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Data-Driven Extraction of a Nested Model of Human Brain
Function
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Decades of cognitive neuroscience research have revealed two basic facts regarding task-driven brain activation patterns. First, distinct
patterns of activation occur in response to different task demands. Second, a superordinate, dichotomous pattern of activation/deactivation, is
common across a variety of task demands. We explore the possibility that a hierarchical model incorporates these two observed brain activation
phenomena into a unifying framework. We apply a latent variable approach, exploratory bifactor analysis, to a large set of human (both sexes)
brain activation maps (n = 108) encompassing cognition, perception, action, and emotion behavioral domains, to determine the potential
existence of a nested structure of factors that underlie a variety of commonly observed activation patterns. We find that a general factor,
associated with a superordinate brain activation/deactivation pattern, explained the majority of the variance (52.37%) in brain activation
patterns. The bifactor analysis also revealed several subfactors that explained an additional 31.02% of variance in brain activation patterns,
associated with different manifestations of the superordinate brain activation/deactivation pattern, each emphasizing different contexts in
which the task demands occurred. Importantly, this nested factor structure provided better overall fit to the data compared with a non-nested
factor structure model. These results point to a domain-general psychological process, representing a “focused awareness” process or “atten-
tional episode” that is variously manifested according to the sensory modality of the stimulus and degree of cognitive processing. This novel
model provides the basis for constructing a biologically informed, data-driven taxonomy of psychological processes.
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(s )

A crucial step in identifying how the brain supports various psychological processes is a well-defined categorization or taxonomy
of psychological processes and their interrelationships. We hypothesized that a nested structure of cognitive function, in terms of
a canonical domain-general cognitive process, and various subfactors representing different manifestations of the canonical
process, is a fundamental organization of human cognition, and we tested this hypothesis using fMRI task-activation patterns.
Using a data-driven latent-variable approach, we demonstrate that a nested factor structure underlies a large sample of brain
activation patterns across a variety of task domains. /

ignificance Statement

aging data. In the past two decades, researchers have attempted to
delineate the brain activation patterns associated with various
task demands to provide a neural grounding of cognitive pro-
cesses. Thus far, hundreds of task fMRI studies have purported to
demonstrate differential brain activation patterns associated with
working memory (Curtis and D’Esposito, 2003), attention (Kan-

Introduction
A central goal of cognitive neuroscience is to understand cogni-
tive processes through the analysis and examination of neuroim-
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wisher and Wojciulik, 2000), inhibitory control (Liddle et al,,
2001), multisensory integration (Driver and Noesselt, 2008),
affective regulation (Damasio et al., 2000), and other cognitive
processes. In contrast to this emphasis on linking individual cog-
nitive processes with unique brain activation patterns, other re-
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lllustration of exploratory bifactor analysis approach. In this particular application of the bifactor analytic model, each task-activation map, representing the activation (red) associated

with a particular task state (e.g., social cognition or semantic processing), is modeled as arising from direct effects of a single latent general factor and various latent subfactors (e.g., Subfactor 1and
Subfactor 2). In addition, subfactors may also be correlated with one another (double-headed arrow). These latent factors can also be represented in brain space (blue) through the computation of

scores associated with factors.

search has demonstrated the existence of a dominant, canonical
pattern of brain activation/deactivation that occurs across a vari-
ety of task demands and associated cognitive processes, some-
times referred to as “task-positive” activation (Toro et al., 2008;
Duncan, 2010; Fedorenko et al., 2013; Hugdahl et al., 2015) and
“task-negative” deactivation (Raichle et al., 2001; Fox et al., 2005).
Researchers have argued that the canonical task activation/deac-
tivation pattern represents a domain-general cognitive process
(Duncan, 2010; Fedorenko et al., 2013; Hugdahl et al., 2015)
activated in response to the presence of external stimuli, regard-
less of the content of the stimuli.

These observations give rise to two tenets: (1) the brain pro-
duces distinct patterns of activation in response to different task
demands; and (2) the brain produces a singular, superordinate
pattern of activation/deactivation across a variety of task demands.
Recent work has aimed to reconcile this apparent dichotomy by
exploring the extent to which different tasks share common and
distinct psychological processes (Poldrack et al., 2009; Barrett
and Satpute, 2013; Krienen et al., 2014). We hypothesized that
these two streams of research, rather than contradictory, point to
the existence of a nested structure of brain activation patterns
underlying human cognition. In particular, we hypothesized
that an overarching domain-general cognitive process, repre-
sented by the canonical brain activation/deactivation pattern,
is present across all task demands, in agreement with previous
literature, but presents in different manifestations depending
on cognitive processes unique to the type of task demands.
Thus, cognitive processes unique to different types of task
demands are distinguished by differential subtypes of the
canonical task-positive/task-negative pattern. For example,

activation due to an arithmetic task is hypothesized to pre-
dominantly exhibit the canonical activation/deactivation pat-
tern, yet also exhibit a unique manifestation of this pattern
due to cognitive processes (e.g., mathematical cognition)
unique to this type of task.

We tested this hypothesis with a novel application of a bifactor
analytic model applied to group-level unthresholded task-activation
maps from a large sample of published fMRI studies (Fig. 1). The
use of unthresholded brain activation maps provides an advan-
tage over previous studies (Toro et al., 2008; Smith et al., 2009;
Lenartowicz et al., 2010; Bertolero et al., 2015; Yeo et al., 2015)
examining task-general brain activation patterns that have used
activation-coordinate databases, such as the BrainMap database
(Fox and Lancaster, 2002) or Neurosynth (Yarkoni et al., 2011).
Coordinate-based analyses are inherently limited due to their reduc-
tion of full statistic images to peak-activation coordinates (Salimi-
Khorshidi et al., 2009; Poldrack and Yarkoni, 2016); and at present,
there are no universal standards for reporting activation coordinates
(Wager etal., 2007). The use of “full-information” activation images,
rather than peak-activation coordinates, allows for more accurate
assessments of the covariance between any two activation maps, and
a wider variety of analytic approaches to explore the associations
among a group of activation maps. Using a large-scale dataset of
unthresholded brain activation maps from several task domains
provided through the Human Connectome Project (HCP) (Barch et
al,, 2013) and NeuroVault database (Gorgolewski et al., 2015), this
study directly tested the hypothesized nested or bifactor organiza-
tion of brain activation patterns. In addition, we directly compared
the overall fit to the collection of brain activation maps of a nested
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factor model of brain activation patterns with a non-nested factor
model.

Materials and Methods

HCP and NeuroVault inclusion and exclusion criteria. Unthresholded
fMRI group statistic images were used for this study. Specifically, con-
trast images representing group-level BOLD activity in response to
blocked or event-related task onsets and offsets were of interest. Statisti-
cal images corresponding to the subtraction between two activation
maps were not included in the analysis. There were two primary reasons
these subtraction contrasts were not included: (1) From each collection
of task contrasts, we included activation maps from control and active
conditions. If the statistic image from the subtraction contrast, corre-
sponding to the subtraction condition between the active and control
condition, was included in the data analysis, along with its constituent
active and control condition, the model could no longer be estimated, as
the resulting data matrix would be nonpositive definite or singular, and
could not be inverted. This is the result of the fact that the subtraction
condition can be expressed as a linear combination of the active and
control condition (a simple subtraction). (2) The estimation method of
the bifactor approach is a “bottom-up,” agglomerative approach, where
activation maps were “clustered” into task factors based on similarity in
activation patterns. These were then interpreted in terms of task param-
eters held in common by each cluster of activation maps. Thus, our
approach has a similar logic to conjunction analysis (Price and Friston,
1997), which infers cognitive processes based on the common conjunc-
tion of task-activation patterns. Subtractions between activation maps
would amount to removing potential common activation patterns among
the activation maps used by the bifactor analysis to compute the factor struc-
ture, as the full covariance estimate between the task-activation images is
what the factor analysis is attempting to model.

HCP activation maps. Neuroimaging data from 208 nontwin, healthy,
right-handed adults (age, mean = SD, 28.61 * 3.85 years, range: 22-36
years; 103 female) made available through the HCP 2014 release were
used for this study. These were the maximum number of nontwin sub-
jects in the 2014 release (Barch et al., 2013). For each subject, ~7 task
scans (not all subjects had all task scans) were used for analysis. Here we
refer to the tasks as the working memory task, gambling task, motor task,
language task, social task, relational task, and emotion task. Of the 86 task
contrasts made available through the HCP 2014 release, a total of 24
contrasts were task-activation maps and were used for further analyses.

NeuroVault activation maps. At the time of the analysis (August 2016),
the NeuroVault database (Gorgolewski et al., 2015) contained 369 pub-
licly shared collections of images, where each collection contained all of
the images from a single study. A collection in the NeuroVault database
may contain unthresholded fMRI and PET statistic images, functional
and structural parcellations, and anatomical atlases. We also excluded
images derived from meta-analyses, functional connectivity analyses
(seed-based, Independent Components Analysis, etc.), multivariate pat-
tern analyses, behavioral correlation analyses, group comparison analy-
ses, and any analyses of patient or clinical populations. To ensure the
statistic images meeting this criterion were of sufficient quality, only
studies using =20 participants were included (Desmond and Glover,
2002). Eighty-seven contrast images from 17 NeuroVault collections met
these criteria and were included. Included in this total are two task con-
trasts from the United Kingdom Biobank study (Miller et al., 2016) (fur-
ther references to “NeuroVault” contrasts include these two contrasts).

Processing of HCP and Neurovault data. For the HCP task data, the
participant-level volume-based analyses were used. The preprocessing of
this task data involved gradient distortion correction, motion correction,
registration to the MNI template (MNI 152 space), and grand-mean
intensity normalization. In addition, spatial smoothing was applied to
each task scan using an unconstrained 3D Gaussian kernel of FWHM =
4 mm. The details of the minimal preprocessing pipeline are described by
Glasser et al. (2013). Session-level analyses were performed within each
task for both encoding directions and are described by Barch etal. (2013):
session-level activity estimates were computed using the GLM imple-
mented in FSL’s FILM (FMRIB’s Improved Linear Model) with autocor-
relation correction (Woolrich et al., 2001). Predictors for each task
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contrast were convolved with a double gamma canonical hemodynamic
response function (Glover, 1999). To account for slice-timing differences
and variability in the HRF delay across regions, temporal derivatives of
each predictor were added as a confound term to the GLM. Time-series
were then high pass filtered with a cutoff of 200 s and prewhitened within
FILM to correct for autocorrelations in the timeseries. The two session-
level activity estimates for each encoding direction were then combined
using a fixed-effects GLM analysis implemented in FSL’s FEAT to esti-
mate average effect participant-level estimates. Group-level mixed-effect
analyses treating subjects (n = 208) as a random effect were conducted
for each sample with the participant-level fixed-effect estimates imple-
mented in FSL’s FLAME (FMRIB’s Local Analysis of Mixed Effects) to
estimate the average effects of interest across the sample (Woolrich et al.,
2004). The resulting unthresholded group-level z-statistic images were
used for further analyses.

Most of the contrasts in the sample chosen from NeuroVault were
t-statistic images and were thus converted to z-statistic images for nor-
malization across contrasts. To ensure the group contrast images from
the NeuroVault database were adequately comparable, several steps
were taken to reduce interscanner and intersubject variability. First,
all NeuroVault contrasts were reregistered to a 2 mm MNI template
using FSL’s FLIRT (Jenkinson and Smith, 2001). Three of the 87 contrast
images from the NeuroVault database failed to align to the MNI template
using this process and were excluded from further analyses, leaving 108
(24 HCP and 84 NeuroVault contrasts) contrast images overall for the
analysis. To further reduce interstudy variability and ensure comparabil-
ity across both NeuroVault and HCP images, all images were resampled
to 3 mm voxel size (voxel resolution of all contrasts ranged from 2 to 4 mm)
and were spatially smoothed with a 6 mm FWHM Gaussian kernel.

All 108 contrasts from both HCP and Neurovault are described in
Table 1. Classifying each of the 108 contrasts into the four behavioral
domains of the BrainMap database (Laird et al., 2009), excluding the
“interoception” domain, which includes perception of internal/auto-
nomic sensations: 40% are cognition contrasts, 23% are perception con-
trasts, 21% are action contrasts, and 17% are emotion contrasts. This
proportion of behavioral domain sampling is similar to the proportions
of the four domains in the BrainMap database, where 49% are cognition
experiments, 18% are perception experiments, 16% are action experi-
ments, and 18% are emotion contrasts (as of August 2016).

Experimental design and statistical analysis. The current study exam-
ined the factor structure of task-activation contrast images (n = 108)
using a novel factor analytic approach, known as exploratory bifactor
analysis (for more details on the bifactor model and the logic of the
approach, see Exploratory bifactor analysis). As an initial assessment of
the consistency of activation patterns across all task-activation contrast
images, we performed a simple conjunction analysis, summing binarized
activation/deactivation patterns across all maps (for more details, see
Conjunction analysis). The exploratory bifactor analysis proceeded in
three stages: (1) a data reduction stage to reduce the spatial dependence
between activation estimates across voxels (for more details, see Data
reduction stage); (2) an initial extraction phase in which an initial factor
solution is estimated and the appropriate number of factors is deter-
mined by parallel analysis (for more details, see Initial extraction phase);
and (3) a bifactor analysis phase in which the factor analysis is reesti-
mated with the estimated number of factors from the initial extraction
phase and a bifactor rotation criteria (for more details, see Bifactor anal-
ysis phase). The final analysis conducted in this study tested the fit of
other alternative factor structures, such as a standard (non-nested) factor
structure, using a confirmatory factor analysis (for more details, see
Comparison of alternative factor structures with bifactor model).

Conjunction analysis. For a preliminary analysis of the total set of 108
group contrast images (z-statistic images), a simple conjunction analysis
was performed. This allowed an overall assessment of the consistency of
activation patterns across all contrast images. All contrast images were
thresholded atz = 2.3 and z = —2.3 (p < 0.01) to examine the conjunc-
tion of activation and deactivation across the images, respectively, and
then binarized, such that suprathreshold activation/deactivation areas
were replaced with a value of 1. All activation and deactivation images
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Table 1. Contrast descriptions from NeuroVault and HCP databases: activation map names, abbreviation used in the factor loading figures, and task classification

Task database NeuroVault task ID N Task classification Task abbreviation Contrast

NeuroVault 25 32 Semantic Priming Task SP Letter Strings

NeuroVault 45 26 Erikson Flanker Task EF Congruent, Correct
NeuroVault 45 26 Erikson Flanker Task EF Incongruent, Correct
NeuroVault 46 49 Word Thack Task W_1Back Words

NeuroVault 46 49 Word 1back Task W_1Back Scrambled Objects
NeuroVault 46 49 Word 1back Task W_1Back Objects

NeuroVault 46 49 Word 1back Task W_1Back Consonant Strings
NeuroVault 923 93 Functional Localizer AC Calculation, Auditory Cue
NeuroVault 93 93 Functional Localizer FL Calculation, Visual Cue
NeuroVault 93 93 Functional Localizer FL Horizontal Checkerboard
NeuroVault 93 93 Functional Localizer FL Left Button Press Auditory Cue
NeuroVault 93 93 Functional Localizer FL Left Button Press Visual Cue
NeuroVault 93 93 Functional Localizer FL Right Button Press Visual Cue
NeuroVault 93 93 Functional Localizer FL Right Button Press Visual Cue
NeuroVault 93 93 Functional Localizer FL Sentence Listening
NeuroVault 93 93 Functional Localizer FL Sentence Reading
NeuroVault 923 923 Functional Localizer FL Vertical Checkerboard
NeuroVault 98 24 Balloon Analog Risk Taking Task BART Accept Cash

NeuroVault 98 24 Balloon Analog Risk Taking Task BART Explode

NeuroVault 98 24 Balloon Analog Risk Taking Task BART Reject

NeuroVault 98 24 Emotional Regulation Task ER Rating, All

NeuroVault 98 24 Emotional Regulation Task ER Reappraisal of Negative Cue
NeuroVault 98 24 Emotional Regulation Task ER Negative Cue

NeuroVault 98 24 Emotional Regulation Task ER Neutral Cue

NeuroVault 98 24 Stop Signal Task SS Go

NeuroVault 98 24 Stop Signal Task SS Successful Stop
NeuroVault 98 24 Temporal Discounting Task 1)) Easy Trials, All

NeuroVault 98 24 Temporal Discounting Task 1) Hard Trials, All

NeuroVault 29 21 Simon Task Simon Incongruent, Incorrect
NeuroVault 929 21 Simon Task Simon Congruent, Correct
NeuroVault 9 21 Simon Task Simon Congruent, Incorrect
NeuroVault 29 21 Simon Task Simon Incongruent, Correct
NeuroVault 110 44 Social Judgments of Faces Task SJ Age Judgment

NeuroVault 110 44 Social Judgments of Faces Task S) Attractiveness Judgment
NeuroVault 110 44 Social Judgments of Faces Task SJ Happiness Judgment
NeuroVault 110 44 Social Judgments of Faces Task SJ Right Motor

NeuroVault 110 44 Social Judgments of Faces Task S) Trustworthiness Judgment
NeuroVault 110 44 Social Judgments of Faces Task S) Left Motor

NeuroVault 423 20 Stop Signal Task SS All

NeuroVault 423 20 Stop Signal Task, Letter Naming SS_Letter All

NeuroVault 423 20 Stop Signal Task, Pseudo Word Naming SS_Pseudo All

NeuroVault 425 34 Emotional Regulation Task ER Look Negative Rating
NeuroVault 425 34 Emotional Regulation Task ER Look Neutral

NeuroVault 425 34 Emotional Regulation Task ER Negative Cue

NeuroVault 425 34 Emotional Regulation Task ER Reappraisal of Negative Cue
NeuroVault 426 33 False Belief Task FB False Belief Question
NeuroVault 426 33 False Belief Task FB False Belief Story
NeuroVault 426 33 False Belief Task FB False Picture Story
NeuroVault 426 33 False Belief Task FB False Picture Question
NeuroVault 446 21 Match to Sample Task MS Match-to-Sample
NeuroVault 654 40 Sentence Reading SR Normal Word Sentences
NeuroVault 654 40 Sentence Reading SR Pseudo Word Sentences
NeuroVault 657 32 Visual Processing VP Action

NeuroVault 657 32 Visual Processing VP Digits

NeuroVault 657 32 Visual Processing VP Faces

NeuroVault 657 32 Visual Processing VP Houses

NeuroVault 657 32 Visual Processing VP Scrambled

NeuroVault 657 32 Visual Processing VP Tools

NeuroVault 657 32 Visual Processing VP Words

NeuroVault 657 32 Mental Calculation MC Subtraction Arithmetic
NeuroVault 657 32 Mental Calculation MC Saccade Movement
NeuroVault 657 32 Auditory Processing AP French Words

NeuroVault 657 32 Auditory Processing AP Korean Words

NeuroVault 657 32 Auditory Processing AP Sounds

NeuroVault 723 20 Food Choice Task FC High Energy Food Choice

(Table continues)
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Table 1. Continued

Task database NeuroVault task ID N Task classification Task abbreviation Contrast

NeuroVault 723 20 Food Choice Task FC Low Energy Food Choice
NeuroVault 724 20 Food Choice Task FC Self-Control Required
NeuroVault 724 20 Food Choice Task FC No Self-Control Required
NeuroVault 857 330 Episodic Recall Episodic Antonyms

NeuroVault 857 330 Episodic Recall Episodic Synonyms

NeuroVault 857 330 Episodic Recall Episodic Picture Naming
NeuroVault 857 330 Speech Detection SD Digit Symbol
NeuroVault 857 330 Pattern Comparison Task PC Letter Comparison
NeuroVault 857 330 Pattern Comparison Task PC Pattern Comparison
NeuroVault 857 330 Logical Reasoning Task LR Matrix Reasoning
NeuroVault 857 330 Logical Reasoning Task LR Paper Folding
NeuroVault 857 330 Logical Reasoning Task LR Letter Set

NeuroVault 857 330 Semantic Memory Task SM Logical Memory
NeuroVault 857 330 Semantic Memory Task SM Paired Associates
NeuroVault 857 330 Semantic Memory Task SM Word Order

NeuroVault 1126 44 Lexical Decision Task LD Fixation

NeuroVault 1212 23 Visually Guided Saccade Task Saccade Average Saccade
BioBank N/A 5285 Emotional Face Processing Emotion Faces

BioBank N/A 5285 Emotional Face Processing Emotion Shapes

HCP N/A 204 Working Memory WM 2Back, Body Stimuli
HCP N/A 204 Working Memory WM 2Back, Face Stimuli

HCP N/A 204 Working Memory WM 2Back, Place Stimuli
HCP N/A 204 Working Memory WM 2Back, Tool Stimuli

HCP N/A 204 Working Memory WM 0Back, Body Stimuli
HCP N/A 204 Working Memory WM 0Back, Face Stimuli

HCP N/A 204 Working Memory WM 0Back, Place Stimuli
HCP N/A 204 Working Memory WM 0Back, Tool Stimuli

HCP N/A 205 Incentive Processing Gambling Mostly Punish Condition
HCP N/A 205 Incentive Processing Gambling Mostly Reward Condition
HCP N/A 206 Motor Movement Motor Visual Cue

HCP N/A 206 Motor Movement Motor Left Foot Movement
HCP N/A 206 Motor Movement Motor Left Hand Movement
HCP N/A 206 Motor Movement Motor Right Foot Movement
HCP N/A 206 Motor Movement Motor Right Hand Movement
HCP N/A 206 Motor Movement Motor Tongue Movement

HCP N/A 201 Language Processing Language Arithmetic Problems
HCP N/A 201 Language Processing Language Story Comprehension
HCP N/A 203 Theory of Mind Social Randomly Interacting Shapes
HCP N/A 203 Theory of Mind Social Intentionally Interacting Shapes
HCP N/A 202 Relational Processing Relational Match

HCP N/A 202 Relational Processing Relational Relational

HCP N/A 203 Emotion Processing Emotion Faces

HCP N/A 203 Emotion Processing Emotion Shapes

were then summed across all contrasts to form activation and deactiva-
tion conjunction images, respectively.

Exploratory bifactor analysis. The goal of all common factor analytic
models, including the bifactor model, is to explain the common variabil-
ity among a group of observed variables (e.g., task contrasts, brain acti-
vation maps) in terms of a smaller set of unobserved or latent variables,
called factors. The individual contrast maps are modeled as causally in-
fluenced by or indicators of their respective factors (MacCallum, 2009).
Thus, an implicit model of the relationship between the observed vari-
ables and unobserved factors in factor analysis is assumed (i.e., model-
based analysis) in factor analysis, distinguishing this approach from
principal components analysis, a similar approach. Specifically, the com-
mon factor model, including the bifactor model, represents each ob-
served variable as a linear combination of common and unique factors as
follows:

X=A0+6 (1)

where X is the p (variables) length vector of scores for each variable; A is
the p X m (common factor) matrix of factor loadings describing the
association between each variable and each common factor; 6 is m length
vector of factor scores; and 6 is the p length vector of unique factor scores

(“measurement error”) or the variance unexplained by the common
factors. In the bifactor model, mathematical restrictions (described be-
low) are placed on the factor loading matrix (A) so as to model a general
factor in one column of the matrix and subfactors in the remaining
columns. In the application of the model to the current data, each group
contrast map corresponding to the average BOLD activation/deactiva-
tion in response to particular processes (e.g., arithmetic calculation) or
stimuli (e.g., angry faces) is modeled as a linear combination of a general
latent factor that is related to all contrast maps and nested subfactors that
relate to subsets or groupings of the contrast maps.

One major difference between the latent variable approach used in this
study and other common latent variable approaches, such as the inde-
pendent components analysis approach (Calhoun et al., 2008; Smith et
al., 2009), is that the factor analytic model in this study is estimating
relationships among task contrasts rather than estimating relationships
among voxels across the task contrasts. The primary goal of this study
was to estimate underlying factors that explain the common variance
among the task contrasts, rather than the common variance among voxel
activity patterns. Thus, the latent variables in this approach are computed
as linear combinations of task contrasts rather than voxels. This is made
possible by the use of unthresholded statistical images that allow for more
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Figure 2.

Craddock high-resolution parcellation (n = 950). The a priori parcellation used as an initial data reduction before the bifactor analysis. The parcellation was computed using a spatially

constrained spectral clustering technique to define cortical ROIs with homogeneous functional connectivity relationships (Craddock et al., 2012). ROls are differentiated by integer values (1-950)

differentiated by colors and visualized on a surface MNI template.

accurate assessments of covariance between any two contrasts. In
addition, we were interested in representative patterns of task activa-
tion/deactivation that explain as much variance as possible among the
task contrasts, thus the factor analytic model extracts underlying factors
that best explains the covariance in the data, rather than estimating pos-
sible independent sources underlying the associations among the task
contrasts (i.e., independent components analysis).

The exploratory bifactor analysis approach in this study proceeded in
three stages: (1) a data reduction stage, (2) an initial extraction phase, and
(3) a bifactor analysis phase. The extraction and rotation phases were
conducted using the exploratory factor analysis program in Mplus soft-
ware (Muthén and Muthén, 2011).

Data reduction stage. One assumption of the factor analysis models is
independence of observations. Because of the strong spatial dependen-
cies among voxels (n = 80,090) within a task contrast, this assumption is
unlikely to hold. Thus, a high-resolution, data-driven parcellation (n =
950; Fig. 2) of the cortex was used (Craddock et al., 2012), and voxel
z scores within the regions of interest (ROIs) of the parcellation were
averaged together. This high-resolution parcellation included only gray
matter cortical and subcortical regions of the brain, excluding brainstem
regions. The brainstem was excluded in this study because it is often
difficult to obtain reliable signal from this area (Brooks et al., 2013). To
ensure the parcellation adequately represented the data, we conducted a
between-ROI ANOVA for each contrast to determine how much of the
variance in each contrast was accounted for by between-ROI variance as
opposed to within-ROI (error) variance. This was a standard one-way
ANOVA model with the ROT assignment of each voxel as a grouping
factor. The model computed the amount of variance in voxel activation
values due to variability in ROI means compared with variability in vox-

els within those ROIs. The results of the between-ROI ANOVA revealed
that the ROI parcellation accounted for a substantial majority of
variance in the data across all contrasts (mean ROy, = 0.829%, range:
0.665%—0.882%).

Initial extraction phase. The ROI values for each contrast were then
vectorized and placed into a matrix, where ROIs represent (n = 950)
observations (i.e., rows) and columns represent variables (n = 108).
Thus, the data matrix X described above corresponds to the #n ROI values
(950) X p contrasts (108) matrix. In the initial extraction phase of the
factor analysis approach, the number of factors is estimated. To estimate
the number of factors in the data, we used the parallel analysis method
(O’Connor, 2000). This method involves extracting components and
their associated eigenvalues (analogous to the amount of explained vari-
ance) through principal component analysis applied to permutations
(n = 10,000) of the original data matrix (X) using column-wise reshuf-
fling of the original data matrix. The mean permuted eigenvalues are then
compared with the component eigenvalues extracted from the original data
matrix (X) to determine the number of factors in the solution. Here, the
estimated number of factors was the number of components with eigenval-
ues greater than the mean permuted component eigenvalues.

Bifactor analysis phase. After the number of factors was estimated, a
maximum likelihood estimator with robust standard errors (MLR) was
used to estimate the bifactor model. Maximum likelihood estimation
operates through an iterative search over parameters (factor loadings
matrix and specific variances) that maximize a log-likelihood function,
which measures the likelihood of the estimated parameters producing
the sample variance-covariance matrix. However, the original maximum
likelihood estimator assumes a multivariate normal distribution of the
variables in estimation of model parameters, and a multivariate test of
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normality (Royston, 1983) (p < 1.0e-10) indicated that the joint distri-
bution of the data did not exhibit normality. Thus, a robust maximum
likelihood estimation procedure was chosen to correct standard errors
for departures from non-normality. For detailed information on the
implementations of these algorithms in Mplus, see Muthén and Muthén
(2011). To examine possible bifactor or nested structure among the task
contrasts, a bifactor rotation criterion was applied to the factor loading
matrix (A) of the initial solution (Jennrich and Bentler, 2012). Impor-
tantly, the use of rotation procedures does not alter the fit of the model to
the data (MacCallum, 2009). The bifactor rotation criterion attempts to
rotate the initial factor loading matrix toward a loading matrix with
strong loadings of the first factor (general factor) and perfect cluster
structure for the loadings on the remaining factors (subfactors). There
are two types of bifactor rotation criteria: orthogonal and oblique (Jen-
nrich and Bentler, 2012). An orthogonal rotation constrains the factors
to be uncorrelated, whereas an oblique rotation allows the factors to
correlate with each other. Because orthogonal rotations constrain the
factors to be uncorrelated and are generally not recommended without
an a priori hypothesis of independence for the factors (Costello and
Osborne, 2005; MacCallum, 2009), we used the bifactor geomin rotation
criteria, a commonly used oblique rotation criteria (Hendrickson and
White, 1964). The bifactor geomin rotation criteria maximizes loadings
for all contrast maps on the first column (corresponding to the general
factor) of the factor loading matrix and minimizes a measure called
complexity (the number of nonzero elements in the corresponding row
of the factor loading matrix) for all contrast maps on the remaining
columns of the factor loading matrix, which has the effect of enforcing
sparsity on the loadings in the matrix. The output of the rotation proce-
dure is a new “rotated” factor loading matrix (i.e., pattern matrix), rep-
resenting the correlation between each contrast map and each factor,
controlling for its association with the other factors. The pattern of factor
loadings on each factor was then used to interpret the types of task de-
mands/cognitive processes associated with each factor. Significance esti-
mates are also estimated for each task contrast-factor loading pair from
the estimated robust standard errors (derived from the MLR estimation
procedure). The significance estimates for the factor loadings were not
corrected for multiple comparisons (p < 0.05), given that the results
implied by the factor analysis (10 factors underlying the substantial ma-
jority of the variance in the data) imply strong dependencies among the
task contrasts.

The MLR estimation procedure also produces explained variance
estimates for each factor, as well as communality estimates for each con-
trast map. The explained variance estimates represent the variance
among all of the contrast maps that is explained by each factor. However,
these estimates for each factor are approximate in an oblique solution
because independent explained variance estimates for each factor are not
possible when the factors are correlated. The explained variance estimate
for each factor are more accurate to the degree that the factor is orthog-
onal (statistically uncorrelated) with the other factors in the solution.
Thus, the explained variance estimates reported in the results are approx-
imate, except for the general factor, which is orthogonal, or statistically
uncorrelated with, the subfactors. The communality estimate is the pro-
portion of variance in that variable accounted for by the extracted factors
and represents the degree to which that contrast is represented in the
solution.

Computation of factor scores. To compute a brain region’s (i.e., each
ROI of the high-resolution parcellation) standardized “score” for each
factor, we used a least-squares estimation method, known as the Bartlett
method (Bartlett, 1937; Lawley and Maxwell, 1962). The Bartlett method
of factor score computation is similar to the ordinary least-squares ap-
proach, where the factor score (6 vector in Eq. 1) at each region is esti-
mated from the observed X data matrix and A matrix of factor loadings,
but the added condition that the communality estimates (described
above) weight each contrast from the factor solution. Thus, brain region
values from contrasts that are better captured by the factor solution
contribute more to the factor score at that brain region (Bartlett, 1937).
In addition, the Bartlett method computes factor scores that are highly
correlated to their corresponding factor and not with the other extracted
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factors. The resulting factor scores for each region were then mapped
back to the brain, smoothed using a 6 mm FWHM Gaussian kernel for
smoother boundaries among neighboring regions of the brain, and visu-
alized on an MNI 152 surface template using BrainNet Viewer software
(Xia et al., 2013). The resulting brain maps correspond to each factor’s
representation in standard brain space.

Comparison of alternative factor structures with bifactor model. To test
whether alternative factor models fit the data equally well, we used a
confirmatory factor analysis (CFA) approach that measured the overall
fit of two alternative factor models compared with the bifactor model.
CFA operates in the opposite “direction” from the exploratory factor
analysis model used above and involves the fitting of an a priori factor
model, with variable-factor loadings specified by the user, to the data.
From a path diagram perspective, this can be conceptualized as specify-
ing a priori links from the factors to the task contrasts. The overall fit of
the a priori factor models to the data is assessed using a variety of global
fit indices (Fan et al., 1999; Bentler, 2007; Iacobucci, 2010) that all mea-
sure the discrepancy between the covariance matrix implied by the factor
model and the sample covariance matrix (covariance between the ob-
served variables). Four global fit indices were used to compare the overall
fit of each model to the data: root mean square error of approximation
(RMSEA), comparative fit index (CFI), Tucker-Lewis index (TLI), and
the standardized root mean square residual (SRMR). Lower values for
the RMSEA and SRMR represent greater overall fit, and higher values
for the CFI and TLI represent greater overall fit. As with the exploratory
bifactor analysis, both CFA models were analyzed in Mplus.

Study/sample-specific non-nested alternative factor model. One possible
concern with combining together unthresholded statistic images across
studies is that the majority of differences among the statistical images
may be driven by sampling and scanner-site differences (Friedman et al.,
2006). Overall, there were 19 collections of task contrasts, but four col-
lections consisted of one task contrast and a factor with a single indicator,
which was not identifiable (i.e., parameters could not be uniquely esti-
mated) (Brown, 2015), and were not included in the CFA for either the
standard non-nested alternative exploratory factor analysis model or for
the bifactor model described below. Thus, the non-nested factor model
included 15 orthogonal factors (no covariance between factors), cor-
responding to 15 collections (13 Neurovault collections, HCP, and
BioBank) of task contrasts. Three factors (corresponding to three collec-
tions) consisted of two task contrasts and were not identifiable (because
of the independence of the factor), and were thus allowed to arbitrarily
covary with the HCP factor, the largest factor, for identification. The
adding of parameters to be estimated, however arbitrary, does not de-
crease, but improves overall model fit.

Standard exploratory factor analysis non-nested alternative factor model.
To compare the data-driven nested bifactor model with an alternative
data-driven non-nested factor model, we performed a standard non-
nested exploratory factor analysis with a promax (Hendrickson and White,
1964; Cureton and Mulaik, 1975) rotation using the same MLR estima-
tion procedure used for the bifactor analysis. Ten non-nested factors
were chosen to be estimated, the same as the number of factors in the
bifactor model. The resulting rotated factor loadings were then used to
construct a non-nested factor model. Specifically, each task contrast was
specified as loading on the factor to which it had the strongest loading.
Eight nonorthogonal (allowed to covary) factors were specified in the
factor model, as one factor did not have a single strongest task contrast
loading and the other factor had only one strongest task contrast loading,
and was not identifiable. To keep the one task contrast, “Simon_Incon-
gruent_Incorrect,” in the factor model, it was specified as loading on the
factor to which its paired task contrast, “Simon_Congruent_Incorrect,”
had the strongest loading.

Nested bifactor model. The results from the exploratory bifactor anal-
ysis were used to construct a confirmatory bifactor model. As described
in Results, the bifactor model included 10 factors: a general factor and
nine subfactors. For each task contrast, two factor loadings were speci-
fied: a factor loading on the single, general factor, along with a single
subfactor, corresponding to its strongest subfactor loading from the ex-
ploratory bifactor analysis.
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Conjunction analysis of all activation maps. The results of the conjunction analysis examining the consistency/overlap of the task-activation/deactivation across all activation maps.

A, Conjunction maps visualized on an MNI surface template. Values for each voxel represent the amount of times that voxel was activated or deactivation across all 108 activation maps. B, Histogram
displaying the frequency distribution of the consistency/overlap values for all voxels. The distribution follows an exponentially decreasing curve, with the majority of voxels observed to have low
consistency values. As can be seen from the conjunction maps and the histograms, greater consistency values (both average and maximum consistency values) are observed in task-activation, as

opposed to task-deactivation, patterns.

Split-half reliability analysis. To address the 50
replicability or stability of a potential bifactor 45
structure among task-activation maps, we con-

40

ducted a stability test of our bifactor structure
by conducting an exploratory bifactor analysis 35
on a randomly selected half of the total activa-
tion maps. This was performed 10 times. We
extracted all factors with eigenvalues >1 (i.e.,

Eigenvalue
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W
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Results
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To test whether the full set of 108 brain
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activation maps exhibited the commonly 0
observed superordinate, task-positive and
task-negative activation pattern, we per-
formed a conjunction analysis by sum-
ming binarized activation and deactivation
estimates across all maps. The results (Fig.
3) for both activation and deactivation
maps correspond closely to the classic
task-positive (Duncan, 2010; Fedorenko et al., 2013; Hugdahl et
al., 2015) and task-negative activity (Raichle etal., 2001; Fox etal.,
2005) described in previous neuroimaging studies. The strongest
areas of overlap in the brain-activation conjunction analysis in-
cluded the posterior medial prefrontal cortex (pMPFC), anterior
insula, superior parietal cortex, dorsolateral prefrontal cortex (dIPFC),
and visual network areas. Activation overlap was strongest in the
PMPEFC and in the fusiform area of the visual network, with some
voxels within these areas active across 90% (97 of 108) of all activa-

Figure 4.
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Parallel analysis. A plot of the mean permuted eigenvalues (red) and the component eigenvalues of the original data
matrix. The eigenvalue is plotted along the vertical axis, and the component number is plotted along the horizontal axis. Compo-
nent eigenvalues were greater than the mean permuted eigenvalues up to component 10 (horizontal black line), indicating that a
10 factor solution was appropriate.

tion maps. The highest areas of overlap in the task-deactivation con-
junction were in the default mode network, comprised of the
ventromedial prefrontal cortex (vimPFC), the precuneus/posterior
cingulate cortex (precuneus/PCC) and the bilateral inferior parietal
cortices (IPC). Interestingly, average overlap was higher in the task-
activation conjunction (Maxg,.,, = 97) compared with the task-
deactivation conjunction (Maxe,.,,, = 81), indicating that the
pattern of task-related deactivation was less consistent (i.e., more
variable) compared with the pattern of task-related activation.
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Brain activation maps with low communalities in bifactor solution. Z-statistic images for motor tongue movements, incorrect trials for the incongruent trial types of the Simon Task,

motor left-hand movements, and average saccade movement from a saccade conflict task. Examination of activity patterns from all four contrasts reveals that they deviate from the dominant

pattern of activity in Figure 2.

Initial extraction

To estimate the number of factors among the brain activation maps,
a parallel analysis was conducted (Fig. 4) that involved comparison
of mean “random” component eigenvalues (analogous to the
amount of explained variance) from permuted versions of the orig-
inal data matrix to the component eigenvalues extracted from the
original data matrix. The parallel analysis indicated that a 10 factor
solution best represented the data, explaining a total of 83.39% per-
cent of the variance among the activation maps.

Bifactor analysis

A bifactor model was then estimated from the data with a 10
factor solution involving one single general factor and nine sub-
factors. The communality estimates, representing the proportion
of variance in each variable accounted for by the bifactor solution
(R?), indicated that the substantial majority of activation maps
were captured fairly accurately in the bifactor solution (all R* >
0.4) (Costello and Osborne, 2005). Only four of the 108 activa-
tion maps were not adequately captured by the 10 factor solution
(R* < 0.4). Examination of the activation/deactivation patterns
of the low communality activation maps revealed that these
maps deviated significantly from the dominant task-positive/
task-negative pattern with activation localized to the motor cor-
tex (activation maps associated with simple motor movements)

(Fig. 5). The pattern of factor loadings, representing the associa-
tion between each activation map and each factor, was then ex-
amined for potential bifactor or nested structure.

General factor

As hypothesized, a general factor was prevalent in the data (Fig.
6). In particular, the general factor accounted for the majority of
the common variance among the brain activation maps (52.37%),
and 94 of 108 maps had statistically significant loadings on the
general factor. The 14 brain activation maps that did not have
significant loadings on the general factor were associated with
simple motor movements (e.g., finger movements in response to
visual cues) and processing of simple auditory stimuli (e.g., but-
ton presses in response to an auditory cue). The strongest factor
loadings on the general factor included a variety of types of task
demands and stimulus types: affective facial processing, visual
working memory, and visual pattern comparison. Factor score
patterns (see Materials and Methods) in the cortex, representing
the degree that each factor is present (positively or negatively) in
each region of the brain, corresponded to the canonical task-
positive/task-negative pattern observed in previous studies:
positive scores (activation) in pMPFC, dIPFC, and the supe-
rior parietal cortex, along with negative scores (deactivation)
in the vmPFC, P/PCC, and IPC. Activation also extended into
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Figure6. Generalfactorloadings and factor score visualization. NV, NeuroVault; CNR, Cognitive Neuroscience Lifespan Repository; AP, Auditory Processing; BART, Balloon Analog Risk Taking; EF,
Erikson Flanker; Episodic, Episodic Recall; ER, Emotional Requlation; FB, False Belief; FC, Food Choice; FL, Functional Localizer; LD, Lexical Decision; LR, Logical Reasoning Task; MC, Mental Calculation;
MS, Match to Sample; PC, Pattern Comparison; SD, Speech Detection; Simon, Simon Task; SM, Semantic Memory; SJ, Social Judgment; SR, Sentence Reading; (Figure legend continues.)
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Subfactor loadings and factor score visualization. 4, The loading of each activation map on each subfactor, which represents the association between each map and each subfactor,

controlling for the association with other subfactors. The activation map labels are displayed along the vertical axis and the nine subfactors (F2-F10) are displayed along the horizontal axis. The
p value associated with each activation maps strongest subfactor loading is presented to the right of the label (in parentheses). Factor loadings were represented by a heat map. Warmer colors
represent stronger loadings; cooler colors represent weaker loadings. B, Factor scores associated with each subfactor were placed in MNI coordinates and visualized on a surface MNI template.

Warmer colors represent positive scores; cooler colors represent negative factor scores.

primary visual cortex (V1), higher-order visual object pro-
cessing areas in occipitotemporal areas of the brain, such as
the fusiform gyrus, as well as the primary motor cortex, pos-
sibly corresponding to the common experimental setup of

<«

(Figure legend continued.) SS, Stop Signal; TD, Temporal Discounting; TOM, Theory of Mind; VP,
Visual Processing; W_1back, Word 1Back; WM, Working Memory. A, The loading of each acti-
vation map on the general factor, which represents the association between each map and each
factor. Each map is preceded by a letter (P, E, C, and A) corresponding to its proposed dominant
behavioral domain (Perception, Emotion, Cognition, or Action). The activation map labels are
displayed along the vertical axis. The p value of their factor loading on the general factor is
presented to the right of the label (in parentheses). Loading values of each activation map are
represented by a heat map. Warmer colors represent stronger loadings; cooler colors represent
weaker loadings. Of 108 activation maps, 94 had significant loadings on the general factor.
B, Factor scores for each region were placed in MNI coordinates and visualized on a surface MNI
template. Warmer colors represent positive scores; cooler colors represent negative factor
scores. The pattern of positive and negative scores for the general factor followed the canonical
task-positive/task-negative activation/deactivation pattern.

button responses from fingers of the right or left hand in
response to visual stimuli.

Subfactors

Factor loadings exhibited strong clustering across the nine dis-
tinct subfactors (Fig. 7), with at least four brain activation maps
with strong loadings solely on each subfactor. All subfactors ex-
plained a similar small amount of variance in the data (~3%),
with the exception of factor three that explained ~9% of the data.
In addition, the subfactors were relatively orthogonal (I7| = 0.08;
range: —0.216-0.272), although the bifactor model allowed for
correlated subfactors. Examination of the factor scores associated
with each subfactor revealed a variety of task-positive/task-
negative patterns. Notably, positive scores in the pMPFC, en-
compassing the presupplementary motor area/supplementary
motor area and dorsal anterior cingulate cortex, were observed
across all subfactors. High positive scores in the dIPFC and
anterior insula were also observed across many of the nine
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subfactors as well, but with less consistency than the pMPFC. In
agreement with the results of the conjunction analysis, the pattern of
negative scores across the nine subfactors was much less consistent.
However, strong negative scores within at least one of the areas of
the DMN (vmPFC, P/PCC, and IPC) were observed across all
subfactors, with the exception of factor 8.

For initial categorization, subfactors were grouped based on
their pattern of factor scores into predominantly auditory-temporal,
visual-parietal, and prefrontal subfactors. The auditory subfac-
tors included subfactors 3 and 4, and both exhibited strong pos-
itive scores in the primary auditory cortex (superior temporal
gyrus). Outside of the primary auditory cortex, positive scores for
subfactor 3 were predominantly observed in regions of the
PMPEC, anterior insula, frontal poles, and the sensorimotor cor-
tices. The strongest loadings on subfactor 3 were observed in
brain activation maps associated with quick motor responses to
predominantly auditory stimuli, such as right button and left
button responses to auditory cues, and sometimes visual stimuli,
such as “GO” stimuli from a stop-signal task or simple visual cues
requiring a simple motor response. Interestingly, although acti-
vation maps associated with visual stimuli had their strongest
loadings on this subfactor, negative scores were predominantly
observed in early visual processing areas. However, the majority
of visual activation maps demanded swift motor responses or
preparation of motor responses to quickly presented visual cues,
which is consistent with positive scores observed in the posterior
parietal cortex of the dorsal “where” visual pathway for subfactor
3. Positive scores for subfactor 4 outside of the primary auditory
cortex were predominantly observed in the inferior frontal gyrus
(primarily concentrated in the frontal operculum) and primary
visual cortex. The strongest loadings on subfactor 4 were ob-
served for activation maps associated with extended processing of
complex aurally or visually presented language stimuli, such as
sentences, stories, and foreign languages.

Subfactors 2, 6, 7, and 9 were categorized as visual-parietal
subfactors because strong positive scores were observed in the
primary visual cortex, inferior and medial temporal lobe (includ-
ing the fusiform gyrus), or posterior parietal cortices of these
subfactors. In addition, the activation maps that loaded strongly
on each subfactor involved the presentation of complex visual
stimuli, including facial stimuli for subfactor 2, food for subfactor
6, mental manipulation of complex objects and symbols for sub-
factor 7, and motor movements in response to facial (same stim-
uli in subfactor 2) or object stimuli for subfactor 9. Differences in
the pattern of factor scores associated with each subfactor were
also present. For example, positive scores in subfactor 7 extended
into the posterior parietal cortex, encompassing both the medial
posterior parietal cortex that included the P/PCC region of the
DMN, and the superior parietal cortex, consistent with the com-
plex mental and spatial processing associated with the fluid rea-
soning processes modeled by the paper folding, letter set, and
matrix reasoning activation maps.

Subfactors 5, 8, and 10 were classified as prefrontal subfactors
given strong positive scores were predominantly observed in lat-
eral and medial prefrontal cortices. The brain activation maps
that loaded strongly on these subfactors involved cognitive pro-
cessing of visual stimuli, including active viewing of complex
visual stimuli for subfactor 5, working memory and complex
cognitive processing processing of visual stimuli (2-back task,
mental subtraction, relational comparison, and gambling task)
for subfactor 8, and vocabulary processing of visually presented
words for subfactor 10. Interestingly, the pattern of positive
scores in the lateral prefrontal cortices (dIPFC and inferior fron-
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tal gyrus) for subfactors 5 and 10 were strongly lateralized. In
particular, positive scores were predominantly in the right lateral
prefrontal cortices for subfactor 5 and left lateral prefrontal cor-
tices for subfactor 10, which may reflect hemispheric asymme-
tries in visuospatial and language processing in the right and left
hemispheres, respectively (Geschwind, 1970; Shulman et al.,
2010). Of note, no positive scores were observed in the medial
surface of the primary visual cortex for subfactor 5, although
most activation maps loading on this subfactor were associated
with processing of complex visual stimuli. However, positive
scores were observed in the lateral occipital and medial temporal
areas (regions comprising the ventral “where” pathway) (Mish-
kin et al., 1983), consistent with the complex nature of the visual
stimuli.

Bifactor/nested factor model versus non-nested factor model
To test whether an alternative non-nested factor model fit the
data equally well, we used a CFA approach that measured the
overall fit of the alternative factor model compared with the bi-
factor model. We used a CFA approach that involved comparing
the overall fit to the data confirmatory bifactor/nested model
derived from the exploratory bifactor analysis (10 factor model
with one general factor and nine subfactors) and an alternative
non-nested factor analysis model constructed from the results of
a standard exploratory factor analysis applied to the same set of
brain activation maps. The results for all fit indices revealed that
the bifactor model (RMSEA = 0.16, CFI = 0.504, TLI = 0.48,
SRMR = 0.09) had greater overall fit to the data compared with
the non-nested standard exploratory factor analysis model
(RMSEA = 0.171, CFI = 0.415, TLI = 0.4, SRMR = 0.158). In
addition, to ensure results were not driven by sampling, prepro-
cessing, or scanner-site differences between different collections
of brain activation maps, the confirmatory bifactor/nested model
derived from the exploratory bifactor analysis was also compared
with an alternative non-nested study/collection-specific confir-
matory model with orthogonal factors representing each study/
collection and loadings on each factor from activation maps
within that study/collection. The results for all fit indices revealed
that the bifactor model also had greater overall fit to the data than
the non-nested study-specific factor model (RMSEA = 0.175,
CFI = 0.388, TLI = 0.376, SRMR = 0.463).

Split-half reliability analysis

The bifactor solution of each randomly permuted split-half sam-
ple included a general factor that explained the substantial
majority of variance in the sample (mean R*: 0.498%; range:
0.476%—0.532%). In each solution, a comparable number of
subfactors were present as well (range: 7-9). For each of the sub-
factor solutions, there were similar auditory-temporal, visual-
parietal, and prefrontal subfactors compared with the original
solution. For example, a “facial judgment” subfactor appeared in
8 of 10 permuted samples. These results suggest that the bifactor
structure observed among task-activation maps is stable across
different task samples.

Discussion

The central goal of this study was to test a hypothesized frame-
work of functional organization of the human brain in terms
of a nested structure of brain activation patterns with a single
domain-general brain activation/deactivation pattern, and vari-
ous subgroupings of patterns that represent different manifesta-
tions of the canonical pattern. Consistent with a nested factor
structure, the single general factor explained the majority of the



Bolt et al. @ Extraction of a Nested Model of Human Brain Function

variance (52.37%) in the collection of brain activation maps, and 94
of 108 maps had significant loadings on the general factor. In addi-
tion to the general factor were nine subfactors associated with vari-
ous groupings of task features, which explained another 31.02% of
variance in the collection of brain activation maps. Importantly, the
nested-factor model provided a better overall fit to the data than an
alternative, data-driven non-nested factor model.

While the brain activation maps in the current study exhibited
highly consistent patterns of activation/deactivation in certain
areas of the cortex, as indicated by the conjunction analysis,
the bifactor analysis results revealed a complex structure of
task-positive/task-negative activity patterns. In particular, the bi-
factor analysis results are consistent with a bifactor or nested
structure of brain function with a task-general process that pres-
ents in different modes depending on certain task features. We
suggest that the current results of the bifactor analysis offer a
starting point for a general ontology of psychological categories
incorporating data-driven analyses of fMRI activation patterns.
The canonical task-positive/task-negative pattern of task activity
has been hypothesized to indicate a domain-general cognitive
process corresponding to “focused awareness” (Hugdahl et al.,
2015) or “attentional episodes” (Duncan, 2010). Given the wide
range of task domains that significantly load on the general fac-
tor, this strongly suggests a domain-general cognitive process
represented by the activation/deactivation patterns, which may
indeed be described as a process of “focused awareness,” “atten-
tional episodes,” or “effortful control” present across all these
task states. The brain activation maps that did not have signifi-
cant loadings on the general factor involved routine motor re-
sponses to simple visual or auditory cues and listening to stories
or sentences presented in the auditory modality. Thus, the cog-
nitive process represented by this domain-general factor may not
extend to contexts of automatic, routine response patterns, or
passive perception of external stimuli.

Analysis of the subfactors suggests the two primary features of
the task that differentiate one form of “attention” or “awareness”
from another is the modality of the stimulus presentation and the
nature of the cognitive processing required by the stimulus. In
other words, rather than one form of “awareness” or “attention,”
we suggest multiple types of “focused awareness” and “attention
episodes,” depending on these two features of the task conditions.
For example, a possible interpretation of subfactors 3 and 4 is an
auditory “focused awareness” or “attentional episode” involving
goal-directed responses to auditory stimuli. A possible interpre-
tation of subfactor 8 is a short-term memory “focused awareness”
that involves goal-directed attention toward short-term memory
traces for subsequent responses. The semantic content of the
stimulus, or the meaning of the stimulus, does not seem to be a
primary feature of the task that differentiates one subfactor from
another, as a variety of semantically different stimuli were present
in the tasks that loaded on the same subfactor. For example, the
visual stimuli used in the tasks that loaded on subfactor 5 in-
cluded houses, sentences, faces, and moving shapes, and the au-
ditory stimuli of subfactor 4 included sentences, a math problem,
stories, and words presented in French.

Previous studies have reported the existence of a general acti-
vation/deactivation pattern and that task-activation maps cluster
together according to particular features of the task stimuli and
task demands using conjunction analyses (Duncan and Owen,
2000; Fedorenko et al., 2013) and meta-analytic activation coor-
dinate analyses (Fox and Lancaster, 2002; Toro et al., 2008; Yeo et
al., 2015), respectively. The novelty of the results presented here is
the evidence of a nested structure of cognitive factors that cap-
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tures a general task activation/deactivation pattern and task-
specific activation/deactivation patterns within the same model.
Evidence for a nested factor structure of task-activation patterns
points to a hierarchical theory of cognition in contrast to a tradi-
tionally conceived “modular,” faculty-based theory of cognition.
Modular-based theories classify cognitive processes according to
fixed, compartmental categories, such as “working memory,”
“attention,” or “social cognition,” without an overarching hier-
archical organization. In contrast, the hierarchical theory of
cognition proposed here involves a task-general, superordinate
cognitive process, and subordinate processes that correspond to
task-specific features. This is more in line with a constructionist
theory of psychology (Barrett et al., 2007; Lindquist and Barrett,
2012; Barrett and Satpute, 2013) that explains cognition in terms
of domain-general psychological processes supported by unique
brain networks (e.g., salience network, DMN, frontoparietal net-
work) that combine and interact to form different instances of
cognition. However, as opposed to a single level of domain-
general psychological processes, we have found evidence for a
hierarchical domain-general structure, in which a core task-
general process is a fundamental “ingredient” in all forms of
cognition. Analysis of the subfactors reveals that the modality of
the stimulus and the nature of the cognitive processing required
by the stimulus are the dominant task-specific features that ex-
plain the clustering of activation patterns into subfactors out of
other possible task features, such as the semantic content of the
task stimuli.

Another novel feature of this study is the use of unthresholded
task-activation images, as opposed to meta-analytic activation
coordinates. The primary advantage of unthresholded statistic
images are more accurate assessments of relationships among the
statistic images, which allows for the application of a wider vari-
ety of covariance modeling methods to assess the common rela-
tionships among the images. Another advantage is the additional
information regarding task “deactivation.” When researchers ex-
amine brain activity in response to task onsets and offsets, these
images are normally positively thresholded, removing informa-
tion regarding reduced brain activity to task onsets and offsets.
This information may be important in understanding the cogni-
tive processes at work in each task condition. Task-negative
activity, or default mode network deactivation, and its relation-
ship to task-positive activity, has been related to individual dif-
ferences in behavior (Kelly et al., 2008) and is thought to index
task difficulty (Greicius and Menon, 2004). Indeed, as demon-
strated in the factor analytic approach here, negative score pat-
terns can distinguish between the different factors that have
relatively similar positive score patterns. For example, negative score
patterns were observed in different areas of the DMN between sub-
factors, such as the P/PCC, IPC, and vmPFC. These findings are
consistent with the observation that the DMN is not unitary but can
be divided into anterior, posterior, and lateral components (Laird et
al.,2009; Uddin et al., 2009; Andrews-Hanna et al., 2010; Leech et al.,
2011; Sestieri et al., 2011; Yeo et al., 2014).

Limitations

While a large variety of brain activation maps from several task
domains were examined in this study, the full space of psycho-
logical functioning was not covered. The limited availability of
unthresholded individual and group statistic images restricts the
amount of possible task comparisons. Given this limited avail-
ability, it is unlikely that the current partition of subfactors rep-
resents the final “true” partition, in terms of the number and
variety of subfactors. However, we think that future studies with
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larger task comparisons from online resources, such as NeuroVault
(Gorgolewski et al., 2015), will be able to achieve a greater sam-
pling of task domains and, thus, a more precise estimation of
possible latent subfactors. Another limitation in the approach
used here is the potential for common activation patterns to be
due to common experimental design choices, as opposed to
general cognitive functioning. We have noted where this is
most likely the case, such as common left motor cortex acti-
vation across activation maps (corresponding to the common
practice of participant responses recorded from the right hand).
However, as described above, the clustering of activation maps
into subfactors is predominantly due to common cognitive-
relevant task features, such as motor movements, auditory pro-
cessing, and visual text. In addition, a single subfactor included
activation maps with many different experimental design param-
eters (e.g., event vs block type, response vs no response, static vs
moving stimuli).

In conclusion, we propose that a central organizing feature of
brain function is a bifactor or nested factor structure involving a
general, overarching factor representing a “focused awareness”
and “attention allocation” process. This general factor is differ-
entiated by several subfactors according to the experimental con-
text in which the process occurs. We take as an assumption,
which we believe is shared by most cognitive neuroscientists (but
see Uttal, 2003; Bennett and Hacker, 2003), that task fMRI studies
are relevant for the delineation of an adequate model of psycho-
logical processes (Anderson, 2015). Our approach in this study
can be seen as a part of the ongoing project to define a cognitive
ontology, or a taxonomy of cognitive processes, in light of neu-
robiological evidence (Klein, 2012; Anderson, 2015; Poldrack
and Yarkoni, 2016). We think that the nested model of human
brain function derived from our approach provides a framework
in which a revised, biologically informed cognitive ontology can
be formulated.
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