerol (2-AG), anandamide (AEA), JZL184 (JZL), or URB697 (URB) inhibition of aversive responses to 1-octanol. B, 2-AG dose—response curve for
wild-type animals. C, Screen for receptor-null animals resistant to 2-AG-dependent inhibition of aversive responses. D, Screen for receptor-null animals resistant to JZL184-dependent inhibition of
aversive responses. E, npr-19 or (B, expression driven by a minimal npr-79 promoter in npr-19-null animals. *Significantly different from wild-type animals in the absence of effector (p = 0.05).

Data are presented as a mean == SE (n) and were analyzed by two-tailed Student’s ¢ test.

with M9 to remove excess beads, and immobilized on agarose pads with 20
mum Na azide for imaging using an Olympus IX81 inverted confocal micro-
scope. Images were analyzed using Image]. Statistical analysis was performed
using mean * SE and Student’s ¢ test.

Locomotory (body bend) assay. Freshly poured agar plates (non-NGM)
containing either 320 um 2AG/AEA were used for assay. Well-fed, young
adult hermaphrodite animals are picked before assay and maintained
on NGM plates with E. coli OP50. During assay, seven animals were
transferred to the assay plate. Motility was assessed as number of body
bend/20 s at 5 min intervals for 30 min starting as soon as animals
were transferred. Each strain was assayed at least three times with
seven animals per assay. Statistical analysis was performed using
mean * SE and Student’s ¢ test.

Endocannabinoid compounds. 2-AG, AEA, JZL184, and URB597 were
all from Tocris Bioscience and stock solutions are in DMSO or ethanol at
100 mM and are stored at —80°C.

Results

Endocannabinoids 2-AG and AEA inhibit aversive behavior
2-AG and AEA have been identified recently in C. elegans
extracts by mass spectrometry (Lehtonen et al., 2011), but a

simple BLAST search using the human cannabinoid receptor
CB, failed to identify any C. elegans receptors with significant
identity to CB,, consistent with previous reports that C. eleganslacks
clear mammalian cannabinoid receptor orthologs (McPart-
land and Glass, 2001; Pastuhov et al., 2016). In mammals,
2-AG and AEA exert antinociceptive action in models of acute
inflammatory and neuropathic pain; therefore, we examined
their effects on aversive responses to 1-octanol in C. elegans
(Iskedjian et al., 2007; Clapper et al., 2010). This aversive
decision-making circuit is mediated primarily by the two ASH
sensory neurons and has been characterized extensively
(Wragg et al., 2007; Harris et al., 2011; Mills et al., 2012) 2-AG
and AEA inhibited the more rapid initiation of aversive re-
sponses to 100% 1-octanol in C. elegans (2-AG: t = 17.5, df =
16, p < 0.0001; AEA: t = 7.8, df = 8, p < 0.0001), with 2-AG
exhibiting an EC;, of ~1 uM (Fig. 1A,B). These relatively
high concentrations of ligands were probably necessary to
overcome the relative impermeability of the nematode
cuticle.
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Figure2.
in red; identical residues are bolded and indicated with an asterisk.

In mammals, the degradation of 2-AG and AEA and termina-
tion of signaling are initiated by a membrane-bound MAGL and
FAAH, respectively (Long et al., 2009b). The predicted C. elegans
proteins, Y97E10AL.2 and FAAH-1, exhibit significant sequence
identity to human MAGL (39%) and FAAH (38%), respectively,
and selective inhibitors are available for both predicted mamma-
lian orthologs (Piomelli et al., 2006; Long et al., 2009a). As antic-
ipated, the inhibition of either MAGL with JZL184 or FAAH with
URB597, predicted to inhibit the degradation of 2-AG or AEA,
respectively, mimicked 2-AG or AEA addition and inhibited
aversive responses to 1-octanol (JZL184: t = 10.1,df = 11, p <
0.0001; URB597: t = 20.9, df = 7, p < 0.0001; Fig. 1A). Together,
these results suggest that C. elegans contains an endogenous can-
nabinoid signaling system.

2-AG/JZL184 inhibition of aversive responses is absent in
npr-19-null animals

To identify potential C. elegans cannabinoid receptors, we reex-
amined protein BLAST data using human CB, and identified a
number of previously characterized C. elegans monoamine
receptors and predicted neuropeptide receptors, including
NPR-19, with limited identity to CB; (McPartland and Glass,
2001). To determine whether any of these receptors were re-
quired for the cannabinoid-mediated inhibition of aversive
responses, we screened the appropriate null animals for loss of
JZL184 or 2-AG-dependent inhibition of aversive responses
(Fig. 1).

JZL184 or 2-AG still inhibited aversive responses in ckr-2-,
dop-1-, npr-3-, octr-1-, ser-2-, and ser-4-null animals. In contrast,
JZL184 or 2-AG inhibition was dramatically reduced in npr-19-
null animals (2-AG: t = 10.8, df = 17, p < 0.0001; JZL184: t =
10.3, df = 12, p < 0.0001; Fig. 1C,D). Similarly, JZL184 or 2-AG
inhibition was absent after npr-19 RNAi knockdown (2-AG: t =
10.2, df = 13, p < 0.0001; JZL184: t = 5.1, df = 7, p < 0.0001)
using a predicted 1.5 kb npr-19 promoter (Fig. 1C,D). 2-AG in-
hibition could be rescued in npr-19-null animals by expression of

Comparison of (B1and NPR-19aa sequences. (B1/NPR-19 protein alignment. Conserved key amino acid residues involved in AEA binding (F, o, L3, L1, F370,and S45) are highlighted

a full-length npr-19 transgene driven by the predicted 1.5 kb
promoter, including 1 kb of the npr-19 3'-UTR (Fig. 1E). In
addition, wild-type animals overexpressing this npr-19 transgene
mimicked the addition of 2-AG and initiated aversive responses
more slowly than wild-type animals in the absence of 2-AG (t =
2.8,df =12, p < 0.001; Fig. 1E). Importantly, 2-AG sensitivity in
npr-19-null animals could also be rescued by the expression of
CNRI cDNA, the human CB,-encoding gene, driven by the
npr-19 promoter described above, confirming the orthology of
the two receptors (¢t = 8.8, df = 12, p < 0.0001; Fig. 1E).

As predicted, although NPR-19 and human CB, exhibited
only 23% sequence identity, many key amino acids involved in
AEA binding appear to be conserved (Fig. 2). The residues delim-
iting the AEA-binding pocket are largely hydrophobic, based on
both modeling and site-directed mutagenesis (Reggio, 2010), and
include F 4, L, 93, F379, and Ss45. All four residues were conserved
in NPR-19 (Fig. 2). F g interacts with the AEA amide oxygen and
an F 49, mutation in CB; decreases AEA binding sixfold (McAl-
lister et al., 2004). The AEA amide oxygen also interacts with a
charged residue at position 192 (Kin CB;, D in NPR-19) and the
AEA hydroxyl forms a hydrogen bond with S;4; (McAllister et al.,
2003).

These data highlight the effective coupling of a human G-protein-
coupled receptor to endogenous C. elegans G-proteins and
strongly support the hypothesis that NPR-19 is a mammalian
cannabinoid receptor ortholog.

2-AG and AEA activate NPR-19 heterologously expressed in
Xenopus oocytes directly

To demonstrate that 2-AG/AEA activate NPR-19 directly, Xeno-
pus oocytes were coinjected with #npr-19 and GIRK1/2 cRNAs.
GIRK1/2 encode inwardly rectify potassium channel subunits
activated by G-protein 3y subunits and were coexpressed on the
assumption that NPR-19 would be Ga,_coupled, based on the
observation above that the Ga,-coupled human CB,; rescued
aversive phenotypes in npr-19-null animals. As expected, 2-AG
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2-Arachidonoylglycerol (2-AG) and anandamide (AEA) activate NPR-19 expressed in Xenapus laevis oocytes. Two-electrode voltage-clamp (TEVC) recordings were performed on oocytes

expressing NPR-19 and GIRK1/2 subunits 72 h after injection, as described previously (Stiihmer, 1998; Bamber et al., 2003). Representative traces are shown for NPR-19 activation by 2-AG (4) and
AEA (B). I, represents the current induced upon a switch from low-K * to high-K * Ringer's solution. Ligana Yepresents the currentinduced after ligand application. NPR-19 dose—response curve

is shown for 2-AG (€) and AEA (D). Data are represented as a mean = SE (n).

and AEA had no effect on oocytes expressing GIRK1/2 alone, but
initiated robust inwardly rectifying currents in oocytes express-
ing NPR-19 (Fig. 3A, B), with EC5,s 0395 = 5.1 nm (Fig. 3C) and
14 + 2.4 nMm (Fig. 3D), respectively. The EC;s for 2-AG and AEA
are in the range of EC;s reported for human CB;, 125 nm (Luk et
al., 2004) and 89 nm (McAllister et al., 1999), respectively. To-
gether, these data demonstrate that NPR-19 is a cannabinoid
receptor.

NPR-19 is expressed in a limited number of neurons and
inhibits pharyngeal pumping and feeding

Based on fluorescence from an npr-19::¢fp transgene, NPR-19
is only expressed in a limited number of neurons, including
the two inhibitory, glutamatergic M3 pharyngeal motorneu-
rons (Fig. 4A,B) and the two URX sensory neurons (Fig.
4 A, C) that play key modulatory roles in regulating pharyngeal
pumping and avoidance behavior, respectively (Raizen and
Avery, 1994; McGrath et al., 2009). As predicted, npr-19 RNAi
knockdown in the URXs, using either the URX-selective gpa-8
or flp-8 promoters, mimicked the npr-19-null phenotype and
significantly decreased 2-AG-dependent inhibition of aversive
responses to 100% 1-octanol ( gpa-8: t = 13.6, df = 10, p <
0.0001; flp-8: t = 16.8, df = 11, p < 0.0001; Fig. 4D). The

inhibitory M3s repolarize pharyngeal muscle after contraction
and ablation of the M3s decreases the rate of pharyngeal
pumping and feeding (Raizen and Avery, 1994). Indeed, 2-AG
or AEA also inhibited pharyngeal pumping of food (2-AG: t =
5.2,df =5, p < 0.001; AEA: t = 5.7, df = 6, p < 0.001; Fig. 4F),
although at higher concentrations than those required for the
inhibition of nociception (320 vs 3.2 uM). In contrast to no-
ciception, JZL184 or URB597 had no effect on pumping (Fig.
4E), presumably because of the higher cannabinoid levels re-
quired for inhibition.

These higher cannabinoid levels also inhibited feeding, as
assessed by the uptake of fluorescently labeled latex beads (2-
AG: t = 6.8,df = 4, p < 0.001; AEA: t = 16.6,df = 4, p <
0.0001; Fig. 4G) in wild-type animals. The cannabinoid-
dependent inhibition of both pumping and feeding were npr-19 de-
pendent and, as predicted, could be rescued by the expression of
a full-length npr-19 transgene driven by the predicted 1.5 kb
promoter, including 1 kb of the npr-19 3’-UTR [pumping (2-
AG):t=9.5,df =11, p < 0.001; pumping (AEA): t = 10.3, df =
10, p < 0.0001; feeding (2-AG): t = 8.2, df = 10, p < 0.001;
feeding (AEA): t = 9.0, df = 13, p < 0.0001; Figure 4 F, G]. More
specifically, npr-19 RNAi knockdown in the M3s using either the
M3-selective glt-1 or egl-36 promoters, mimicked the npr-19-null
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Figure 4.

NPR-19iis expressed in a limited number of neurons, including URX and M3. A—, A transcriptional npr-79::gfp transgene was generated using 1.5 kb upstream of the predicted npr-19 start site,

including thefirstintron. A, DiD-stained wild-type animal expressing npr-19:gfp. B, C, For neuronal identification, npr-19::gfp was coinjected with either flp-8::rfp or ceh-36::rfp. Wild-type animals coexpressing
npr-19::gfp and either ceh-2::rfp (B) or flp-8::rfp (C) were used to identify M3s and URXS, respectively. D, Aversive responses to 1-octanol after selective npr-79 RNAi knockdown in the URXs via flp-8 or gpa-8
promoters. £, Concentration-dependent 2-arachidonoylglycerol (2-AG) and anandamide (AEA) inhibition of pharyngeal pumping. F, Pharyngeal pumping of npr-79-null and rescue animals. G, Effects of
2-AG/AEA onfeeding as measured by the uptake of fluorescent beads, as described in Kiyama etal. (2012). H, Pharyngeal pumping after selective npr-79 RNAi knockdown in the M3s via egl-36 or gft- 7 promoters.
fp-8 and gpa-8 promoters drive expression in the two URXs and a limited number of other neurons; egl-36 and glt-1 promoters drive expression in the two M3s and a limited number of other neurons

(Wormbase). *Significantly different from wild-type animals in the absence of effector (p = 0.05). Data are presented as a mean == SE (n) and were analyzed by two-tailed Student’s ¢ test.

phenotype and significantly decreased the 2-AG-dependent inhi-
bition of pharyngeal pumping (Fig. 4H). To ensure that the
neuron-specific RNAi phenotypes did not result from transgene
overexpression, we expressed a dsgfp RNAI using the same pro-

moters. As predicted, these RNAI transgenes had no effect on
nociception or feeding (Fig. 4 D, H ). These data demonstrate key
neuron-specific roles for cannabinoids and NPR-19 in the mod-
ulation of aversive behavior, pharyngeal pumping, and feeding.
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Figure5.  SER-4and OCTR-1are required for cannabinoid-dependent inhibition of nociception and locomotion at higher exogenous cannabinoid concentrations. Aversive responses to 1-octanol
were examined as described by Harris et al. (2009). A, Concentration-dependent 2-arachidonoylglycerol (2-AG) inhibition of aversive responses. B, octr-1 rescue of 2-AG inhibition of aversive
responses in octr-1-null animals. C, D, F, Two-electrode voltage-clamp (TEVC) recordings performed on oocytes coexpressing 0CTR-1 or SER-4 and GIRK1/2 subunits 72 h after injection, as described
previously (Stihmer, 1998; Bamber et al., 2003). €, Representative trace of direct 0CTR-1 activation by 2-AG. D, 0CTR-1 dose—response curve for 2-AG. E, 2-AG inhibition of aversive responses to
1-octanol in ser-4-null animals. F, SER-4 dose—response curves for serotonin (5-HT) and 5-HT + 5 um 2-AG after SER-4 expression in Xenopus oocytes. G—I, 2-AG-dependent locomotory inhibition.
H, 5-HT- and 2-AG-dependent inhibition of locomotion and 2-AG-dependent locomotory inhibition in 5-HT receptor quintuple-null animals expressing ser-4 off-target in the cholinergic motor-
neurons (MNs). Data are represented as mean = SE (n) and were analyzed by two-tailed Student’s ¢ test. *Significantly different from 0 min; tsignificantly different from N2 at 15 min (p = 0.05).

At higher exogenous cannabinoid concentrations, both
serotonin and octopamine (OA) receptors are required for
the cannabinoid-dependent inhibition of nociception and
locomotion

Because the recreational use of cannabinoids might elevate total
cannabinoid levels beyond what were normally observed endog-
enously, we examined the effects of elevated 2-AG and AEA levels
on worm behavior. Surprisingly, at higher exogenous cannabi-
noid concentrations (32 vs 3.2 uM) the a,,-adrenergic-like re-

ceptor OCTR-1 and the 5-HT,-like receptor SER-4 are both
required for the 2-AG inhibition of nociception in addition to
NPR-19 because octr-1 and ser-4-null animals are also resistant to
2-AG inhibition (octr-1: t = 7.4, df = 49, p < 0.0001; ser-4: t =
5.8, df = 48, p < 0.0001; Fig. 5A). The monoaminergic modula-
tion of aversive responses is complex and involves the synergistic
and antagonistic interactions of multiple monoamine receptors
interacting at multiple levels in the locomotory decision-making
circuit modulating nociception (Wragg et al., 2007; Harris et al.,
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2011; Mills et al., 2012). An octr-1::gfp transgene is broadly ex-
pressed, including both the ASHs and the ventral nerve cord
(Wragg et al., 2007), and 2-AG sensitivity could be restored in
octr-1 animals by octr-1 expression driven by the predicted 5 kb
octr-1 promoter (Fig. 5B). 2-AG activated OCTR-1 directly after
heterologous expression, with an ECs, of 365 * 24 nm (Fig.
5C,D). Interestingly, NPR-19 and OCTR-1 exhibited similar
ECsqs for 2-AG, although OCTR-1-dependent phenotypes were
only observed at higher exogenous 2-AG concentrations. These
differences could be explained in a number of ways, including
differential modulation of the receptors in vivo, differential local-
ization of the receptors relative to ligand entry, or the degree of
receptor activation required for the phenotype. In contrast, ser-4
is only expressed in a limited number of neurons and 2-AG sen-
sitivity could be restored in ser-4-null animals by ser-4 expression
in the two AIB interneurons (Fig. 5E). In contrast to OCTR-1,
2-AG (5 wm) did not activate SER-4 directly and had no effect on
SER-4 affinity for 5-HT (Fig. 5F).

Although MAGL or FAAH inhibition with JZL184 or
URB597, respectively, had no effect on locomotion, increasing
exogenous cannabinoid levels even further (to 320 uMm) also
caused animals to become sluggish and stop moving for brief
periods (t = 6.7, df = 36, p < 0.0001; Fig. 5G). Both SER-4 and
OCTR-1 were involved in this cannabinoid-dependent locomo-
tory inhibition, but, in contrast to aversive responses, NPR-19
was not involved because npr-19-null animals behaved as wild-
type animals and were similarly inhibited by 2-AG (¢t = 3.9, df =
40, p < 0.0001; Fig. 5G). In fact, this cannabinoid-dependent
locomotory phenotype mimicked the 5-HT-dependent “loco-
motory confusion” phenotype mediated by the 5-HT activation
of the Gar,-coupled 5-HT,-like receptor SER-4 in the two AIB
interneurons (Law et al., 2015). Indeed, ser-4 and 5-HT receptor
quintuple-null animals were both resistant to cannabinoid-
dependent locomotory inhibition and, as predicted, could be res-
cued by ser-4 expression in the AIBs of ser-4-null animals (t = 6.2,
df = 12, p < 0.0001; Fig. 5G). Interestingly, octr-1-null animals
were also resistant, potentially involving the direct 2-AG activa-
tion of the inhibitory OCTR-1 in the motorneurons (Fig. 5G).
Indeed, octr-1 overexpression inhibited locomotion in the ab-
sence of 2-AG compared with wild-type animals (6.5 vs 9.6 body
bends/20 s; data not shown). These results demonstrate that ele-
vated cannabinoid levels have the potential to stimulate both
octopaminergic and serotonergic signaling to modulate an array
of key behaviors.

Cannabinoids increase endogenous 5-HT levels

As noted above, SER-4 was only required at higher exogenous
cannabinoid concentrations and 2-AG did not activate SER-4
directly. Therefore, we hypothesized that cannabinoids might in-
crease endogenous 5-HT levels, leading to the locomotory inhi-
bition, either by increasing 5-HT release or inhibiting reuptake.
To examine this hypothesis directly, we examined tph-1-null an-
imals that lack tryptophan hydroxylase, the rate-limiting enzyme
in 5-HT biosynthesis. As anticipated, tph-1-null animals that lack
endogenous 5-HT were resistant to 2-AG-dependent locomotory
inhibition (¢ = 5.1, df = 12, p < 0.001), suggesting that 5-HT is
required for 2-AG inhibition and that 2-AG may increase endog-
enous 5-HT (Fig. 5H). Indeed, the 2-AG and 5-HT-dependent
locomotory confusion phenotypes are similar and 2-AG-dependent lo-
comotory inhibition mimics that observed in mod-5-null animals
that lack a key 5-HT reuptake transporter and also display ele-
vated 5-HT levels and inhibited locomotion (Fig. 5H). However,
2-AG still inhibits locomotion in these already slowed mod-5-null

Oakes et al. ® Cannabinoid Signaling in C. elegans

animals (t = 8.2, df = 26, p < 0.0001; Fig. 5H ), suggesting addi-
tional 2-AG targets, including direct effects on 5-HT release. In
addition, 5-HT or 2-AG also inhibit locomotion in transgenic
quintuple 5-HT receptor-null animals expressing SER-4 off-
target in the cholinergic motorneurons (f = 3.8, df = 40, p <
0.001; Fig. 5I), supporting the observation that 2-AG stimulates
global increases in 5-HT. These mutant transgenic animals have
been used previously to identify SER-4 agonists for use as poten-
tial anthelmintics because the SER-4/Ga,,-mediated inhibition of
the cholinergic motorneurons leads to a rapid flaccid paralysis
(Law et al., 2015).

The increased 5-HT levels might also explain the requirement
for OCTR-1 in the inhibition of nociception at higher cannabi-
noid levels because 5-HT stimulates aversive responses in part by
activating serotonergic signaling in an array of additional neu-
rons that is antagonized by ASH OCTR-1. Indeed, this complex
serotonergic/octopaminergic antagonism in the modulation of
ASH-dependent aversive responses has been characterized previ-
ously, with at least three different 5-HT receptors, SER-1, SER-5,
and MOD-1, involved in stimulating the initiation of aversive
responses (Wragg et al., 2007; Harris et al., 2009; Mills et al.,
2012). Together, these data highlight the complex interaction
among cannabinoid, serotonergic, and octopaminergic signaling
and suggest that they may also be relevant to understanding the
role of exogenous cannabinoids in the modulation of human
behavior because C. elegans has proven previously to be a
useful model for understanding monoaminergic modula-
tion in mammals (Komuniecki et al., 2012; Mills et al., 2012)
(Fig. 6).

Discussion

The present study demonstrates that C. elegans contains an
endogenous cannabinoid signaling system that modulates an
array of key behaviors (Fig. 6). For example, the endocannabi-
noids 2-AG and AEA inhibit both aversive behavior and feed-
ing. 2-AG and AEA have been identified previously in C.
elegans extracts by GC/MS (Lehtonen et al., 2011). In contrast
to previous reports suggesting that C. elegans does not contain
a canonical cannabinoid receptor (McPartland et al., 2001),
although a mutant screen did identify that the predicted neu-
ropeptide receptor, NPR-19 was involved in the effects of can-
nabinoids on axon regeneration in C. elegans (Pastuhov et al.,
2016). In the present study, we have demonstrated that NPR-19 is
essential for many cannabinoid-dependent behaviors and re-
sponds directly to cannabinoid ligands with high affinity. Indeed,
although Ge,-coupled NPR-19 exhibits only 23% identity to the
human Ge,-coupled cannabinoid receptor CB,, many of the key
amino acids involved in ligand binding are conserved in the two
receptors and phenotypes in npr-19-null animals could be res-
cued by the expression of human CB1, confirming the orthology
of the two receptors (McPartland et al., 2001).

These cannabinoid ligands also activate octopaminergic
and serotonergic signaling by functioning as agonists for the
a,4-adrenergic-like OA receptor OCTR-1 and increasing en-
dogenous 5-HT. This is based on the observations that 5-HT
mimics the inhibitory effects of 2-AG on locomotion and that
the 2-AG inhibition of both nociception and locomotion is
significantly reduced in tph-1-null animals that lack a key
5-HT biosynthetic enzyme and have dramatically reduced
5-HT levels. The monoaminergic modulation of aversive re-
sponses to 1-octanol is complex and involves multiple sensory
neurons and an array of monoamine receptors. For example,
5-HT stimulates the initiation of an ASH-dependent aversive
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response and requires three distinct 5-HT receptors operating
at different levels within the locomotory circuit (Harris et al.,
2009), with 5-HT decreasing ASH calcium but increasing ASH
depolarization and activity (Zahratka et al., 2015). In contrast,
OA antagonizes this 5-HT-dependent stimulation via the
Ga,-coupled a,-adrenergic-like OA receptor OCTR-1, inhib-
iting the ASHs directly and the Ga,-coupled OA receptor
SER-6, which stimulates the release of an additional layer of
inhibitory monoamines and neuropeptides (Mills et al., 2012).
Indeed, this octopaminergic modulation of nociception, with
a Ga,-coupled receptor inhibiting the primary nociceptor and
a Gag-coupled receptor stimulating the release of multiple
inhibitory neuropeptides, mimics the noradrenergic modula-
tion of chronic pain in humans (Komuniecki et al., 2012). The
levels of OA appear to be critical for the inhibitory response
because OA inhibition is masked at higher OA concentrations
by activation of a second antagonistic Gag-coupled OA recep-
tor, SER-3, in the ASHs, highlighting the delicate and dynamic
balance of this modulatory system (Wragg et al., 2007). At low
levels of cannabinoid receptor ligands, achieved by either
inhibition of their endogenous breakdown or exogenous applica-
tion, behaviors appear to be modulated exclusively by NPR-19.
However, at higher levels of exogenous addition, both the octo-
paminergic and serotonergic signaling systems are activated. In-
deed, it was puzzling at first why SER-4 and OCTR-1 were only
required for the inhibition of nociception at higher cannabinoid
concentrations. However, we propose that these higher cannabi-
noid concentrations increase endogenous 5-HT and its potential
stimulation of aversive responses must be antagonized by ASH
OCTR-1 for the cannabinoid-dependent inhibition of nocicep-
tion to be realized. C. elegans contains multiple serotonergic neu-

Model of 2-arachidonoylglycerol (2-AG)-dependent modulation of behavior. Endogenous 2-AG activates
NPR-19 in the URXs to inhibit nociception. In addition, at higher 2-AG levels via exogenous application, 2-AG (italic gray)
also activated NPR-19 to inhibit pharyngeal and feeding and also activated directly and indirectly a number of monoamine
receptors to inhibit locomotion through an NPR-19-independent mechanism. These elevated 2-AG levels appear to in-
crease endogenous serotonin (5-HT) and activate SER-4 in the two AIB interneurons to initiate locomotory confusion and
paralysis that has been characterized previously (Law et al., 2015). Interestingly, 5-HT stimulates the initiation of aversive
responses by activation of at least three additional 5-HT receptors, each operating at different levels within the ASH-
dependent aversive circuit (Harris et al., 2011). However, this potential 5-HT stimulation appears to be overcome by the
direct 2-AG activation of the ar,,-adrenergic-like OA receptor OCTR-1 in the ASHs to inhibit 5-HT-stimulated aversive
responses, as demonstrated previously (Wragg et al., 2007). MAGL degrades 2-AG and terminates signaling and JZL184, an
MAGL inhibitor, increases endogenous 2-AG levels and mimics the application of low levels of 2-AG.

OCIR1 ng'4 5-HT quintuple-null animals expressing
Ga, % the inhibitory 5-HT,,-like receptor
ASH AlB SER-4 off target in the cholinergic motor

neurons, suggesting that cannabinoids
initiate a more global increase in 5-HT.
Whether this results from the direct
and/or indirect stimulation of secretion
by the NSMs or the inhibition of 5-HT
reuptake is unclear, but the locomotory
confusion phenotype initiated by either
5-HT or 2-AG is mimicked by knock-
down of the key 5-HT reuptake trans-
porter MOD-5. Cannabinoid receptor
agonists also modulate «-adrenergic and
serotonergic signaling in mammals and
function as agonists for the human o ,-
adrenergic receptor. For example, canna-
binoid receptor stimulation activates the
hypothalamic—pituitary—adrenal axis be-
cause central administration of THC in rats leads to an increase in
plasma adrenocorticotrophin hormone levels (Corchero et al.,
1999) and in the expression of corticotrophin releasing hormone
mRNA in the anterior pituitary (Corchero et al., 2001). 2-AG
increases norepinephrine (NE) release (Kurihara et al., 2001) and
AEA or HU-210, a synthetic CB, agonist, significantly increases
the level of circulating corticosterone (McLaughlin et al., 2009).
In fact, interactions between endogenous cannabinoid and nor-
adrenergic signaling have been observed in a number of organ
systems. For example, cannabinoid receptor signaling plays a role
in noradrenergic splenic contraction and interacts with adrener-
gic systems in the prefrontal cortex (Simkins et al., 2016). In
addition, cannabinoids can block neuronal NE uptake and the
phytocannabinoid cannabigerol functions as a a,-adrenoceptor
agonist in isolated mouse vas deferens (Cascio et al., 2010). Can-
nabinoids also modulate the synthesis, release, and turnover of
5-HT and appear to inhibit 5-HT reuptake and enhance 5-HT, ,
signaling (Egashira et al., 2002; Sagredo et al., 2006). For example,
both endogenous and synthetic cannabinoids inhibit 5-HT re-
uptake in rats and chronic THC administration increases endog-
enous 5-HT levels in the prefrontal cortex of rats. In addition,
the phytocannabinoid A°-tetrahydrocannabivarin appears to
act through 5-HT, , receptors to produce antipsychotic effects
by functioning as an allosteric modulator, increasing the effi-
cacy but not the EC;, of the potent 5-HT,, agonist 8-OH-
DPAT (Cascio et al., 2015). Together, these observations
highlight the similarities between the nematode and mamma-
lian cannabinoid signaling system and the potential of the C.
elegans whole-animal model for the study of cannabinoid/
monoamine interactions.
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