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Mnemonic Encoding and Cortical Organization in Parietal
and Prefrontal Cortices

Nicolas Y. Masse, Jonathan M. Hodnefield, and David J. Freedman
Department of Neurobiology, University of Chicago, Chicago, Illinois 60637

Persistent activity within the frontoparietal network is consistently observed during tasks that require working memory. However, the
neural circuit mechanisms underlying persistent neuronal encoding within this network remain unresolved. Here, we ask how neural
circuits support persistent activity by examining population recordings from posterior parietal (PPC) and prefrontal (PFC) cortices in
two male monkeys that performed spatial and motion direction-based tasks that required working memory. While spatially selective
persistent activity was observed in both areas, robust selective persistent activity for motion direction was only observed in PFC.
Crucially, we find that this difference between mnemonic encoding in PPC and PFC is associated with the presence of functional cluster-
ing: PPC and PFC neurons up to ~700 pwm apart preferred similar spatial locations, and PFC neurons up to ~700 wm apart preferred
similar motion directions. In contrast, motion-direction tuning similarity between nearby PPC neurons was much weaker and
decayed rapidly beyond ~200 wm. We also observed a similar association between persistent activity and functional clustering in
trained recurrent neural network models embedded with a columnar topology. These results suggest that functional clustering

facilitates mnemonic encoding of sensory information.
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ignificance Statement

ing of the brain’s mechanisms that support working memory.

Working memory refers to our ability to temporarily store and manipulate information. Numerous studies have observed that,
during working memory, neurons in higher cortical areas, such as the parietal and prefrontal cortices, mnemonically encode the
remembered stimulus. However, several recent studies have failed to observe mnemonic encoding during working memory,
raising the question as to why mnemonic encoding is observed during some, but not all, conditions. In this study, we show that
mnemonic encoding occurs when a cortical area is organized such that nearby neurons preferentially respond to the same
stimulus. This result provides plausible neuronal conditions that allow for mnemonic encoding, and gives us further understand-
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Introduction

Working memory allows for the temporary storage, and if re-
quired, manipulation of sensory information, and is crucial
whenever behavioral decisions are required after the relevant
stimuli have been extinguished. A neurophysiological hallmark
of working memory is the presence of stimulus-specific persistent
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activity during the “delay” period following the offset of the to-
be-remembered stimulus, which has consistently been observed
throughout the frontoparietal network (Funahashi et al., 1989;
Colby et al., 1996; Chafee and Goldman-Rakic, 1998; Rainer et
al., 1998; Romo et al., 1999; Zaksas and Pasternak, 2006). How-
ever, mnemonic encoding in the frontoparietal network does not
generalize across all stimulus features or behavioral contexts. For
example, the prefrontal cortex (PFC) encodes spatial location
and motion direction during the delay period, but a recent study
showed that it does not mnemonically encode color during a
fine-change detection task (Lara and Wallis, 2014). Similarly,
although the posterior parietal cortex (PPC) mnemonically en-
codes the category membership of visual motion stimuli as a
result of categorization training (Freedman and Assad, 2006;
Swaminathan and Freedman, 2012), mnemonic encoding of mo-
tion direction during a delayed-matching task (before categori-
zation training) is weak (Sarma et al., 2016), despite robust
mnemonic encoding in the upstream, motion-selective medial
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superior temporal area (Mendoza-Halliday et al., 2014). This
raises the question of why frontoparietal stimulus-selective per-
sistent activity exists for some, but not all, visual features.

On a different level, several modeling studies have examined
the possible circuit mechanisms underlying persistent activity. It
is thought that recurrent excitation within local networks, sub-
served by the slow kinetics of NMDA receptors, can allow for
stimulus-selective activity to persist after the stimulus is removed
(Wang, 1999; Wang et al., 2013). Although not explicitly stated,
these models suggest a level of cortical organization, in which
neurons selective for similar stimuli are anatomically clustered.
Recurrent excitation between neurons is enhanced when all neu-
rons prefer similar stimuli (or equally valid, recurrent excitation
will cause all neurons within the group to selectively respond to
similar stimuli). As most synaptic connections are between neu-
rons separated from one another by less than several hundred
microns (Perin et al., 2011; Levy and Reyes, 2012), the implica-
tion is that persistent activity is associated with the presence of
functional clustering. In agreement with this notion, areas such as
PPC and PFC that mnemonically encode spatial location (Colby
et al., 1996; Chafee and Goldman-Rakic, 1998; Rainer et al.,
1998), also contain retinotopic maps (Sereno et al., 2001; Silver
and Kastner, 2009; Patel et al., 2010). However, if we are to un-
derstand why stimulus-specific persistent activity generalizes to
some, but not all, visual features, what is needed are studies that
directly compare how different cortical areas encode different
features in working memory.

In this study, we ask whether persistent activity in the PPC and
the PFC is associated with the presence of functional clustering.
We take advantage of a semichronic recording system, which
allows us to track the relative anatomical location of our neural
recordings across sessions, allowing us to measure the similarity
in stimulus tuning between spatially clustered neurons. We find
that neurons whose tuning is similar to that of its neighbors are
more likely to mnemonically encode the stimulus during the de-
lay period of the task. Furthermore, we find that that this relation
between local tuning similarity and mnemonic encoding occurs
in recurrent neural network models, embedded with a columnar
topology, which have been trained to perform a delayed-
matching task. Finally, we find that the local field potentials
(LEPs), whose activity is thought to reflect the sum of synaptic
currents within the local volume (Buzséki et al., 2012), are spa-
tially selective in both PPC and PFC within 70 ms of stimulus
onset, whereas motion selectivity was much weaker. These results
suggest that the presence of persistent activity depends upon
functional clustering, and that inputs conveying spatial selectivity
into PPC and PFC, but not motion inputs, are themselves func-
tionally organized.

Materials and Methods

Behavioral tasks and display. Two male monkeys (Macaca mulatta) were
trained to perform a spatial-based and two different motion-based tasks.
Stimulus presentation, task events, rewards, and behavioral data acqui-
sition for both tasks were accomplished using MonkeyLogic software
(http://www.brown.edu/Research/monkeylogic) running in MATLAB
(The MathWorks) (Asaad et al., 2013). The spatial-based task was a
delayed memory saccade task. The monkeys had to maintain fixation
(within 2°) on a central point for 500 ms, followed by a visual target
presentation in one of eight locations for 307 ms, and finally by a delay
period of 1013 ms. The central fixation point was then extinguished, and
the monkey had to saccade to the location of the remembered visual
target to receive a reward. The angular direction of the visual target was a
multiple of 45° above horizontal, and its eccentricity was 7°. We refer to
this task as the spatial task.
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The two motion-based tasks were a delayed match-to-sample (DMS)
and a delayed match-to-category (DMC) task. The DMS and DMC tasks
have also been previously described (Sarma et al., 2016). In both tasks,
the monkeys had to maintain fixation (within 2.2°) on a central point for
500 ms, followed by a 667 ms sample motion stimulus, followed by a 1013
ms delay, and then a 667 ms test motion stimulus. Monkeys released a
manual lever to indicate whether a test stimulus was the same direction
(DMS) or same category (DMC) as the previously presented sample. The
motion stimulus consisted of circular patches of high-contrast, 100%
coherent random dots displayed at a frame rate of 75 Hz. The motion
stimuli had a diameter of 6.0° and dots moved at 12°/s. We refer to these
two tasks as the motion task.

Both monkeys were highly trained on the DMS task before recording
(>150 sessions each), and we recorded PPC and PFC activity during
7 DMS sessions, after which, the 2 monkeys learned, through trial and
error, to perform the DMC task while we continued to record from PPC
and PFC. We recorded for an additional 26 DMC sessions for Monkey Q
and 30 DMC sessions for Monkey W. Motion direction selectivity was
not appreciably different between the DMS and DMC sessions (data not
shown); we thus combined all sessions for the analysis in this study.
Although we have previously shown that extensive categorization train-
ing (beyond that experienced by the monkeys in this study) can alter
delay period category representations in lateral intraparietal (LIP) area
(Sarma et al., 2016), we found that only including DMS sessions or only
DMC sessions does not qualitatively change our main results.

Gaze positions were measured and recorded at a sampling rate of
1 kHz using an EyeLink 1000 optical eye tracker (SR Research). Visual
stimuli were presented on a 21 inch color CRT monitor (1280 X 1024
resolution, 57 cm viewing distance).

Electrophysiological recording. We used two 32-channel semichronic
recording microdrives (Gray Matter Research) to record from PPC and
PFC. MRI scans were used to guide chamber placement. For PPC record-
ings, chambers were placed over the intraparietal sulcus, ~2.0 mm pos-
terior to the intra-aural line and ~14.0 mm lateral from the midline for
Monkey Q, and ~2.0 mm anterior to the intra-aural line and ~13.0 mm
lateral from the midline for Monkey W. For PFC recordings, chambers
were placed over the principal sulcus, ~29.0 mm anterior to the intra-
aural line and ~20.0 mm lateral from the midline for Monkey Q, and
~33.0 mm anterior to the intra-aural line and ~22.0 mm lateral from the
midline for Monkey W. Each microdrive system contained 32, 125 wm
tungsten microelectrodes (Alpha-Omega). Adjacent electrodes were
spaced 1.5 mm apart.

Before each session, we advanced electrodes (i.e., lowered them into
the brain) by between 0 and ~1 mm to optimally record the spiking
activity of well-isolated neurons. For PFC recordings, we recorded from
neurons as soon as we entered cortex. For PPC recordings, we wanted to
target the LIP area. Thus, we advanced electrodes below the intraparietal
sulcus, which was inferred based on its cortical location and a lack of
spiking activity within the sulcus. We recorded from all neurons for
which we could reliably sort action potentials.

Neural data were collected using a Plexon multichannel acquisition
processor data acquisition system. Action potential data were sampled at
40 kHz and high-pass filtered at 250 Hz with a second-order Butterworth
filter, and low-pass filtered at 8000 Hz with a third-order Butterworth
filter. LFPs were sampled at 1000 Hz and filtered between 0.7 and 300 Hz
using a first-order Butterworth filter. We removed line noise from the
LEPs by filtering the signals with a symmetric third-order Butterworth
filter with corners at 59 and 61 Hz.

All surgical and experimental procedures followed the University of
Chicago’s Animal Care and Use Committee and National Institutes of
Health guidelines. Monkeys were housed in individual cages undera 12 h
light/dark cycle. Behavioral training and experimental recordings were
conducted during the light portion of the cycle. Neurophysiological sig-
nals were amplified, digitized, and stored for offline spike sorting to
verify the quality and stability of neuronal isolations.

Neuron selection. Because it is difficult to accurately measure stimulus
tuning with low spike counts, we only included neurons with mean spike
rates (measured between stimulus onset and the end of the delay) >1 Hz
for both the spatial and motion tasks. Additionally, we only included
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neurons that had at least 8 valid trials for each of the 8 spatial directions
during the spatial task, and 8 valid trials for each of the 6 motion direc-
tions during the motion tasks. A minimum of 8 trials was chosen so that
we could devote 75% of trials for training the linear classifiers with at least
two trials per direction for testing the classifier (described below).

Our semichronic recording system allowed us to record from what was
potentially the same neuron across multiple recording sessions. How-
ever, for this study, we did not want the same neuron recorded across
multiple sessions to contribute more than once in any of our analyses.
Thus, we eliminated all neurons that we potentially recorded from on a
previous session. To determine whether the same neuron was recorded
across different sessions, we first found pairs of neurons that were re-
corded from the same electrode on sequential recording sessions in
which the electrode depth was adjusted <62.5 um (half a rotation of the
screw driven actuator that controls electrode depth) between sessions.
We note that we only adjusted the electrode depth at the start of the
session if no isolated neuron was present. We then eliminated the neuron
from the earlier session if the waveform width (see below) differed by no
more than 25 us. So, for example, if the same neuron was recorded across
10 consecutive recording sessions, we would use the last session of data
for analysis, and discard the data from the first nine sessions.

To calculate to waveform width (time from trough to peak), we first
interpolated the waveform of each action potential to have 1 us resolu-
tion. Next, we aligned all action potentials using the time of their global
minimum. We discarded all waveforms in which there existed a local
minimum or maximum between the global minimum (trough) and the
global maximum (peak) of the waveform. We then computed the mean
of these aligned waveforms and measured the time between the trough
and the peak.

At the start of each session, we usually either kept the electrode at the
same depth or advanced the electrode to isolate a new neuron. However,
electrodes could only be advanced a total of ~19 mm, with several mil-
limeters required to reach cortex. Thus, in cases where an electrode
reached its maximum depth, we slowly began to retract it (usually by 0 to
~2 mm per session) to attempt to locate new neurons. This occurred
more frequently for our PPC recordings because electrodes were initially
lowered below the intraparietal sulcus (within several millimeters of the
maximum depth for some PPC channels) before we started collecting
data, whereas we collected neural data from PFC as soon as we encoun-
tered cortex. To ensure that this difference did not bias our comparison
between PPC and PEC, we excluded all neurons which we recorded after
we began raising the electrode.

Single-neuron selectivity. To quantify neuronal spatial location and
motion direction selectivity (see Fig. 3C,D), we wanted to measure the
percentage of variance in the spike count that is explained by the stimu-
lus. However, the traditional measure of percentage of explained vari-
ance (PEV) is positively biased for small sample sizes. Thus, we calculated
each neuron’s spatial and motion direction selectivity using a normalized
PEV (Buschman et al., 2011) as follows:

Ssbelween groups df X MSE
Sstola] + MSE

normalized PEV =

where SSy,eqyeen groups 1 SUM of squares between groups, SS,,,,; is the total
sum of square, MSE is the mean squared error, and df is the number of
degrees of freedom. This normalized metric avoids the positive bias in the
traditional measure.

Population decoding. Similar to our previous studies (Swaminathan et
al., 2013; Sarma et al., 2016), we also measured stimulus selectivity across
our neuronal (see Fig. 3A, B) and LFP (see Fig. 7C) populations by mea-
suring how accurately we could decode the motion direction or spatial
location using multiclass support vector machines (SVMs). In this ap-
proach, we trained SVM classifiers, using a linear kernel, on neural data
to decode the motion direction or spatial location for different trials, and
then measured decoder accuracy by comparing the motion direction or
spatial location predicted by the classifier with the actual motion direc-
tion or spatial location. Specifically, we defined the decoder accuracy as
the mean dot product between the spatial location or motion direction
predicted from the decoder and the actual spatial or motion direction.

Masse et al.  Mnemonic Encoding and Functional Clustering

Thus, a score of 1 indicates perfect decoding, 0 indicates chance decod-
ing, and a score of — 1 indicates that the decoded direction is opposite the
actual direction.

When decoding the motion direction or spatial location from the
spiking activity of neurons, we summed spike counts using a causal 200
ms boxcar filter; and when decoding motion direction or spatial location
from the LFPs, we causally filtered LFPs using a 10 ms boxcar filter. Spike
counts and filtered LFPs were both normalized between —1 and 1 for
each neuron or channel and for each time point.

As the number of neurons per session varied, we decided to decode the
spiking activity from a surrogate population of neurons. Thus, trials used
for training or testing the decoder did not necessarily contain spiking
activity that occurred simultaneously across neurons, but rather includes
the spike count of neurons in response to the same spatial location or
motion direction, but likely recorded at different times. In contrast, be-
cause the number of LFP channels remained constant across sessions,
trials used for training or testing the decoder always used LFP data that
were recorded simultaneously. Thus, trials used for training or testing the
decoder always contained LFPs recorded at the same time across all elec-
trodes. We calculated the decoder accuracy for the spatial and motion
tasks for each individual session before averaging our results across all
sessions to obtain the mean LFP decoder accuracy.

To measure whether decoding accuracies were significantly different
between the PPC and PFC populations, we needed to generate distribu-
tions of decoding accuracies for both populations. To do so, we used a
bootstrap procedure in which we randomly selected, with replacement,
both neurons (or LFP channels) and trials for both training and testing
the decoder. Given that decoding accuracy will depend both on which
neurons and which trials are included, randomly selecting both fully
captures the variance in our model.

To ensure a fair comparison when comparing PPC and PFC decoding
accuracies, we wanted to include an equal number of neurons to train
and test each classifier. Thus, if there were nl PPC neurons, n2 PFC
neurons, and, for example, n1 < n2, we randomly sampled with replace-
ment nl neurons from each population to train the classifier. We calcu-
lated the decoding accuracy from PPC and PFC for each monkey
individually before averaging the results across the 2 monkeys.

We randomly sampled trials using fourfold cross-validation, in which
we randomly selected 75% of trials for training the decoder and the
remaining 25% for testing the decoder. For each of the six motion direc-
tions and eight spatial locations, we randomly sampled, with replace-
ment, 20 trials from each neuron to train the decoder (from the 75% of
trials set aside for training), and 20 trials to test the decoder (from the
25% of trials set aside for testing). We repeated this procedure a total of
four times, in which we alternated which 25% of trials were set aside for
testing, and calculated the mean of the four decoder accuracies at each
time point.

We then repeated this procedure of sampling neurons and trials 100
times to create a decoder accuracy distribution for each time point. To
determine whether the decoder accuracy was significantly different be-
tween PPC and PFC at any time point, we first calculated the 10,000
(100 X 100) differences between all pairs of decoder accuracies. The
difference was deemed significant if >99.5% of decoder accuracies from
one area were greater than the other (equivalent to p < 0.01 for a two-
sided test).

Measuring functional clustering. We measured the strength of the spa-
tial location (see Fig. 4A) and motion direction (see Fig. 4B) functional
clustering by calculating the similarity between the preferred spatial lo-
cations or motion directions of nearby neurons. First, we modeled the
spike count of neuron i at time t, z,(1), as a linear function of the spatial
location or motion direction, d as follows:

z,(t) = baseline + dH,(t) + &,(¢),

where g,(f) is a Gaussian noise term and the vector H,(t) relates the
stimulus direction to the spike count. For the sake of clarity, for any trial,
z;(t) is a scalar giving the spike count at time t, d is a 1 X 2 unit vector
indicating the spatial location or motion direction for the trial, and H,(¢)
isa 2 X 1 vector that relates the stimulus to the spiking activity.
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The angle of H,(¢) is the preferred direction of the neuron at time ¢, and
its magnitude indicates the expected increase in the spike count from
baseline when the stimulus matches the preferred direction of the neu-
ron. Thus, the preferred direction of a neuron, represented as a unit
vector, is as follows:

H;
PD;(t) = H8

We can calculate how well this linear model fit the data for each neuron
i and time point ¢, indicated by w;(t), by comparing the variance in the
residuals with the variance in the spike counts as follows:

var(2(t) — z(t))

var(z,(1))

Where the fitted spike count based on the model is as follows:

2,(t) = baseline + dH,(t)

Next, we found all pairs of neurons recorded on the same electrode but
during different sessions that were located between 62.5 and 750 um
apart (corresponding to 0.5— 6 rotations of the screw-driven actuator that
controls electrode depth). We then calculated the similarity between each
pair of nearby neurons, s; (), as the dot-product between their preferred
directions, weighted by the geometric mean of their linear model fits as
follows:

(1) = wi(D)w,(t)PDI ()PD,(0).

Sij
We then summed the similarity scores for all pairs of nearby neurons
within each cortical area, and divided by the sum of the geometric means
of their respective model fits as follows:

o Ei,jsi‘j(t)
similarity(t) = m
B VR

This was calculated for PPC and PFC in each monkey individually, before
averaging the results across the 2 monkeys.

For Figure 4C, D, we wanted to calculate the correlation between the
tuning similarity and the spatial and motion selectivity across time. First,
for each neuron (referred to as neuron A), we found all other neurons
recorded from the same electrode during different sessions that were
located from 62.5 to 750 um away. We discarded neuron A if there were
not at least two other neurons within this range. As an example, suppose
there were three neurons that satisfied these criteria, referred to as neu-
rons B-D. We would first calculate (1) the tuning similarity between B
and C, B and D, C and D (as described above) and take the mean, and
then (2) calculate the linear model fit of neuron A (given by w,(t)). We
calculated these values for all neurons within each cortical of each indi-
vidual monkey for both tasks, and then calculated the correlation be-
tween the tuning similarity values and the model fit values.

Recurrent neural network model. In Figure 6, we trained recurrent neu-
ral networks using the Pycog framework (Song et al., 2016) to perform a
variant of the delayed motion direction matching task performed by the
2 monkeys. The model (see Fig. 6A) consisted of 72 motion direction-
selective neurons, in which neuron i’s response, r;, to motion stimulus
with direction 6 was as follows:

r;=a + acos(0 — 0,)

where the preferred direction of neuron i, 8, varied in 5 degree intervals
such that the 72 neurons uniformly covered the 360 degrees. We set a to
2.5, although our results were insensitive to the exact value. These 72
neurons projected onto 180 recurrently connected neurons with a con-
nection probability of 25%. The 180 neurons in recurrent network were
organized into 6 “columns” of 24 excitatory and 6 inhibitory neurons.
Neurons within a column were connected with 50% probability, and
neurons between columns were connected with 5% probability. These
180 neurons projected onto two output neurons, a “match” and a “non-
match” neuron, with 50% connection probability. All connection
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weights to and from the recurrent network were drawn from a uniform
distribution; connection weights within the recurrent network were
drawn from a gamma distribution such that the sum of excitatory and
inhibitory weights was equal. As above, our results were insensitive to the
exact values chosen for the connection probabilities.

The network was trained so that the “match” neural response in-
creased from 0.2 to 1.0 (values arbitrarily set) for a matching test stimu-
lus, and that the “nonmatch” neural response increased from 0.2 to 1.0
for a nonmatching test stimulus. The values 0.2 and 1.0 were arbitrarily
chosen, and our model was insensitive to exact values provided there was
a sufficient gap between the two values. To ensure that our results were
not specific to exact connection weights, we randomly initialized and
trained 20 different networks, and analyzed the results of all 20 networks.

Experimental design and statistical analysis. The data in this study con-
sist of 343 PPC and 588 PFC neurons recorded from two male macaque
monkeys. Most of our statistical analysis involved measurements that
were not from single neurons per se, but from the PPC or PFC popula-
tions as a whole. This included our population decoding analysis (see
Figs. 3A,B, 5A,F, 9C), our measurement of tuning similarity between
nearby neurons (Figs. 4A, B, 5B, G, 6A-D, 8E), and the correlation be-
tween tuning similarity and stimulus selectivity (Figs. 4C,D, 5C, D, H-],
8F,G). For these population-based measurements, we used a bootstrap
approach to perform statistical comparisons. The bootstrap approach for
the population decoding analysis was slightly different from the others as
it involved randomly sampling both neurons and trials (described in
Population decoding).

For the tuning similarity measurement, if there were n pairs of nearby
neurons in the population, we would randomly sample, with replace-
ment, # pairs, and then calculate the weighted tuning similarity (as de-
scribed in Measuring functional clustering) from this group of neurons.
Because we wanted to equally weigh the contribution of each monkey
toward this score, we performed this process for each individual monkey
and took the average of the two values. We then repeated this entire
process 1000 times to generate a distribution of tuning similarity values.

The bootstrap approach for the correlation between tuning similarity
and stimulus selectivity was similar. If there were n groups of nearby
neurons, we would randomly sample, with replacement, n groups from
this population, and calculate the tuning similarity and the mean stimu-
lus selectivity for each of these #n groups (as described in Measuring
functional clustering). We would then calculate the Pearson correlation
coefficient between these two values from the n groups. As above, we
repeated this process for each individual monkey and took the average of
the two correlation values. We would repeat this entire process 1000
times to generate a distribution of tuning similarity and stimulus selec-
tivity correlation values.

We also used a bootstrap approach for our single-cell measurement of
stimulus selectivity (see Fig. 3C,D). Although we could have used a t test
or a similar test to perform our statistical analysis, we wanted to equally
weigh the contribution of each monkey, which was simplified by using a
bootstrap approach, in which distributions for each monkey were calcu-
lated individually before being combined. Specifically, if there were n
neurons in the population, we would randomly sample, with replace-
ment, n neurons, and then calculate the normalized PEV (as described in
Single-cell selectivity) of this group of neurons. We repeated this process
for each individual monkey and took the average of the two normalized
PEV values. We would then repeat this entire process 1000 times to
generate a distribution of PEV values.

We deemed a measurement significantly >0 if 99.5% or more of the
bootstrapped values were >0 (equivalent to a p < 0.01 for a two-sided
test). To determine whether two bootstrapped distributions were signif-
icantly different from each other, we computed all (1000 X 1000) pair-
wise differences, and deemed the difference significant if =99.5%
(=0.5%) of the pairwise differences were >0.

All other statistical tests used in this study are described in Results.

Results

The goal of this study was to examine the relationship between
mnemonic encoding in the frontoparietal network and the pres-
ence of functional clustering (i.e., nearby neurons preferentially
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responding to similar stimuli). We used
two stimulus features, spatial location and
motion direction, which we examined us-
ing different behavioral tasks. We mea-
sured spatial location selectivity using a
delayed memory saccade task (Fig. 1A; see
Materials and Methods), in which the
monkeys had to remember the spatial lo-
cation of a visual target that was flashed in
one of eight spatial locations. We refer to B
this task as the spatial task. Motion direc-
tion selectivity was measured using DMS
or DMC tasks (Sarma et al., 2016) (Fig.
1B; see Materials and Methods), in which
monkeys had to determine whether the
motion direction of sample and test stim-
uli, separated by a 1013 ms delay, was an
identical match (DMS) or a category
match (DMC). Because we observed sim-
ilar results when we analyzed the DMS
and DMC results separately (data not
shown), we combined both tasks for all
subsequent analysis. We refer to these two
tasks as the motion task.

Figure 1.

500 ms

Fixation

500 ms
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Spatial task

Fixation Visual target Dela Fixation offset

307 ms 1013 ms 500 ms
Motion task
Sample Dela Test

667 ms 1013 ms 667 ms

The spatial and motion tasks. 4, The spatial task was a delayed memory saccade task, in which the monkeys had to
maintain fixation on a central point for 500 ms, followed by a visual target presentation in one of eight locations for 307 ms, and
finally by a delay period of 1013 ms. The central fixation point was then extinguished, and the monkey had 500 ms to saccade to the
location of the remembered visual target to receive a reward. B, The motion task was either a DMS ora DMC task. The monkeys had
to maintain fixation on a central point for 500 ms, followed by a 667 ms sample motion stimulus, followed by a 1013 ms delay, and
thena 667 ms test motion stimulus. Monkeys released a manual lever to indicate whether the test stimulus was the same direction
(DMS) or same category (DMC) as the previously presented sample. If the first test stimulus was a nonmatch, a second brief (267

ms) delay was presented followed by a test stimulus which matched the sample.

The roles of prefrontal and parietal

cortices in encoding space and motion direction

As past studies have shown that both PFC and PPC are involved
in the maintenance of task-relevant stimulus features in working
memory, we compared how these two areas encode spatial loca-
tion and motion direction during working memory. In 2 mon-
keys, we analyzed the activity of 343 PPC neurons (primarily
from the LIP area, but potentially including areas 7a and the
middle intraparietal area; see Materials and Methods) and 588
neurons from the dorsolateral PFC (arrays were centered over the
principal sulcus). We only included neurons with sufficient num-
ber of trials from both tasks, had mean spike rates >1 Hz. Neu-
rons were not prescreened for task-related responses or stimulus
selectivity (see Materials and Methods).

We found that many PFC neurons were spatially and motion
direction-selective (p < 0.01, one-way ANOVA) during stimulus
presentation and during the delay. The percentages of neurons
that were spatially or motion direction-selective during 333 ms
windows covering the stimulus presentation, the middle, and late
delay epochs are shown in Table 1. For example, the PFC neuron
shown in Figure 2A preferentially responded to visual targets
toward ~0° during the delay epoch of the memory saccade task,
and for motion directions between ~255° and 315° during the
delay epoch of the motion task. In contrast, many PPC neurons
were spatially selective, but not motion direction-selective, dur-
ing the middle delay (2.9% of PPC compared with 14.5% of PFC
neurons were motion direction-selective, p ~ 1075 x* test,
df = 1; Table 1) and late delay (5.1% of PPC neurons compared
with 14.5% of PFC neurons, p ~ 10 ~°) epochs. For example, the
PPC neuron shown in Figure 2B responded preferentially for
spatial locations between ~315° and 0° during the delay epoch of
the memory saccade task, but there is no obvious motion direc-
tion selectivity during the delay epoch of the motion task. This is
despite clear motion direction selectivity during the stimulus pre-
sentation. Indeed, the percentage of PPC and PFC neurons selec-
tive for motion direction as measured during the stimulus
presentation was approximately equal (20.3% of PPC neurons
compared with 18.4% of PFC neurons, p = 0.44).

The percentages of PPC neurons that were selective for both
spatial location and motion direction were 7.9%, 1.3%, and 1.9%
for the stimulus, middle delay, and late delay epochs, respectively,
and the percentages of PFC neurons that were selective for both
was 7.1%, 5.3%, and 6.0% for the three epochs, respectively.
These values were not significantly greater than the expected val-
ues if spatial location and motion direction selectivity were inde-
pendent (p > 0.05 for all three epochs and both cortical areas, x>
test).

To further quantify these results across the neural population,
we measured spatial location selectivity during the spatial task,
and motion direction selectivity during the motion task, using
linear SVM classifiers applied to pseudo-populations of PFC and
PPC neurons (see Materials and Methods). We then calculated a
decoding accuracy score, which measures how close the spatial
location or motion direction predicted from the classifier was
from the actual spatial location or motion direction. Values of 1
indicate perfect decoding, values of 0 indicate chance decoding,
and values of —1 indicate that the predicted spatial or motion
direction was 180° opposite was from the actual direction. For the
spatial task (Fig. 3A), decoding accuracy for the PPC (green
curve) and PFC (magenta curve) populations were significantly
greater than chance (p < 0.01, bootstrap) from 60 and 80 ms after
stimulus, respectively, until the end of the trial (Fig. 3A, top,
horizontal green and magenta bars, times at which decoding ac-
curacy was significantly greater than chance). Although the PPC
decoding accuracy was significantly greater compared with PFC
for a brief period during the stimulus presentation (Fig. 3A, bot-
tom, horizontal green bars, p < 0.01, bootstrap), and the PFC
decoding accuracy was significantly greater compared with PPC
and intermittently during the delay epoch (Fig. 3A, bottom, hor-
izontal magenta bars), spatial decoding accuracy was approxi-
mately comparable between PPC and PFC.

For the motion task, the PPC and PFC decoding accuracies
followed markedly differing time courses. The PFC decoding ac-
curacy was significantly greater than chance (Fig. 3B, top, hori-
zontal magenta bars, p < 0.01, bootstrap) from 150 ms after
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Table 1. Percentage of neurons selective for spatial location or motion direction”

Stimulus Middle delay Late delay
Spatial task
PPC(N = 343) 30.0% 19.8% 23.6%
PFC(N = 588) 32.7% 24.8% 28.7%
X p=041 p=1008 p=1009
Motion task
PPC(N = 343) 20.3% 2.9% 5.1%
PFC(N = 588) 18.4% 14.5% 14.5%
p =044 p~108 p~10"7°

“Percentage of PPC and PFC neurons selective (one-way ANOVA, p << 0.07) for spatial location or motion direction
during the stimulus epoch (80— 412 ms after stimulus onset), the middle delay epoch (666 —334 ms before the end of
the delay), and the late delay epoch (the last 333 ms of the delay). N value indicates the number of valid PPC or PFC
neurons. The x? test compares the proportion of selective neurons between PPC and PFC for each task and epoch.
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and Methods). Greater values in the normalized PEV indicate
that the firing rate of the neuron is increasingly selective for the
spatial location or motion direction.

Consistent with the results above, spatial selectivity for both
the PPC (Fig. 3C, left, green curve) and PFC (magenta curve) pop-
ulations were significantly greater than chance (p < 0.01, boot-
strap) from 60 and 80 ms after stimulus onset, respectively, until
the end of the trial. PPC spatial selectivity was significantly
greater compared with PFC during the early part of the stimulus
presentation (Fig. 3C, bottom, horizontal green bars), and not
significantly different at all other times.

Finally, motion selectivity time courses (Fig. 3D) were similar
to the decoding accuracy time courses (Fig. 3B). Motion selectiv-
ity for the PPC and PFC neuronal popu-
lations were significantly greater than

A Spatial taSkE Motion task chance from 70 and 130 ms after stimulus
xample PFC neuron d PPC selectivi onifi.
Target Delay Sample Delay onset, an selectivity was signifi

g 30 | | : 30 :255 :75 M cantly greater compared with PFC for the

e 10 —180 | | :| A\ early part of the sample epoch (Fig. 3B,

% 20 :38 t ggg o 20 I?;S _qgg i : \ bottom, horizontal green bars), before

p '135 L — 315 f | dropping during the delay, during which

= 10 : : time PPC selectivity was significantly less

n Al than PFC (Fig. 3B, bottom, horizontal

0 0 37 1320 magenta bars).

In summary, neurons in the PPC were

B Example PPC neuron only weakly motion direction-selective dur-

100 100 : : : ing the delay, despite strongly encoding the

g 80 80 | | | stimulus during the sample presentation. In

o 60 60 b I I contrast, motion direction selectivity in PEC

T 40 40 : ! : and spatial location selectivity in PPC and

o 20 20 | PFC remained robust throughout the sam-
X | . .

a L 1 ple and delay epochs. This result begs the

0 0 0 667 1680 question of why the PPC fails to robustly

Time relative to stimulus onset (ms) represent motion direction information in

working memory despite strong selectivity

Figure 2. Example PFC and PPC neurons showing spatial and motion direction selectivity. A, Mean neural response of an  during the stimulus presentation, and

example PFCneuron to the 8 spatial locations during the spatial task (left), and to the 6 motion directions during the motion task
(right). Neural responses to the different spatial and motion directions are indicated by the different color traces. For the spatial

strong delay-period spatial encoding during
the spatial task.

task, the three vertical dashed lines, from left to right, indicate the visual target onset, the visual target offset, and the end of the

delay period. For the motion task, the three vertical dashed lines, from left to right, indicate the sample stimulus onset, the sample
offset, and the end of the delay period. B, Sample as 4, except an example PPC neuron is shown.

stimulus onset until the end of the trial. In contrast, the PPC
decoding accuracy was significantly greater than chance from 70
ms after stimulus onset until the early delay epoch (Fig. 3B, top,
horizontal green bars), at which time its value became not signif-
icantly different from chance for the majority of the delay. The
PPC decoding accuracy was initially greater than PFC during the
early part of the sample epoch (Fig. 3B, bottom, horizontal green
bars), before showing a large decrease during the delay epoch,
during which time the PPC accuracy was significantly less than
PFEC (Fig. 3B, bottom, horizontal magenta bars). Thus, despite
strongly encoding the motion stimulus during the sample period,
PPC motion encoding significantly weakens during the delay.
We note that the weak delay period selectivity observed in
Figure 3B is consistent with our past study showing that delay
period selectivity in PPC during the DMC task emerges only
after extensive categorization training (Sarma et al., 2016).
To confirm the results of this population decoding approach,
we also measured the spatial and direction selectivity for each
individual neuron by measuring the normalized percentage of
variance of each neuron’s trial-by-trial spike rate that can be ex-
plained by the spatial location or motion direction (see Materials

Functional clustering and

mnemonic encoding

We wanted to examine possible circuit
mechanisms that could explain the difference in spatial location
and motion direction mnemonic encoding in PPC and PFC. As
stated in the Introduction, previous studies have suggested that
stimulus-specific persistent activity is subserved by recurrent ex-
citation among interconnected groups of neurons. Because (1)
recurrent excitation within groups of interconnected neurons is
strengthened when all neurons preferentially respond to the same
stimulus, and (2) neurons are preferentially connected to other
nearby neurons (Perin et al., 2011; Levy and Reyes, 2012), we
hypothesize that persistent activity is facilitated by spatially clus-
tered neurons that are similarly tuned. Measuring the presence of
functional clustering was facilitated by our semichronic record-
ing system, in which each electrode’s x-y coordinate position was
fixed, but whose depth could be independently raised or lowered.
This allowed us to accurately estimate the distance between neu-
rons recorded in different recording sessions.

We measured the spatial and motion-direction functional
clustering by calculating the weighted dot-product between the
preferred spatial locations or motion directions of different neu-
rons recorded on different days, which were located within 62.5—
750 wm. The preferred spatial locations and motion directions
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were calculated by fitting the relationship
between the stimulus and spiking activity
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Motion task
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with a linear model, and were weighted
according to the proportion of variance
explained by the linear model (see Mate-
rials and Methods).This tuning similarity
measure could range between —1 and 1,
where a value of 1 indicates that nearby
neurons prefer identical stimuli, 0 indi-
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cates no correlation between preferred
stimuli, and —1 indicates that nearby neu-
rons prefer opposite stimuli.

We should note that, in addition to lo-

()

cal recurrent connections, both stimulus-
specific bottom-up and top-down inputs
can potentially contribute to functional
clustering. Inferring the relative contribu-
tion of these sources is difficult, especially
given that they may be context-
dependent, and that their effects likely

Normalized PEV

0.05

vary throughout the trial. Thus, for the
analysis in Figure 4, we simply wish to
measure the relationship between func-
tional clustering and persistent activity
agnostic of the source(s) of this functional
clustering. In Figure 9, we will partly ad-
dress the question of what sources con-
tribute to functional clustering, as we
examine how bottom-up spatial and mo-
tion input signals into PPC and PFC are
organized.

For the spatial task (Fig. 4A), tuning
similarity between nearby neurons was
significantly greater than chance (top,
bars, p < 0.01, bootstrap) both in PPC
(green curve) and in PFC (magenta curve) throughout most of
the stimulus and delay epochs. Thus, neurons that preferred sim-
ilar spatial location were clustered in both areas, consistent with
the hypothesized relationship between functional clustering
and the presence of spatially selective persistent activity in both
areas.

For the motion task (Fig. 4B), tuning similarity between
nearby neurons in PFC (magenta curve) was significantly greater
than chance throughout the sample and delay epochs. In con-
trast, tuning similarity in PPC (green curve) was above chance
only intermittently throughout the sample and delay epochs, de-
spite the fact that motion direction selectivity was actually stron-
ger in PPC compared with PFC during the early part of the
sample epoch (Fig. 3B,D). PFC tuning similarity was signifi-
cantly greater than PPC during the latter part of the sample epoch
and almost the entire delay (bottom, magenta bars). Thus, neu-
rons that preferred similar motion directions were clustered in
PFC, along with robust motion direction encoding through the delay
period. In contrast, there existed significantly weaker clustering in
PPC along with significantly weaker motion direction encoding dur-
ing the delay.

Although these results show that mnemonic encoding and
functional clustering are significantly different between cortical
areas, it does not establish that neurons that are part of a cluster
show stronger stimulus-specific persistent activity. Thus, we
measured the correlation between a neuron’s stimulus selectivity
and the tuning similarity within sets of nearby neurons (see Ma-
terials and Methods). For example, if neurons A-D were all lo-

Figure3.

the motion task.

1320 0 667
Time relative to stimulus onset (ms)

PFCand PPCpopulation level spatial and motion direction selectivity. A, Decoding accuracy during the spatial task for
the PPC (green curve) and PFC (magenta) neuronal populations was calculated by decoding the spatial location from the popula-
tion spike rates using SVM linear classifiers. Top, Horizontal green bar represents times at which the mean PPC decoding accuracy
was significantly greater than chance (p << 0.01, bootstrap). Horizontal magenta bar represents times at which the mean PFC
decoding accuracy was significantly greater than chance (p << 0.01, bootstrap). Bottom, Horizontal green bar represents times at
which the mean PPCdecoding accuracy was significantly (p << 0.01, bootstrap) greater than the PFC decoding accuracy. Horizontal
magenta bar represents times at which the mean PFC decoding accuracy was significantly (p << 0.01, bootstrap) greater than the
PPC decoding accuracy. Error bars indicate SEM. B, Same as A, except for the motion task. C, Similar to 4, except that spatial
selectivity was calculated using the normalized PEV: the percentage of variance in each neuron’s spike rate that is explained by the
spatial or motion direction, normalized to eliminate positive bias arising from a finite number of samples. D, Same as C, except for

cated within 62.5-750 wm from each other, we would first
compare the stimulus selectivity of neuron A with the mean tun-
ing similarity calculated between neurons B and C, B and D, and
C and D. We would go on to compare the stimulus selectivity of
neuron B with the tuning similarity between A, C, and D, etc. This
correlation was calculated for all time points within a trial.

For the spatial task (Fig. 4C), tuning similarity was signifi-
cantly correlated with stimulus selectivity for parts of the stimu-
lus presentation and most of the delay epoch in PPC (Fig. 4C, top,
horizontal green bars, p < 0.01, bootstrap) and PFC (Fig. 4C, top,
horizontal magenta bars). Thus, for PPC and PFC, neurons that
mnemonically encoded the spatial location tended to be part of a
cluster in which neurons are tuned to similar spatial locations.
We do note that the correlation for both PPC and PFC decreased
immediately after stimulus offset, which is potentially because
visually selective neurons become less active while those more
involved in preparing the occulomotor response or maintaining
the spatial location in working memory become more active
(Markowitz et al., 2015). Alternatively, from a dynamical systems
standpoint, the stimulus offset removes an attractor manifold
and causes neural trajectories in state space to drift toward a
different attractor (Chaisangmongkon et al., 2017).

For the motion task, we also observed a significant correlation
between tuning similarity and motion direction selectivity in PFC
(Fig. 4D, top, horizontal magenta bars), through latter part of the
sample and the entire delay epoch. In PPC, the correlation be-
tween tuning similarity and motion direction selectivity in PPC
was seldom significantly >0 at any point during the sample or
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ranges: we calculated tuning similarity
for pairs of neurons that were spaced
between 62 and 188 um apart (0.5-1.5
turns, green curves), between 188 and
469 pm (1.75-3.75 turns, magenta
curves), and between 469 and 750 wm
(4-6 turns, cyan curves).

For the spatial task in PPC (Fig. 6A),
tuning similarity for the nearest distance
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Figure 4.

direction selectivity.

delay. Furthermore, the correlation in PFC was significantly
greater than the correlation in PPC for part of the sample and the
entire delay epoch (Fig. 4D, bottom, horizontal magenta bars).
This was not unexpected given PPC’s weak motion direction tun-
ing similarity.

To ensure that these results were consistent across monkeys,
we repeated our analysis for each individual subject (Fig. 5). For
Monkey Q, PPC motion decoding accuracy (Fig. 5A), tuning
similarity (Fig. 5B), and correlation between tuning similarity
and selectivity (Fig. 5C) were all not significantly greater than
chance for almost all of the delay epoch. In Figure 5D, E, we show
the scatter plot of all individual clusters of nearby neurons used to
calculate the correlations in Figure 4C. Averaging the tuning sim-
ilarity (x-axis) and stimulus selectivity (y-axis) across the last 500
ms of the delay epoch, we find that tuning similarity and stimulus
selectivity are positively correlated in all cases, except in PPC for
the motion task, also consistent with our above results.

The results of Monkey W are mostly similar, except that PPC
motion decoding accuracy was somewhat stronger, and was in-
termittently greater than chance during the delay epoch (Fig. 5F).
Consistent with this, PPC motion direction tuning similarity was
also significantly greater than chance during most of the delay
epoch, although it was still weaker than PFC motion direction
tuning similarity during parts of the delay (Fig. 5G). And similar
to Monkey Q, the correlation between tuning similarity and stim-
ulus selectivity averaged across the last 500 ms of the delay epoch
is significantly >0 in PFC for the spatial and motion tasks (Fig.
5]), and in PPC during the spatial task, but not the motion task
(Fig. 51).

667
Time relative to stimulus onset (ms)

Tuning similarity and persistent activity in PPCand PFC. 4, Spatial tuning similarity for the PPC (green curve) and the
PFC (magenta) populations was calculated as the weighted dot-product between the preferred spatial location or motion direc-
tions of nearby neurons recorded during different sessions. As with Figure 2, vertical dashed lines indicate, from left to right, the
stimulus presentation, the stimulus offset, and the end of the delay period. Error bars indicate SEM. B, Same as A, except for the
motion task. €, The time course of the correlation between the spatial tuning similarity and the spatial stimulus selectivity (i.e.,
normalized PEV). D, Same as C, except showing the correlation between the motion direction tuning similarity with motion

1680

range (green curve) was significantly
greater throughout the stimulus presenta-
tion and delay epoch. While the tuning
similarities for the two furthest distances
ranges (magenta and cyan curves) were
not as strong, they were still significantly
greater than chance throughout large por-
tions of the stimulus presentation and de-
lay epochs.

For the spatial task in PFC (Fig. 6B),
tuning similarity for the two nearest dis-
tance ranges (green and magenta curves) were significantly
greater throughout the stimulus presentation and delay epoch.
While the tuning similarity for the furthest distance range (cyan
curve) was not as strong, it was still significantly greater than
chance throughout large portions of the stimulus presentation
and delay epochs.

For the motion task in PPC (Fig. 6C), tuning similarity for the
nearest distance range (green curve) was significantly greater
during the stimulus presentation and early delay. In contrast,
tuning similarity for the two furthest distance range (magenta
and cyan curve) were not significantly >0 for almost the entire
trial. This was the case for both monkeys individually (data not
shown).

For the motion task in PFC (Fig. 6D), the strength and latency
of tuning similarity appeared to vary according to the distance
range: tuning similarity was stronger, and developed with shorter
latency, for nearer distance ranges.

These results suggest several hypotheses. First, and unsurpris-
ing, is that there is a tendency for tuning similarity to decrease as
the distance between neurons increases. Second, for those cases in
which stimulus information is robustly encoded during working
memory (spatial task for PPC and PFC, motion task for PFC),
tuning similarity was significantly greater than chance during the
delay, even for the greatest distance between pairs of neurons that
we examined. This suggests that persistent activity is associated
with functional clusters exiting on scales of >500 wm. In con-
trast, PPC neurons were clustered based on their preferred mo-
tion direction, but these clusters were on scales of <200 wm,
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Figure 5.  Tuning similarity and persistent activity in PPCand PFC for individual monkeys. 4, Similar to Figure 34, the decoding accuracy of PPC (green curve) and PFC (magenta curve) is shown
for Monkey Q during the spatial (left) and motion (right) tasks. B, Similar to Figure 4A, B, the mean tuning similarity is shown for Monkey Q. C, Similar to Figure 4C, D, the time course of the correlation
between the spatial tuning similarity and the spatial stimulus selectivity is shown for Monkey Q. D, Scatter plot showing the individual clusters of nearby neurons that are used to compute the
correlation in € for Monkey Q. The tuning similarity (x-axis) and the logarithm of the stimulus selectivity (/-axis) were averaged over the last 500 ms of the delay epoch for PPC for the spatial (left)
and motion (right) tasks. E, Same as D, except for the motion task. F—J, Same as A-E, except for Monkey W.

consistent with the view that functional clusters must be large
enough to support working memory.

Recording locations and depths

We wondered whether the difference between PPC and PFC de-
scribed in Figures 3-5 was because of any biases in our recording
locations or depths. For example, a previous study found that
PFC neurons spatially selective during working memory are pri-
marily located posterior and lateral to the principal sulcus and at
more shallow recording depths (Markowitz et al., 2015). Al-

though it is in theory possible that lack of clustering of preferred
motion directions in PPC was because of biases in our neuronal
recording approach, several lines of evidence argue against this
possibility. First, our PPC recordings revealed strong organiza-
tion of spatial selectivity, implying that the lack of clustering of
preferred motion directions was not because we did not record
from areas that support persistent delay-period activity in gen-
eral. Second, we recorded from neurons over a wide span of PPC
and PFC locations from both animals (Fig. 7A-D), with 31 of 64
PPC recording locations across 2 monkeys contributing five or
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were connected, whereas 5% of pairs of
o neurons from different columns were
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for PPC during the motion task. D, Same as A, except for PFC during the motion task.

more neurons toward our analysis. Third, recent studies have
suggested that neurons encoding stimulus information during
working memory might be preferentially located in superficial
layers (Wang et al., 2013; Markowitz et al., 2015). While unfor-
tunately our recording approach did not have the precision
needed to confidently determine the cortical layer of recorded
neurons, the distribution of estimated recording depths (see Ma-
terials and Methods; Fig. 7E) suggests that we broadly sampled
across cortical layers, and if anything, PPC recordings were more
biased toward superficial layers than PFC.

Last, we wondered whether motion direction tuning similar-
ity in PPC was weaker because pairs of nearby PPC neurons were
spaced further apart compared with pairs of PFC neurons. How-
ever, the opposite was true: the mean distance between pairs of
PPC neurons used for the analysis in Figure 4A, B was 360 wm
compared with 392 um in PFC (p = 0.001, two-tailed, two-
sample ¢ test, df = 1835, Fig. 7F ). In summary, we not believe that
the differences between PPC and PFC can be explained by biases
in our neuronal recording approach.

Mnemonic encoding in a trained recurrent neural

network model

We wanted to more formally test our hypothesis that persistent
activity is facilitated when groups of interconnected neurons are
similarly tuned. To do so, we wanted to examine persistent activ-
ity in neural network models in which we could control the con-
nectivity between different groups of neurons. Thus, we trained
recurrent neural networks using the Pycog framework (Song et
al., 2016) to perform a variant of the DMS task described above
(see Materials and Methods). The model (Fig. 8A) consisted of 72
motion direction-selective neurons that randomly projected
onto a network of 180 recurrently connected neurons. Neurons
were organized into 6 “columns” consisting of 24 excitatory and
6 inhibitory neurons; 50% of pairs of neurons within a column

Tuning similarity as a function of distance. Tuning similarity was calculated in the same manner as done for Figure 44,
B, except that similarity was calculated between all pairs of neurons spaced between 62 and 188 um apart (green curve), between
188 and 469 wm apart (magenta curve), and between 469 and 750 m apart (cyan curve). A, The mean tuning similarity for the
three distance ranges for PPC during the spatial task. Top, Horizontal bars represent times at which the tuning similarity was
significantly greater than chance (p << 0.01, bootstrap). B, Same as 4, except for PFC during the spatial task. €, Same as A, except

into the following analysis.

The network was trained so that the
“match” neural response increased from
0.2 to 1.0 (values arbitrarily set) for a
matching test stimulus, and that the
“nonmatch” neural response increased
from 0.2 to 1.0 for a nonmatching test
stimulus. We successfully trained the net-
work to achieve these targets, as the mean
match neural response (green curve) se-
lectively increased from ~0.2 to 1.0 for a matching test stimulus
(Fig. 8B), and the mean nonmatch neural response (magenta
curve) selectively increased from ~0.2 to 1.0 for a nonmatching
test stimulus (Fig. 8C).

Given that the model was successfully trained to perform the
delayed matching task, we wanted to know (1) whether neurons
within a column developed similar direction tuning, and (2)
whether columns with more similar tuning among its neurons
also had greater persistent activity.

To answer these questions, we analyzed the network in a sim-
ilar fashion to how we analyzed our experimental data (Figs. 3-6).
After training, model neurons within the recurrent network se-
lectively encoded the motion direction during both the sample
and delay epochs (Fig. 8D). Concurrent with this selective encod-
ing of the motion direction, tuning within columns self-orga-
nized: direction tuning was significantly more similar between
neurons within the same column (Fig. 8E, blue curve) compared
with pairs of neurons from different columns (Fig. 8E, red curve).
Finally, columns with more similar tuning among its neurons
more selectively encoded the motion stimulus; Figure 8F is a
scatter plot comparing the mean motion direction selectivity of
each column measured at the end of the delay (x-axis) versus the
tuning similarity within each column, also measured at the end of
the delay ( y-axis). At this time point, the correlation between
both features is r = 0.50 (p < 0.001, df = 118). This correlation
between motion direction selectivity and tuning similarity within
each column develops during the sample stimulus and is main-
tained throughout the entire delay (Fig. 8G).

Thus, in recurrent neural networks embedded with a colum-
nar topology, training on the DMS task changes the connection
weights so that neurons within the same column develop similar
motion direction tuning. Furthermore, the level of tuning simi-
larity within a column correlates with the level of stimulus-
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selective persistent activity, confirming our intuition that cortical
organization supports working memory.

Stimulus selectivity in the LFP

In Figures 4-6, we established that mnemonic encoding is associ-
ated with the presence of functional clustering. Is this functional
clustering (partially) the result of organized spatial and motion
input signals arriving into these areas, or does clustering occur
after the input signals arrive? Although we cannot directly mea-
sure the inputs into these areas, we can infer their organization by
examining responses in the LFP. The LFP is thought to mainly
reflect the sum of synaptic potentials within several hundred mi-
crons of the electrode tip (Katzner et al., 2009; Kajikawa and
Schroeder, 2011). If the distribution of synaptic inputs selective
for various stimuli or features was randomly distributed within a
cortical area, the mean synaptic activity within a local volume
would be equal across stimuli, leading to no selectivity in the LFP
response. However, if synaptic inputs selective for each stimulus
tend to be in close spatial proximity (i.e., functionally clustered),
the summed synaptic activity within a local volume would vary
across stimuli, leading to selectivity in the LFP response.

In Figure 9, we show the evoked potentials (i.e., the mean LFP
relative to the stimulus presentation, causally filtered with a 10 ms
boxcar) for the spatial (Fig. 9A) and motion (Fig. 9B) tasks for the
same example electrode. For this electrode, the evoked potential
follows a similar time course in both tasks, with weak depolariza-
tion (negative deflection) ~60 ms after stimulus presentation,
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followed by hyperpolarization at ~90 ms, followed by stronger
depolarization peaking at ~140 ms. The evoked potentials ap-
pear selective for spatial location, with stronger hyperpolariza-
tion (positive deflections) for spatial locations at 0 and 45
degrees, followed by stronger depolarizations for stimuli at 0, 45,
and 90 degrees. In contrast, motion direction selectivity appears
much weaker, with slightly stronger hyperpolarization for the
motion direction at 255 degrees, followed by a slightly stronger
depolarization for motion directions at 135 and 195 degrees.

To quantify the selectivity across the population of LFP re-
cordings, we used linear SVMs to decode spatial locations and
motion directions (Fig. 9C, similar to our approach used in Fig.
3 A, B; see Materials and Methods). Consistent with the example
electrode shown in Figure 9A, spatial selectivity in PPC (blue
curve) becomes significantly greater (p < 0.01, bootstrap, indi-
cated by the blue horizontal bars) than zero at 60 ms after stim-
ulus presentation, and at 70 ms in PFC (red curve). Motion
direction selectivity developed later, reaching significance in PPC
(green curve) at 250 and 280 ms in PFC (black curve). Further-
more, maximum spatial decoding accuracy was ~10 times
greater than maximum motion direction decoding accuracy in
both PPC and PFC and was significantly greater (p < 1079,
bootstrap) from 70 to 230 ms in PPC, and from 80 to 230 ms in
PFC. These results suggest that spatial location signals arriving in
both PPC and PFC are already functionally clustered, whereas
motion direction signals arriving in PPC and PFC are signifi-
cantly less organized.

Discussion

Although stimulus-specific persistent activity in the frontoparie-
tal cortex is commonly observed during tasks requiring working
memory (Funahashi et al., 1989; Colby et al., 1996; Chafee and
Goldman-Rakic, 1998; Rainer et al., 1998; Romo et al., 1999;
Zaksas and Pasternak, 2006), it is not understood why it is present
for some, but not all, visual features. In this study, we seek to
understand the neuronal conditions that can potentially allow for
persistent activity in certain contexts and inhibit it in others.

To address this question, we showed that although PPC and
PFC robustly encode spatial location during the working mem-
ory delay period of the task, only the PFC shows robust working
memory encoding of motion direction. We found that this dif-
ference in mnemonic encoding could be partially explained by
differences in functional clustering of spatial and motion selec-
tivity: pairs of neurons in the PPC or PFC neurons within ~700
um of each other preferred similar spatial locations, and pairs of
PFC neurons within ~700 wm of each other preferred similar
motion directions. In contrast, the preferred motion directions of
PPC neuron pairs separated by more than ~200 wm were not
correlated. We conclude that functional clustering facilitates per-
sistent activity and can potentially explain why persistent activity
is present for some, but not all, visual features.

Emergence of category selectivity during working memory in
PPC during category learning

In a previous study, we showed that PPC mnemonically encodes
the category membership of a motion direction stimulus after
extensive categorization training (Sarma et al., 2016). In this
study, we recorded across ~30 sessions while the monkeys were
trained to perform the DMC categorization task. This proved to
be insufficient time for the monkeys to reach a high level of cat-
egorization performance using this training approach, which
likely explains why robust mnemonic motion-category encoding
failed to develop in PPC, similar to what we observed in a recent
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study (Sarma et al., 2016). Thus, future
studies will be required to address the role
of functional clustering in the develop-
ment of training-dependent persistent
activity.

Innate or context-dependent

feature maps

Is the functional clustering that we ob-
serve context-dependent, or is it innately
hard-coded through long-term synaptic
changes in the frontoparietal network? In
Figure 9, we analyzed the spatial and mo-
tion evoked potentials to infer that the
spatial inputs into PPC and PFC are clus-
tered according to their preferred spatial
locations, but that motion inputs did
not show clustering according to their
preferred directions. However, we should
point out several possible caveats with this
conclusion. First, this inference rests upon
the assumption that the evoked potentials
reflect the mean synaptic input within a
small local volume (Katzner et al., 2009;
Kajikawa and Schroeder, 2011). If mo-
tion-selective inputs into PPC and PFC
arrive later than spatial inputs, they might
be masked by the large deflections in the
evoked potential generated by the stimu-
lus onset. Third, there is no direct way to
compare motion and spatial selectivity,
and measuring spatial selectivity using
eight spatial locations, while measuring
motion selectivity with only six directions,
might bias our results.

Despite these caveats, human imaging
studies have also suggested that spatial
clustering, in the form of retinotopic
maps, is likely innate in PPC, as several
subregions of the parietal cortex are reti-
notopically organized even for passively
viewed stimuli (Swisher et al., 2007). Al-
though few studies have examined whether
spatial maps exist in PFC under passive
conditions, two nearby frontal areas, the
frontal and supplementary eye fields, are
both topologically connected to areas in
visual cortex (Schall et al., 1993, 1995),
implying that, at a minimum, spatial
maps are innately present within certain
segments of the frontal cortex. These re-
sults are consistent with the known role
that both areas (particularly the PPC) play
in spatial processing (Colby and Gold-
berg, 1999; Constantinidis, 2006; Bisley
and Goldberg, 2010).

Although innate spatial organization
might be present in PPC and PFC, it is less
certain that both areas are organized ac-
cording to motion direction. Motion di-
rection tuning similarity in PFC (Fig. 4B)
requires >500 ms to approach its maxi-
mum value, and motion direction LFP se-
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lectivity (Fig. 9C) is weaker than spatial selectivity. This stands
in contrast to the rapid (<100 ms) development of spatial
location tuning similarity in PPC and PFC (Figs. 4A, 9C),
suggesting that more dynamic processes might be involved in
forming clusters based on preferred motion directions. Unfor-
tunately, because we did not map spatial or motion selectivity
outside the context of the spatial and motion tasks in this
experiment, it is difficult to provide a definitive answer to this
question. However, assuming that clustering for motion di-
rection is not innate, then understanding how functional clus-
tering is regulated in a context-dependent manner is an
important next question.
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Regulation of persistent activity through spike-LFP
interactions

The possible dynamic regulation of functional clustering in sup-
port of working memory would be in line with several other
studies that have examined how working memory is subserved by
short-term synaptic plasticity (Mongillo et al., 2008; Stokes,
2015). The proposal is that persistent activity results from the
spiking of neural ensembles that are transiently assembled through
short-term synaptic modifications (Harris, 2005; Fujisawa et al.,
2008; Szatmary and Izhikevich, 2010). In one interpretation, this
implies that the contents of working memory are not stored in the
patterns of neural activity per se, but rather within these short-term
synaptic changes (Mongillo et al., 2008; Stokes, 2015). Although
measuring these possible synaptic changes is challenging with extra-
cellular recordings, these short-term synaptic changes might mani-
fest themselves through their interactions with oscillations in the
LFP. Recent studies have proposed that these short-term synaptic
changes increase neurons’ phase-locking to LFP oscillations, most
likely within the gamma (40—100 Hz) frequency band (Lundqvist et
al., 2016). Unfortunately, our recording approach is ill suited to ex-
amine this possibility: to avoid spiking contamination of the LFP
phase measurement, it is advisable to measure how spikes on one
electrode interact with the LFP on a different electrode. In our sys-
tem, electrodes are spaced 1.5 mm apart, whereas gamma oscilla-
tions are thought to be a more local phenomenon (Buzsiki and
Wang, 2012). However, working memory is also likely supported by
more long-range connections, which may be facilitated by LFP os-
cillations in the alpha (Jensen et al., 2002; Foster et al., 2016) and beta
(Salazar et al., 2012) frequency bands. How mnemonic encoding of
spatial location and motion direction are subserved by spike-LFP
interactions in these lower frequency bands will be a question for
future research.

The role of persistent activity
Although this study examines the mechanisms that facilitate per-
sistent activity, it does not address the role of persistent activity in
working memory. Historically, persistent activity in the fronto-
parietal cortex has been viewed as the substrate in which remem-
bered information is stored (Funahashi et al., 1989; Colby et al.,
1996; Chafee and Goldman-Rakic, 1998; Rainer et al., 1998;
Romo etal., 1999; Ester et al., 2015). However, more recent work
has suggested that this activity reflects the coordination with sen-
sory and motor areas to form an appropriate behavioral response
(Harrison and Tong, 2009; Lara and Wallis, 2014; Sreenivasan et
al., 2014; Pasternak etal., 2015), or alternatively, that both storage
and behavioral response-related modes exist in distinct zones
(Markowitz et al., 2015). The existence of a response-related
mode would suggest that persistent activity during the delayed
memory saccade task might be more related to the deployment of
spatial attention toward the target, or the preparation of the up-
coming oculomotor response. In the motion task, persistent ac-
tivity might reflect network changes that will allow for the proper
behavioral response to the upcoming test stimulus (i.e., a pro-
spective code) (Rainer et al., 1999; Stokes et al., 2013). This raises
the possibility that the association between functional clustering
and persistent activity generalizes beyond the context of working
memory: various cognitive processes, such as spatial attention
and motor planning, in which changes in neural activity must
persist from the stimulus presentation until the motor response,
might also require the formation task-related cortical organiza-
tion (Ikkai and Curtis, 2011).

It might also explain a recent study that showed that stimulus-
selective persistent activity was absent from PFC during a fine-
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color change detection task (Lara and Wallis, 2014), and the
results of other studies showing that PFC encodes abstract or
category-like variables more accurately than variables relating to
image similarity (Freedman et al., 2003; Meyers et al., 2008).
Cortical circuits in PFC might not be organized in a manner that
allows for clustering based on the fine gradation of a visual fea-
ture, and must instead coordinate with visual cortex to encode
precise visual details.

Recurrent neural network models

Until recently, attempts to train recurrent neural networks often
failed because, when trying to minimize the loss function, the
gradient had a tendency to either explode or approach zero (Pas-
canu et al., 2012). Recent advances in training algorithms have
circumvented this problem, allowing researchers to train recur-
rent networks to perform various computations (Mante et al.,
2013; Song et al., 2016; Chaisangmongkon et al., 2017). In Figure
8, we trained recurrent neural network models, in which neurons
within the same “column” were preferentially connected, to solve
a delayed matching task. Consistent with the experimental data,
neurons within the same column were more similarly tuned
compared with pairs of neurons in different columns, and the
level of tuning similarity in each column was correlated with the
stimulus selectivity of those neurons throughout the delay epoch.

Although these models are gross simplification of actual neu-
ral circuits, there has been growing interest in using artificial
neural networks to confirm hypotheses from neural recordings
or to gain insight into how the brain performs certain computa-
tions (Mante et al., 2013; Song et al., 2016; Chaisangmongkon et
al., 2017). A major advantage of these models is that one can
analyze the synchronous activity of the entire model population,
a feat that is not possible with real experimental data (Mante et
al., 2013). This allows one to fully reverse-engineer how the arti-
ficial circuits implement various computations.

In conclusion, we have proposed that mnemonic encoding of
visual stimuli is facilitated by functional clustering, in which
nearby neurons preferentially respond to similar stimuli. The
inability of PPC or PFC to form appropriate functional clusters in
certain contexts and/or for certain visual stimuli helps explain
why persistent activity exists in these areas in some, but not all,
cases. Future research will examine whether functional clustering
is dynamically regulated, and the mechanisms that underlie its
emergence.
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