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Telling time is fundamental to many forms of learning and behavior, including the anticipation of rewarding events. Although the neural
mechanisms underlying timing remain unknown, computational models have proposed that the brain represents time in the dynamics
of neural networks. Consistent with this hypothesis, changing patterns of neural activity dynamically in a number of brain areas—
including the striatum and cortex— has been shown to encode elapsed time. To date, however, no studies have explicitly quantified and
contrasted how well different areas encode time by recording large numbers of units simultaneously from more than one area. Here, we
performed large-scale extracellular recordings in the striatum and orbitofrontal cortex of mice that learned the temporal relationship
between a stimulus and a reward and reported their response with anticipatory licking. We used a machine-learning algorithm to
quantify how well populations of neurons encoded elapsed time from stimulus onset. Both the striatal and cortical networks encoded
time, but the striatal network outperformed the orbitofrontal cortex, a finding replicated both in simultaneously and nonsimultaneously
recorded corticostriatal datasets. The striatal network was also more reliable in predicting when the animals would lick up to �1 s before
the actual lick occurred. Our results are consistent with the hypothesis that temporal information is encoded in a widely distributed
manner throughout multiple brain areas, but that the striatum may have a privileged role in timing because it has a more accurate “clock”
as it integrates information across multiple cortical areas.
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Introduction
Anticipating events that will happen in the future is among the
most important functions the brain performs. Indeed, it has been

increasingly stressed that learning and memory are prospective
brain functions; that is, they are only adaptive to the extent that
they help animals anticipate and prepare for the future (Dudai
and Carruthers, 2005; Schacter and Addis, 2007). To anticipate
when events will happen, the brain has evolved mechanisms to
tell time across a wide range of temporal scales (Buhusi and Meck,
2005; Buonomano, 2007).

Timing on the scale of hundreds of milliseconds to a few sec-
onds is of particular importance in that it allows animals to pre-
dict and prepare for events unfolding within the immediate
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Significance Statement

The neural representation of time is thought to be distributed across multiple functionally specialized brain structures, including
the striatum and cortex. However, until now, the neural code for time has not been compared quantitatively between these areas.
Here, we performed large-scale recordings in the striatum and orbitofrontal cortex of mice trained on a stimulus–reward associ-
ation task involving a delay period and used a machine-learning algorithm to quantify how well populations of simultaneously
recorded neurons encoded elapsed time from stimulus onset. We found that, although both areas encoded time, the striatum
consistently outperformed the orbitofrontal cortex. These results suggest that the striatum may refine the code for time by
integrating information from multiple inputs.

854 • The Journal of Neuroscience, January 25, 2017 • 37(4):854 – 870



future. Within this range, animals discriminate the temporal fea-
tures of sensory stimuli, such as those used for communication,
and generate timed motor responses to prepare for external
events such as expected rewards. The neural mechanisms under-
lying the brain’s ability to tell time on the scale of seconds remains
unknown (Mauk and Buonomano, 2004; Merchant et al., 2013a),
but a rapidly growing literature has reported that dynamically
changing patterns of neural activity encode information about
the amount of time elapsed since a given stimulus. These patterns
of activity, which have been referred to as population clocks
(Buonomano and Karmarkar, 2002; Buonomano and Maass,
2009; Buonomano and Laje, 2010), have now been observed in a
wide range of different brain areas, including the striatum (Matell et
al., 2003; Chiba et al., 2008; Jin et al., 2009; Gouvêa et al., 2015; Mello
et al., 2015; Bakhurin et al., 2016), prefrontal cortex (Brody et al.,
2003; Oshio et al., 2008; Genovesio et al., 2009; Jin et al., 2009; Mer-
chant et al., 2011; Kim et al., 2013; Carnevale et al., 2015), parietal
cortex (Janssen and Shadlen, 2005; Crowe et al., 2010), and hip-
pocampus (Pastalkova et al., 2008; Kraus et al., 2013), as well as in the
bird song system (Hahnloser et al., 2002; Long et al., 2010). In addi-
tion, pharmacological, lesion, and neuroimaging work suggests a
role of the basal ganglia (Meck, 1996; Coull et al., 2011) and prefron-
tal cortex (Dietrich and Allen, 1998; Kim et al., 2009; Xu et al., 2014)
in timing.

The diversity of areas implicated in timing likely reflects the
range of tasks and temporal scales examined, but it is also possible
that, even within the same task, different areas track time in par-
allel (Matell et al., 2003; Jin et al., 2009). To date, however, no
single study has quantified directly the degree to which two dif-
ferent circuits encode time through simultaneous multiple-
region recordings. Here, we contrast directly the ability of two
circuits, the striatum and orbitofrontal region (OFC) of the pre-
frontal cortex, to encode time.

We examined the neural representation of time during a Pav-
lovian conditioning task in which a food reward is presented at a
specific interval after a conditioned stimulus (CS). Mice exhib-
ited anticipatory licking during the fixed cue–reward delay pe-
riod. Silicon microprobe recordings of dozens of units from
either the striatum or OFC or both simultaneously revealed that
population activity in both circuits encoded an internal represen-
tation of elapsed time. This code was quantified by feeding the
trial-by-trial spike pattern into a pattern classifier and training it
to read out elapsed time. The quality of the striatal population
code for time was significantly better than that of the OFC. Our
results support the hypothesis that many different brain areas
encode time simultaneously, but the striatum may play a privi-
leged role in timing relative to the OFC because it holds a more
accurate clock. We hypothesize that, by sampling the changing
patterns of activity unfolding throughout the cortex and other
inputs continuously, the striatum implements a robust code for
elapsed time via a temporal “winners-take-all” mechanism.

Materials and Methods
Animals and surgical procedures. All procedures were approved by the
University of California–Los Angeles Chancellor’s Animal Research
Committee. Singly housed male C57BL/6J mice (n � 11, 15–22 weeks old
at the time of recording; The Jackson Laboratory) were used in the ex-
periments. Animals underwent an initial head bar implantation surgery
under isoflurane anesthesia in a stereotaxic apparatus to fix stainless steel
head restraint bars bilaterally on the skull with dental cement. After
training, animals underwent a second surgery under isoflurane anesthe-
sia on the recording day to make craniotomies for acute microprobe
recordings. An additional craniotomy was made over the posterior cer-
ebellum for placement of an electrical reference wire. All behavioral

training and recording sessions were performed in fully awake, head-
restrained animals.

Behavioral task. After a 1 week recovery period following the initial
head bar implantation surgery, animals were food restricted and fed daily
after each training session to maintain �90% of their baseline weight.
Water access was ad libitum. During daily training sessions, animals were
mounted on the head bar restraint bracket on the recording rig and stood
on a polystyrene treadmill ball (200 mm diameter; Graham Sweet Stu-
dios) that rotated along a single axis during forward/backward ambula-
tion. Animals were initially habituated to the head-fixed recording rig
and trained to consume a liquid reward (5 �l, 10% sweetened condensed
milk). The reward was delivered from a tube positioned between an
infrared lick meter (Island Motion) by actuation of an audible solenoid
valve (Neptune Research). During daily reward-only training sessions,
animals consumed 100 rewards and were exposed to a constant stream of
pure air through a tube positioned next to the nose [100 rewards per
session, 13–21 s intertrial interval (ITI), sampled from a normal distri-
bution, 1.5 L/min air flow]. Once animals could consume �90% of the
rewards for 2 consecutive days, they began conditioning with olfactory
cues using an olfactometer. Odorants were introduced by bubbling air
(0.15 L/min) through aromatic odorants diluted 1:10 in mineral oil
(Sigma-Aldrich) and merging this product with the 1.5 L/min stream of
pure air. The constant flow of pure air into which odors are introduced
decreased the possibility that animals used decaying concentrations of
odorant as a temporal cue. During daily training sessions, animals re-
ceived pseudorandom presentations of each odor stimulus (1 s duration,
17–29 s ITI, sampled from a normal distribution). Isoamyl acetate served
as the CS � odor because its offset was followed by a 1.5 s delay and a
reward delivery. Citral served as the CS � odor because it was not fol-
lowed by any explicit outcome. Animals received 100 presentations of
each trial type in random order during each training session. The sole-
noid valves controlling the odors were sound isolated and thus inaudible
to the mouse. Typically, during the first or second day, animals began
predicting the delivery of the reward by licking in anticipation during the
interval between the odor and the reward. Correct CS � trials were de-
fined as those trials during which licking was initiated before reward
delivery (between 0.7 and 2.5 s after stimulus onset). Correct CS � trials
were defined as those containing no licking activity for 5 s after stimulus
onset. False alarm CS � trials were defined as those trials during which
licking was initiated between 0.7 and 2.5 s after stimulus onset. Once
animals demonstrated correct responding on �90% of trials, they un-
derwent surgery for recording. During the recording session, animals
received 100 CS � trials with 85% reward probability and 100 CS � trials.
Animals performed between 54 and 99 correct CS � trials and between 1
and 56 false alarm CS � trials.

Electrophysiological recordings. Procedures for developing and record-
ing with silicon microprobes have been described previously (Shobe et
al., 2015). One recording was performed per animal. Each area was tar-
geted with a silicon microprobe containing a total of 256 electrodes that
were divided across four or five prongs. The electrodes spanned between
0.825 to 1.05 mm of the distal tip of the prongs. Data in this study were
aggregated from two groups of animals. In the first group (n � 5), re-
cordings took place in the anterior striatum only (silicon prong tip posi-
tions: 1.2 mm anterior, 0.8 to 2.2 mm lateral, �3.4 to �5.7 mm ventral
relative to bregma). In the second group (n � 6), we simultaneously
recorded from the orbitofrontal region of the prefrontal cortex (2.2 mm
anterior, 0.26 to 2.05 mm lateral, �3.6 mm ventral relative to bregma)
and both the anterior and posterior regions of the striatum (anterior
striatum: 1.2 mm anterior, 0.78 to 2.1 mm lateral, �5 mm ventral; pos-
terior striatum: �0.5 mm anterior, 2.4 to 3.2 mm lateral, �4.3 mm
ventral tip position relative to bregma) using multiple 256 electrode
probes attached together (Shobe et al., 2015). Therefore, the striatal da-
taset analyzed in this study was composed of the anterior striatal record-
ings performed in the first group, combined with anterior and posterior
striatal recordings performed in the second group. The OFC dataset was
composed of orbitofrontal recordings performed in the second group.
Because of the wide spatial distribution of recording sites above the
prong tips, the anterior striatal dataset contained units sampled from
both dorsal and ventral striatal areas. Positions of units included in anal-
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ysis are illustrated in Figure 5A. Spike sorting was performed on the data
using custom, semiautomated software written in MATLAB (The
MathWorks). The placement of silicon probes was confirmed histologi-
cally at the end of each experiment by coating the prongs with a fluores-
cent dye (Di-D; Thermo Fisher) before implantation.

Delineation of anatomical subregions. In each animal, the recordings in
the anterior striatum consisted of predominantly ventral or dorsally po-
sitioned units, with one recording containing units evenly distributed in
each area. The mean electrode position of �4.2 mm DV was used to
divide the anterior striatal recordings into dorsal or ventral regions. To
divide the OFC into medial and lateral subregions, the mean electrode
position of 1.19 mm in the OFC was used.

Unit classification. Analysis was performed on putative principal neu-
ron populations; that is, pyramidal cells in the OFC and medium spiny
neurons (MSNs) in the striatum. Spike waveform trough-to-peak dura-
tion was used to distinguish putative MSNs and pyramidal neurons from
nonprincipal neurons. Putative fast-spiking interneurons (FSIs) were
separated from principal cells in both the OFC and the striatum by their
narrow waveform (maximum FSI ttr-pk � 0.475 ms, minimum principal
neuron ttr-pk � 0.55 ms, and maximum MSN ttr-pk � 1.25 ms; Bakhurin
et al., 2016). A measure of firing rate regularity (coefficient of variation,
CV) was also used to exclude putative tonically active neurons from the
striatal recordings (maximum CV � 1.5; Bennett and Wilson, 1999). A
total of 690 putative MSNs of a total of 1115 striatal units and 505 puta-
tive pyramidal cells of a total of 654 cortical units were recorded.

Identification of lick-modulated units. Licking modulated units were
determined by correlating estimated firing rates with licking rate around
lick episodes that occurred throughout the recording, including within
and outside of trial periods. Licking episodes were defined as containing
2 licks that were separated by at most 250 ms (4 Hz). Licking episodes
could not occur within 5 s of each other. To calculate the correlations,
individual licks occurring within a 2 s window around each lick episode
were binned into 50 ms time bins. For each unit, spikes occurring around
each licking episode were binned within a 2 s window into 50 ms bins.
The resulting episode vectors reflecting licking and spiking counts for
each episode were concatenated into two vectors and convolved using a
Gaussian function (SD � 100 ms) to obtain licking and spiking rate
estimates across all lick episodes in the recording. A Pearson correlation
was performed between the lick-rate vector and each spiking rate vector
for each unit. A unit was considered to be lick-rate modulated if it dem-
onstrated a positive correlation coefficient with a p-value �0.01.

Elapsed time prediction analysis. All analyses were performed indepen-
dently on data collected from each animal and each brain region using
correctly performed CS � trials or CS � trials with false alarm licking. All
decoding models were generated using only simultaneously recorded
cells from individual animals. For each trial, neural population activity
was analyzed over the 2.5 s interval between cue onset and reward deliv-
ery. Over this interval, the activity of each neuron in the simultaneously
recorded population was transformed into an analog rate code estimate
by: (1) convolving its spike train with a decaying exponential function
(� � 100 ms) and (2) calculating its firing rate estimate as a binned
average (100 ms time bins) of its convolved spike train. This procedure
resulted in 25 population firing rate vectors, one per 100 ms time bin, in
the trial.

Elapsed time was decoded from the population firing rates in each trial
by requiring a classifier to label each rate vector in the trial as coming
from one of the 25 time bins. The classification task was performed with
a multiclass support vector machine (SVM) with a radial-basis function
(RBF) kernel, as implemented in the LIBSVM library (version 3.20;
Chang and Lin, 2011). This SVM uses a one-against-one multiclass ap-
proach to distinguish the population firing rates encoding a given time
bin from those encoding each of the 24 other time bins (Knerr et al., 1990;
Kre�el, 1999; Hsu and Lin, 2002). In the one-against-one multiclass
approach, binary classifiers are trained to distinguish between the popu-
lation codes for each pair of distinct time bins (i, j), for a total of 300
binary classifiers. SVM output is represented in 25 readout units, one per
time bin. Given a test population rate vector, readout i generates a clas-
sification score indicating how closely this vector resembles the popula-
tion code encoding bin i. It is calculated as an aggregate of the outputs of

the 24 binary classifiers (i, 1) (i, 2), . . . (i, I � 1) (i, i � 1), . . . (i, 25). The
SVM predicts that the test vector encodes time bin k whenever readout k
produces the highest score of all 25 readout units (see Fig. 2).

Individual animals showed varying numbers of correctly performed
trials. To ensure that the decoding performance across animals was com-
pared under equivalent conditions, the predicted time bins in all figures
were generated with a Monte Carlo cross-validation strategy. The rate
vectors from each trial were tested on 30 independently trained SVMs
and each SVM was trained on the rate vectors from M randomly sampled
trials excluding the test trial. Because the minimum number of correct
CS � trials for an individual animal was 54, M was chosen to be 53.

The number of simultaneously recorded units used to train and test
the models was controlled. The number of simultaneously recorded cells,
N, used to generate each decoding model and the number of animals
used for averaging is always indicated on the figure or in the figure
caption. N varied from 29 to 55 because of subregion-specific limitations
in the number of simultaneously recorded units. Furthermore, to test the
effect of the population size on model performance (see Figs. 3, 4, and 9),
random samples sizes of 5, 10, 15, 20, and 40 units taken from the entire
striatum or entire OFC were compared. During each of the 30 repetitions
of the Monte Carlo cross-validation, N distinct units from the population
were randomized for training and testing. To maximize decoder perfor-
mance, the RBF SVM regularization parameters were optimized for each
brain region of each animal. Specifically, the misclassification cost pa-
rameter, C, and the data complexity parameter, �, were optimized via a
grid search with fivefold cross-validation. Across all datasets, the pre-
dominant value of C was 4 (range: 1–16) and of � was 0.25 (range:
0.0156 – 0.25).

Comparing population coding between correct CS� and false alarm CS�

trials. To determine the extent to which the CS � code for time general-
ized to CS � trials, the classifier was trained in the same way as described
above using 55 cells per area and using M � 53 trials per Monte Carlo
cross-validation repetition. The models were then tested on the 25 rate
vectors generated for each false alarm CS � trial available for each animal
(identical binning and rate estimation procedure as done for CS � trials).
This procedure was repeated 30 times and random combinations of 55
units and 53 trials were used in training the model.

Lick onset prediction analysis. For each trial, neural population activity
was transformed into estimated population firing rate vectors using 100
ms bins, as in the elapsed time prediction analysis. This sequence, or
trajectory, of neural population activity started 1 s before cue onset and
ended 200 ms after the latest lick onset time of all correctly performed
CS � trials. As a result, the number of time bins (and population rate
vectors) analyzed per trial varied between 31 and 37 across animals.

Lick onset bins were predicted from the population firing rates in each
trial with an RBF SVM binary classifier. The SVM’s output is represented
by a single readout that scores how closely each population vector in the
test population trajectory predicts lick onset. The predicted lick onset bin
was the one in which the readout was at its highest value. Testing was
performed with a Monte Carlo approach similar to the elapsed time
prediction in which each trial was tested on 30 SVMs independently
trained on M � 53 randomly sampled trials. The dataset contains dis-
proportionately fewer lick onset bins than nonlick onset bins because
only a single bin of the 31 to 37 bins per trial can be a lick onset bin. To
avoid the resulting bias in the SVM model, the training set for each SVM
was altered by randomly down-sampling the subset of nonlick onset bins
by 75% and expanding the set of SVM target bins to include one bin
immediately preceding and one bin immediately after the actual lick
onset bin in each trial, for a total of three target bins per trial. The
misclassification cost and data complexity regularization parameters for
the RBF SVMs were optimized for each brain region of each animal
similarly to the elapsed time prediction analysis. Across all datasets, the
predominant value of C was either 2 or 8 (range: 2–128) and of � was
0.125 (range: 10 �7 to 0.5).

The binary SVMs were retrained for each prelick time to determine
how far in advance the neural trajectory could predict lick onset (see Fig.
10D). At each prelick time, the SVMs were retrained to predict a new set
of target bins that were appropriately shifted backward in time from the
actual lick onset bin. During training, the data down-sampling proce-
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dure was accordingly altered to down-sample the subset of nontarget
bins.

Trial shuffling. Trial shuffling was used as a control for elapsed time
prediction. This procedure disrupts correlations in simultaneously re-
corded population activity, but preserves the correct bin order for each
unit. To create trial shuffled activity, each unit’s firing rate estimate in
each time bin of each trial was replaced with the same unit’s firing rate
estimate in the same time bin of a randomly selected trial. This control
could not be performed with the lick onset prediction analysis because of
the resulting dissociation between lick onset times and unit activity.

Bin shuffling. Bin shuffling was used to generate population responses
that were dissociated from their correct temporal order. To create bin
shuffled activity, each unit’s firing rate estimate in each time bin was
replaced with the same unit’s firing rate estimate in a randomly selected
bin of the same trial.

Prediction analyses from trial and bin shuffled data involved training
and then testing on the respectively transformed datasets. To allow for
direct comparisons between observed, trial-shuffled, and bin-shuffled
controls, care was taken to make sure that the same units and trials were
subsampled for analysis.

Temporal warping of internal time representation. Given our hypothesis
that the population code for elapsed time and lick-onset time share a
common internal timing representation, the population’s encoding of
the animal’s internal representation of time should covary with the lick
onset time. To measure this effect, correct CS � trials were divided into
three approximately equally sized sets corresponding to each of the ter-
ciles of the animal’s lick onset distribution and SVMs were trained to
classify elapsed time in the first (third) tercile trials and then tested on the
second and third (first) tercile trials. Biases in the resulting error distri-
bution would then reveal an underlying comodulation. A more direct
measurement of this effect was performed by comparing the temporal
relationship between trial-averaged trajectories of first and third tercile
trials; if the third tercile trajectory was consistently slower than the first
tercile trajectory, then this would indicate that the two timing variables
comodulate one another. Population spike trains were convolved with a
Gaussian function (mean � 0, SD � 100 ms) and then trial averaged
separately over the first and third tercile trials to produce characteristic
first (T1) and third (T3) tercile trajectories. These trajectories were com-
pared by temporally aligning them as follows: (1) a Euclidean distance
matrix was constructed by comparing the population code at each mo-
ment along T1 to the population code at each moment along T3, resulting
in an NT � NT distance matrix (see Fig. 7C), where NT � 2500, given the
time resolution of the spike trains (1 ms); (2) T3 and T1 were temporally
aligned with a dynamic time-warping procedure that calculated the de-
viation of T3 from T1 over the course of time as the path along the
distance matrix between the beginning and the end of T1 with minimum
cumulative distance (see Fig. 7C, black trace). The relative speed (tem-
poral warping) of T3 with respect to T1 was indicated by the difference
between the respective times at which the two trajectories were tempo-
rally aligned (see Fig. 7D). When T3 ran slower than T1, this difference
would be positive and monotonically increase and, when it ran faster, the
difference would be negative and monotonically decrease.

Effective dimensionality. The effective dimensionality of each recorded
population was calculated from trial-averaged population firing rate es-
timates. To control for the difference in the number of units measured
across different recordings, the effective dimensionality for each record-
ing was calculated as a mean over 30 randomly sampled subpopulations
of size 55. Performing principal component analysis (PCA) on the dy-
namics of a single such sample produced a list of 55 principal compo-
nents (PCs) ordered by the percentage of variance in the population
dynamics explained by each PC. The effective dimensionality was calcu-
lated as the minimum number of PCs required to explain 95% of the
variance in the dynamics (Rajan et al., 2016).

Statistical analysis. To determine the efficacy of the SVM models in
elapsed time prediction, the correlation between the correct bin number
and the predicted bin number was calculated. A single correlation coef-
ficient was calculated from all the test data (i.e., 25 time bins per correct
CS � trial in the dataset, 30 repetitions each) for a given brain region of a
given animal. For clarity, graphs display correlation coefficients, but sta-

tistical analysis was performed using Fisher’s z-statistic for correlation
coefficients (Fisher transformation). For the lick onset time prediction
analysis, model accuracy was measured by the root mean squared error
(RMSE) of the predicted lick onset bins. A single RMSE value was calcu-
lated from all the test data (i.e., 30 repetitions for the lick onset bin in each
of the correct CS � trials) for a given brain region of a given animal.
During hypothesis testing, we assumed that the population size used in
the analysis represented a repeated measure because units were sampled
from the same population of units. Brain region (i.e., striatal vs OFC
networks) was considered a repeated measure only when recorded in the
same animal (see Figs. 5D, 6 B, E, 9, 10). Two-way repeated-measures and
mixed-model ANOVA analysis was performed using GraphPad Prism
version 6.0 software. Two-sided paired and unpaired t tests were per-
formed using standard functions in MATLAB.

Results
Behavior
We obtained large-scale recordings from the striatum and OFC
in head-fixed mice (n � 11 mice) previously trained to perform
an odor discrimination task (Shobe et al., 2015; Bakhurin et al.,
2016). In this task, mice were presented for 1 s with one of two
olfactory stimuli. One of the odors (CS�) was followed by a
reward delivered 2.5 s from cue onset. The delivery of the reward
was not contingent on any instrumental actions of the animal.
The second odor (CS�) was followed by no specific outcome
(Fig. 1A). After repeated presentations of the CS� trials, animals
learn to generate anticipatory licking behavior that preceded the
reward delivery (Fig. 1B). Previous experiments from our group
have demonstrated that animals time their anticipatory licking
response depending on the cue–reward delay duration (data not
shown), consistent with timed reward-guided behavior found in
many other studies (Bermudez and Schultz, 2014). Our record-
ings were performed in animals that had experienced five to 10
training sessions and were performing above a criterion of at least
90% correctly performed trials (see Materials and Methods) be-
fore the recording day. The onset of anticipatory CS� licking
responses was concentrated during the cue–reward delay period
for all animals studied (mean lick onset time � 1.8 s, SD � 0.25;
Fig. 1C). We focused our analysis on correct CS� trials because
these displayed discrete behavioral evidence that animals timed
their behavior to anticipate the reward.

Large-scale striatal and orbitofrontal recordings
After animals reached criterion performance on the task, we used
silicon microprobes (Shobe et al., 2015) to record population
activity from the striatum, OFC, or simultaneously from both of
these areas as the mice performed the task. We focused our anal-
ysis on putative principal cells in these brain regions: striatal
MSNs and cortical pyramidal cells. If these brain areas contain a
code for time, then principal cells would be the most likely to
transmit that signal to downstream brain regions (Buonomano
and Merzenich, 1995). To identify these populations, we mea-
sured the action potential duration of each unit and used a
threshold margin to segregate putative principal cells from FSIs.
In both the striatum and OFC, the distribution of spike widths
across all cells was bimodal (Fig. 1D). Based on the separation of
these distributions, we only included putative principal cells in
our analysis. We analyzed data from animals containing at least
55 principal units per region (n � 9 striatal recordings, and 6
OFC recordings). Our datasets contained between 55 and 120
simultaneously recorded principal neurons. We found that, on
average, the population of striatal and prefrontal neurons exhib-
ited highly heterogeneous firing activity during the cue–reward
interval (Fig. 1E). This observation is qualitatively similar to the
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sequential firing patterns reported from other cortical recordings
(Crowe et al., 2010; Harvey et al., 2012; Stokes et al., 2013) and
striatal recordings (Gage et al., 2010; Thorn and Graybiel, 2014;
Mello et al., 2015; Rueda-Orozco and Robbe, 2015; Bakhurin et
al., 2016). However, from the average firing rate representation, it
was not evident whether the dynamics were robust at the single-
trial level. We thus examined whether it was possible to decode
elapsed time and lick onset time on a trial-by-trial basis during
correctly performed CS� trials.

Decoding time from network dynamics
To investigate the possibility that neural network activity could
provide a mechanism for the stable representation of time, we
used a SVM decoder to detect and measure the reoccurrence of
dynamic population activity in striatal and OFC networks on a
trial-by-trial basis. An SVM was trained to identify population
activity in each of the 25 time bins (100 ms bin duration) between
stimulus onset and reward delivery.

Each unit’s firing rate for the 25 time bins of a given trial was
estimated from its spike train over that trial (see Materials and
Methods). Next, population firing rate dynamics across multiple
trials were used to train the SVM classifier (Fig. 2A). During
testing, population activity from time bins of novel trials were
presented to the trained SVM. SVM output for the population
activity in a given time bin was represented by a vector of values
generated by 25 readout units, where each readout value i repre-
sented a prediction score that the input pattern was from time bin
i. This resulted in a vector of 25 readout values per test time bin
(Fig. 2B). For each test time bin, the SVM predicted its bin label as

the index of the maximal readout (Fig. 2C). Testing was per-
formed with a Monte Carlo cross-validation approach that con-
trolled for the variance in the number of trials and size of the
simultaneously recorded population across brain regions and an-
imals (see Materials and Methods).

Elapsed time encoding by striatal and cortical networks
We first investigated the ability of striatal MSN dynamics during
single CS� trials to be sorted into the correct temporal order by
an SVM. Strong SVM performance would suggest that striatal
neuron populations stably encode an internal representation of
time elapsed from stimulus onset and may provide a mechanism
by which downstream regions could read out temporal informa-
tion from striatal activity. We found that the highest SVM read-
out values during testing generally fell along the diagonal line in
single trial cross-temporal classification matrices (Fig. 3A).

Figure 3B, top, illustrates the average classification matrix
over all trials in a single striatal recording and reveals the presence
of a time code in the recorded dynamics. For each recording, we
repeated the analysis on two different control patterns. First, to
evaluate the temporal encoding efficacy of striatal population
dynamics, we trained and tested an SVM on the dataset after
scrambling its temporal dynamics by bin shuffling, wherein the
sequence of firing activity for each unit within each trial was
shuffled independently (see Materials and Methods). The control
confirmed that bin shuffling completely eliminated the ability of
the SVM to identify a code for elapsed time in the population
activity (Fig. 3B, center). Because the above analysis was based on
a set of 55 simultaneously recorded cells, we are able to determine

Figure 1. Large-scale recording of OFC and striatal networks during reward-predictive behavior. A, Task schema. Mice received pseudorandomly ordered presentations of a CS � odor that
predicted reward delivery 2.5 s after odor onset and an unrewarded CS � odor. Rectangles represent odor-on time. Red triangle and vertical blue dashed line indicate reward delivery. B, Example
of anticipatory licking behavior of one mouse during CS � trials. Shaded blue rectangle represents odor presentation time. Black tick marks indicate individual licks and red ticks denote lick onset
times that are used for subsequent analysis. Trials are sorted by descending latency to first lick. C, Cumulative distributions of lick onset times during CS � trials for all mice included in the study (n �
11 mice). D, Distribution of the trough-to-peak width (milliseconds) recorded from striatal units (top) and OFC units (bottom). Vertical dotted lines depict the threshold margin (0.475 to 0.55 ms)
for segregating putative FSIs (red histograms) from putative principal cells (striatal MSNs and OFC pyramidal cells, blue histograms). Gray bars reflect unclassified cells. E, Individual population-level
recordings from the striatum (top) and the prefrontal cortex (bottom) during correctly performed CS � trials. Each row in a matrix represents the mean normalized firing rate of one recorded putative
projection neuron in the corresponding brain area. Units are sorted by their latency to maximum firing rate. Blue rectangles indicate CS � odor presentation time and red triangles mark the time of
reward delivery.
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the effect of noise correlations on the time code (Nirenberg et al.,
2001; Schneidman et al., 2003; Averbeck and Lee, 2006; Averbeck
et al., 2006); in other words, does decoding based on simultane-
ously recorded cells hamper or improve performance. To do this,
we measured decoding performance after independently shuf-
fling the firing activity of each unit across trials (see Materials and
Methods). Although bin-shuffling population activity rendered

time bin predictions entirely random, trial-
shuffled controls performed very similarly
to models trained on observed data (Fig. 3B,
bottom).

To quantify performance and the ef-
fects of bin and trial shuffling on the qual-
ity of the time code, we calculated the
Pearson correlation coefficient between
the correct and predicted time bin values
in each recording (Fig. 3C). Across all stri-
atal datasets, population dynamics were
highly predictive of elapsed time during
the task (mean Pearson correlation coeffi-
cient � 0.85, SD � 0.069, n � 9). How-
ever, whereas bin shuffling reduced time
prediction to chance levels, elapsed time
decoding performance on the trial shuf-
fled control was slightly, but significantly,
better than on the observed data (mean
Pearson correlation coefficient � 0.88,
SD � 0.064, p � 0.024, paired t test on
Fisher transformed coefficients; Fig. 3D).
This shows that the neurons are not noise
independent and that the noise correla-
tions, the within-trial correlations be-
tween neurons, impair decoding.

Next, we examined whether perfor-
mance was dependent on the size of the
striatal population used in decoding time.
A two-way, repeated-measures ANOVA
detected a significant effect of popula-
tion size on classification performance
(F(6,48) � 109.7, p � 0.0001). The analysis
again revealed a significant effect of trial
shuffling (F(1,8) � 7.9, p � 0.023; Fig. 3E).
These results show that, under physiolog-
ical conditions, striatal noise correlati-
ons are detrimental for neural coding of
elapsed time, in agreement with the detri-
mental role of correlations found in other
studies (Averbeck and Lee, 2006; Aver-
beck et al., 2006; Cohen and Maunsell,
2009; Mitchell et al., 2009; Tremblay et al.,
2015). A separate two-way, repeated-
measures ANOVA comparing observed
and bin-shuffled data at different popula-
tion sizes also revealed a significant effect
of bin shuffling (F(1,8) � 178.0, p �
0.0001; Fig. 3F).

We next applied these same analyses to
OFC pyramidal cell dynamics using the
same procedures and numbers of cells.
We found that OFC network dynamics
also encoded elapsed time during the task
(Fig. 4A). Interestingly, in contrast to the
striatal code, we found no significant dif-

ference in the encoding efficacy between observed (mean Pearson
correlation coefficient � 0.7, SD � 0.104, n � 6) and trial-
shuffled OFC network activity (mean Pearson correlation coeffi-
cient � 0.72, SD � 0.13, p � 0.21, paired t test; Fig. 4B). Although
a two-way, repeated-measures ANOVA demonstrated that de-
coding performance using OFC population dynamics also de-
pended on population size (F(6,30) � 49.6, p � 0.0001), the

Figure 2. Schematic of the SVM decoding of elapsed time. A, Training the SVM. Single-trial spiking activity of each unit in a
simultaneously recorded population (only 3 units represented) is transformed into a firing rate estimate for the unit during the 2.5 s
interval after odor presentation onset (data not shown here). The rate estimates are binned (100 ms time bins) to construct 25
population activity patterns per trial. Using a one-against-one multiclass strategy, the SVM trains a set of binary classifiers to
distinguish the population activity pattern in each time bin from every other time bin. SVM output is conceptualized as 25 readout
units, one per target time bin, that learn to distinguish activity patterns in their respective target time bin from those in all other
bins. B, The model is tested using a Monte Carlo cross-validation approach in which each activity pattern from novel trials (i.e.,
those excluded from the training set) is tested on trained SVM models. Illustrated is the testing of bin #2 of the test trial. C, Readout
units score each test activity pattern for how closely it corresponds to their respective target bins. The target time bin of the readout
with the maximal value is chosen as the predicted time in a winners-take-all manner (marked with a red vertical line). Actual
readout values are depicted here.
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analysis did not show a significant difference between the encod-
ing efficacy of observed and trial-shuffled data (F(1,5) � 2.4, p �
0.18; Fig. 4C). These findings suggest that temporal encoding in
OFC dynamics is potentially less sensitive to noise correlations
than in the striatum. Finally, as expected, bin shuffling the OFC
dynamics eliminated the temporal code and resulted in chance
level decoding performance (two-way, repeated-measures
ANOVA, F(1,5) � 109.5, p � 0.0001; Fig. 4D).

Striatal networks outperform prefrontal networks in
encoding elapsed time
Consistent with the striatal results above, other experimental
studies have reported the presence of a time code in the striatum
(Gouvêa et al., 2015; Mello et al., 2015). We found that OFC
networks also encode time, suggesting that this information is
distributed throughout multiple brain areas. An important and
unaddressed question pertains to the relative quality of this neu-
ral code in the striatum and OFC. We thus compared the perfor-

mance of OFC and striatal network dynamics in encoding elapsed
time. SVM classification performance was significantly better
when trained and tested on striatal activity than on OFC activity
(p � 0.0092, unpaired t test; Fig. 4E). A two-way mixed-model
ANOVA between brain region and population size revealed that
this effect was consistent across a broad range of population sizes
(F(1,13) � 9.5, p � 0.01; Fig. 4F). These results suggest that striatal
networks show a significantly more robust representation of time
compared with the OFC.

Dorsal and ventral striatum equally encode elapsed time
In the above analysis, we adopted an unbiased approach for
quantifying temporal coding in the striatum in that we incorpo-
rated units from both anterior and posterior areas of this struc-
ture (Fig. 5A, left and center). Most of our recorded units were
from the anterior striatum, but it is unclear to what extent this
subregion by itself contained a better neural code than the OFC.
We therefore repeated our comparative analysis after excluding

Figure 3. Striatal networks encode elapsed time. A, Cross-temporal classification matrices visualizing SVM model performance on striatal network data recorded during individual correctly
performed CS � trials. Each column represents the normalized readout values normalized across SVM readout units for the activity pattern from the corresponding correct time bin (x-axis). Peaks in
each column reflect the predicted time chosen by the model. The black dotted line lies along the diagonal. B, Top, Average of classification matrices generated across all correct CS � trials for one
striatal recording. Center, Average classification matrix across all correct CS � trials after bin shuffling each unit’s activity in the same recording. Bottom, Average classification matrix across all correct
CS � trials after trial shuffling each unit’s activity in the same recording. C, Scatter plot of predicted versus correct time bins across 80 correctly performed CS � trials for one striatal recording.
Predicted bin numbers ( y-axis) were jittered (Gaussian noise, mean � 0, SD � 0.2) to separate overlapping points. The blue solid line represents the regressed line describing the correlation
between actual and predicted time. The red dotted line lies along the identity line. D, Mean correlation coefficients between predicted and correct time bins across all striatal recordings (55 units per
animal, n � 9) for observed, bin-shuffled, and trial-shuffled data types. SVM classification of population activity was repeated 30 times (see Materials and Methods). SVM models trained on
trial-shuffled activity performed better than when trained on observed (nonshuffled) activity patterns ( p � 0.023, paired t test). Bin-shuffled models performed at chance level significantly worse
than nonshuffled models ( p � 0.0001, paired t test). E, Comparison of SVM performance using nonshuffled and trial-shuffled network activity as a function of the number of units used for training
and testing. There was a significant effect of data type (F(1,8) � 7.9, p � 0.023) and number of units (F(6,48) � 109.7, p � 0.0001, two-way repeated-measures ANOVA). F, Bin-shuffled models
performed worse than nonshuffled models for each population size used in the model (F(1,8) � 178.0, p � 0.0001, two-way repeated-measures ANOVA). Error bars indicate SEM.
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posterior striatal MSNs (this reduced the minimum number of
simultaneously recorded cells from 55 to 48). We found that the
anterior striatum alone continued to have an improved code for
time over the OFC (Pearson correlation coefficients: mean ante-
rior striatum � 0.83, SD � 0.083, n � 9; mean OFC � 0.69, SD �
0.083, n � 6, p � 0.0083, unpaired t test; Fig. 5B). Next, we
focused on differences between dorsal and ventral areas of the
anterior striatum. Few studies have investigated whether the ven-
tral striatum encodes time; however, the role of this area in re-
ward prediction suggests that it may have a code for time. We
took advantage of our widely distributed recording positions to
compare the decoding performance of dorsal and ventral stria-
tum MSNs (we used datasets with at least 35 simultaneously re-
corded MSNs). We found that SVM models trained on dorsal or
ventral units performed as well as models trained with units taken
randomly from either dorsal or ventral areas (F(2,16) � 0.02, p �
0.98, one-way ANOVA; Fig. 5C). Together, these results suggest
that the quality of temporal coding appears to be evenly distrib-
uted across the striatum and that this area consistently outper-
forms the OFC.

Medial and lateral OFC equally encode elapsed time
Our cortical recordings were mostly positioned within the OFC
(Fig. 5A, right). However, this area is composed of several differ-
ent anatomical subdivisions, raising the possibility that certain
subregions encode time better than others. We therefore exam-
ined whether medial or lateral fields within our OFC recordings

had a differential neural representation of time (we used datasets
with at least 29 simultaneously recorded pyramidal cells). We
found that models trained on medially or laterally positioned
OFC units were just as effective at representing time as models
using units taken randomly from either medial or lateral areas
(F(2,10) � 0.48, p � 0.64, one-way, repeated-measures ANOVA;
Fig. 5D). These findings suggest that the encoding of time via
population dynamics is not localized to specific regions of the
OFC.

Lick-related movement does not explain the striatum’s
improved encoding of time
Timing and movement are intimately related. Indeed, in the cur-
rent study, task licking should have been driven in part by an
internal representation of time, but it is possible that some of the
code for time that we observed might reflect neurons encoding
motor behaviors directly. If the encoding or planning of motor
activity were the primary basis for the observed code for time
during reward-anticipatory licking after CS� cues, then we
would predict that any licking episode would also encode time.
We therefore examined whether population coding for time
transferred to false alarm CS� trials in which animals errantly
licked after CS� odor presentations. Licking onset time was con-
served between CS� trials and false alarm CS� trials (mean CS�

lick onset time � 1.8 s, SD � 0.25 s; mean CS� lick onset time �
1.8 s, SD � 0.30 s; p � 0.80, paired t test; Fig. 6A). To quantify the
extent to which time-related coding could be detected during

Figure 4. Striatal networks encode elapsed time better than OFC networks. A, Average cross-temporal classification matrix across all correct CS � trials for one OFC recording. Color scale is the
same as in Figure 3B. B, Mean correlation coefficients across all OFC recordings (55 units per animal, n � 6) for observed, bin-shuffled and trial-shuffled data types. SVM classification of population
activity was repeated 30 times (see Materials and Methods). SVM models trained on trial-shuffled activity were not significantly different from those trained on nonshuffled activity patterns ( p �
0.21, paired t test). Bin-shuffled models performed at chance level and significantly worse than the nonshuffled models ( p � 0.0001, paired t test). C, Comparison of SVM performance using
nonshuffled and trial-shuffled network activity as a function of the number of units. There was no significant effect of data type (F(1,5) � 2.4, p � 0.18), but we observed a significant effect of the
number of units (F(6,30) � 49.6, p � 0.0001, two-way repeated-measures ANOVA). D, Bin-shuffled models performed worse than nonshuffled models for each population size used in the model
(F(1,5) � 109.5, p � 0.0001, two-way repeated-measures ANOVA). E, Comparison of SVM model performance between all striatal and OFC recordings (55 units per region, n � 9 striatal recordings
and 6 OFC recordings) showed that the classification performance of models trained on striatal network data was significantly better ( p � 0.0092, unpaired t test). F, Mean performance of SVM
classification as a function of number of units used in training and testing for each brain region. A mixed-model ANOVA revealed a significant effect of number of units (F(5,65) � 191.9, p � 0.0001)
and a significant effect of brain region (F(1,13) � 9.0, p � 0.01). The ANOVA excluded the “all units” column because it contained inconsistent numbers of cells between regions. Error bars
indicate SEM.
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false alarm trials, we trained the SVM decoder on correct CS�

trials and tested the model on the 0 to 2.5 s interval during false
alarm trials. The performance of these models tested on false
alarm trials was severely attenuated compared with their perfor-
mance when tested on correct CS� trials (Fig. 6B). A two-way,
mixed-model ANOVA revealed a significant effect of trial type
used for testing (F(1,13) � 33.0, p � 0.0001). The ANOVA did not
show a significant interaction between brain region and trial type,
demonstrating that both striatum and OFC saw an equal decre-
ment in model performance when tested on CS� trials (F(1,13) �
0.5, p � 0.48). These results suggest that temporal encoding is not
only sensitive to licking, but also to other task variables such as
the cue context.

To further examine the contribution of lick-related move-
ment to our data, we identified principal cells that were positively
correlated with lick rate. Although we identified lick-rate-
modulated cells in both areas, the striatum contained a signifi-
cantly greater proportion of these cells than the OFC (mean

striatal lick-modulated fraction � 0.35, SD � 0.127; mean OFC
lick-modulated fraction � 0.226, SD � 0.049, p � 0.044, un-
paired t test; Fig. 6C). Figure 6D depicts two examples of lick-
rate-modulated neurons from the striatum (left) and the OFC
(right). We retrained and tested the decoder after excluding these
cells from the population. We found that removing lick-rate-
modulated cells reduced decoder performance below what would
be expected after removing the same number of randomly se-
lected cells (F(1,13) � 17.2, p � 0.0011, two-way, mixed-model
ANOVA; Fig. 6E). However, crucially, the decoder still per-
formed significantly above chance levels, demonstrating that a
code for time was still present without lick-rate-modulated cells.
In addition, we found that the striatum still performed better at
representing time over the OFC despite the exclusion of lick-
modulated cells (F(1,13) � 7.4, p � 0.017, two-way, mixed-model
ANOVA). The ANOVA did not reveal a significant interaction
between brain region and the type of population used in analysis
(F(1,13) � 0.936, p � 0.35). Together, the results in Figure 6 show

Figure 5. Population encoding of elapsed time is distributed throughout striatum and OFC. A, Illustrations of recording positions of all principal units included in analysis from posterior striatum
(left), anterior striatum (center), and OFC (right). Dotted red lines indicate boundaries used to separate units recorded in dorsal and ventral striatum (center) or those recorded in lateral and medial
OFC (right). Scale bar, 1 mm. AP positions are distance from bregma. Section diagrams were adapted from Franklin and Paxinos (2008). B, Comparison of elapsed time decoding performance
between models trained on recordings from OFC and anterior striatal neurons showed that anterior striatum performs better than OFC ( p � 0.0083, unpaired t test). C, Recordings in the anterior
striatum were grouped based on whether they included predominantly dorsal or ventrally recorded neurons (n � 35 cells), with one recording being distributed into both subregions. Dorsal and
ventral populations performed as well as populations containing 35 cells drawn uniformly at random from both areas (F(2,16) � 0.02, p � 0.98, one-way ANOVA). D, All recordings in the OFC were
bisected into lateral and medial populations. Lateral and medial populations performed and populations containing 29 cells drawn uniformly at random from both areas (F(2,10) � 0.48, p � 0.64,
one-way repeated-measures ANOVA). Error bars indicate SEM.
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that, although movement does indeed contribute to the observed
code for elapsed time in both the striatum and OFC, it is not
sufficient to fully explain the neural representation of time in
these areas. Furthermore, we demonstrated that our main finding
that striatal ensembles outperform OFC ensembles in terms of
temporal coding is robust even after controlling for lick-rate-
modulated cells.

Striatal population codes for elapsed time covaries with lick
onset time
To this point, our decoding analysis had been performed on all
correct CS� trials regardless of the animal’s actual lick onset time.
However, because we found that lick-related movement partially
contributed to the neural code for time, this implies that the
neural code may vary on a trial-to-trial basis depending on the
precise timing of lick onset. If the population dynamics are sen-
sitive to lick onset time, then a prediction is that the encoding
trajectories are respectively traversed faster (slower) when an an-
imal licks earlier (later) than the mean. To test this prediction, we
took advantage of the trial-to-trial variability in the time at which
animals initiated licking during CS� trials (Fig. 1C). We deter-

mined whether population dynamics in the striatum and OFC
reflected this variable lick onset time. For each animal, we divided
trials into three evenly sized groups representing early (first ter-
cile), intermediate (second tercile), and late (third tercile) lick
onset time trials (Fig. 7A). We then trained SVM models on trials
in the first or third terciles and tested each separately on trials in
the remaining terciles. In the striatal population, we found that,
when testing the first tercile’s model versus the third tercile’s
model on trials from the second tercile, the evaluations showed
opposing classification error biases (p � 0.00034, paired t test;
Fig. 7B). In other words, the model trained on the first tercile
consistently classified time bins in the second tercile as having
occurred later than they had. Conversely, the model trained on
the third tercile consistently classified time bins in the second
tercile as having occurred earlier than they actually had. Further-
more, when testing the first tercile’s model on the third tercile’s
trials or testing the third tercile’s model on the first tercile’s trials,
these evaluations also showed opposing classification error biases
(p � 0.002, paired t test). Altogether, these results show that
internal representation of time in the striatum appears to covary
with the timing of lick onset, consistent with earlier work suggest-

Figure 6. Population coding of elapsed time is specific to CS � trials and is not fully explained by licking behavior. A, Mice showed similar licking onset times during CS � trials and CS � false alarm
trials ( p � 0.80, paired t test). B, Comparison of performance in decoding elapsed time for SVM models trained on correct CS � trials and tested on either correct CS � trials or on CS � false alarm
trials (55 units per region, n � 9 striatal recordings and 6 OFC recordings). There was a significant effect of trial type (F(1,13) � 33.0, p � 0.0001, two-way, mixed-model ANOVA) and a significant
effect of brain region (F(1,13) � 18.3, p � 0.00091), with no significant interaction (F(1,13) � 0.5, p � 0.48). C, Mean fraction of recorded principal cell populations showing significant activity
modulation by licking in each brain region ( p � 0.044, unpaired t test). D, Example licking-modulated principal cells recorded in each region (left, striatal MSN; right, OFC pyramidal). Shaded blue
rectangle represents odor presentation time. Black tick marks indicate individual spikes, red ticks denote lick onset times, and blue dotted line shows reward delivery time. Trials are sorted by
descending latency to first lick. E, Comparison of elapsed time decoding performance between models generated using all cells or all non-lick-modulated cells. Performance showed a significant
decrease with the exclusion of lick-modulated cells (F(1,13) � 17.2, p � 0.0011, two-way, mixed-model ANOVA). The striatum maintained an improved code for time over the OFC after excluding
lick-modulated cells (F(1,13) � 7.4, p � 0.017). We did not observe a significant interaction between region and population (F(1,13) � 0.9, p � 0.35). Error bars indicate SEM.
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ing that the latency of the motor response
was driven by the neural code for time
(Gouvêa et al., 2015).

In contrast to the striatum, in the OFC,
we did not find any significant effects of
training classifiers on the first or third ter-
ciles and testing those models on the sec-
ond tercile’s trials (p � 0.22, paired t test;
Fig. 7C). Testing first or third tercile clas-
sifiers on the third or first terciles’ trials,
respectively, also did not result in biased
classification error deviations (p � 0.06,
paired t test), although there was a trend.
Therefore, in contrast to the striatum, the
temporal code in the OFC may not covary
as effectively with movement onset time.

It was possible that the decoded biases
quantified above did not fully establish the
extent of the underlying relationship be-
tween the internal representation of time
and lick time due to potential artifacts im-
posed by binning and smaller training data-
sets after grouping by terciles. To better
determine the extent of temporal covaria-
tion between licking and neural dynamics,
we compared population trajectories aver-
aged over the trials in the first tercile with
population trajectories averaged over trials
in the third tercile. A temporal alignment
procedure applied to the two trial-averaged
trajectories (see Materials and Methods) re-
vealed that, whereas the two trajectories re-
mained close to each other over the course
of the trial interval, they were not uniformly
aligned in time (Fig. 7D). Instead, the third
tercile trajectory consistently lagged behind
the first tercile trajectory, illustrated in Fig-
ure 7D as an upward shift of the minimum
distance curve between the two trajectories
away from the diagonal line. The magnitude
of this shift is a measure of the temporal
warping, or speed of progression, of the
third tercile trajectory with respect to the
first tercile trajectory. In the striatum, temporal warping emerges
very early on in the trial relative to lick onset timing (Fig. 7E), which
suggests that the striatal activity encoding an internal representation
of time undergoes “subjective” fluctuations that may drive trial-to-
trial variability in lick onset. In contrast, warping was less prevalent,
particularly near the beginning of the trial, in the OFC. Together,
these results suggest that the internal representation of time as en-
coded in the striatal dynamics are comodulated by the elapsed time
and the lick onset time and these effects are less evident in the OFC.

Striatal ensembles predict movement onset time
Because striatal ensemble dynamics possessed a better code for
time, we hypothesized that the lick onset time could also be pre-
dicted with better accuracy from patterns of striatal activity than
OFC activity. Using the ensemble firing rate pattern in each 100
ms time bin of a trial, a binary SVM classifier was trained to
discriminate the population activity in the first time bin when an
animal licked (i.e., the lick onset bin) from the activity in all other
time bins (Fig. 8A). SVM output for the population activity in a
given bin is represented by a single readout unit with a value that

captures the propensity of lick onset occurring in that bin. To
establish how well network activity predicted lick onset times, we
used a Monte Carlo cross-validation method to test trained SVM
classifiers on population activity patterns in novel trials (Fig. 8B).
The classifier generates one readout value for the activity pattern
from each bin in a trial and the predicted lick onset bin for the
trial is chosen as the one with the maximal readout value. Figure
8C illustrates the readout value distributions decoded from the
striatal dataset of an animal and its observed lick onset bins (red
ticks) for all correct CS� trials. To quantify the classification
performance, we measured the RMSE of the predicted lick onset
times across all correct CS� trials as generated by the Monte
Carlo cross-validation approach (Fig. 8D). SVM models trained
on the striatal network datasets (observed mean RMSE � 4.07,
SD � 1.90; bin-shuffled mean RMSE � 15.32, SD � 1.48, n � 9,
p � 0.0001, paired t test; Fig. 8E) and the OFC network datasets
(observed mean RMSE � 6.50, SD � 1.96; bin-shuffled mean
RMSE � 14.71, SD � 1.12, p � 0.0002, n � 6, paired t test; Fig.
8E) performed well above chance levels in predicting lick onset
time. However, consistent with our hypothesis, the SVM models

Figure 7. Striatal population coding of elapse time shows higher sensitivity to lick onset variability than OFC. A, Schematic
illustrating the division of correct CS � trials into three sets based on terciles of the lick onset distribution. B, Mean prediction biases
of SVM decoders trained to predict elapsed time from striatal population data recorded in first tercile trials (orange) and tested on
second and third tercile trials. Green bars show decoder biases when trained on third tercile trials and tested on data from first and
second tercile trials. Training on first and third tercile trials and testing on second tercile trials produces opposing biases ( p �
0.00034, paired t test), as does training on first tercile trials and testing on third tercile trials compared with training on third tercile
trials and testing on first tercile trials ( p � 0.002, paired t test). C, Mean prediction biases of SVM decoders trained to predict
elapsed time from OFC data under similar conditions as in B. No significant difference in biases were observed when training on first
and third tercile trials and testing on second tercile trials ( p � 0.22, paired t test) or when training on first tercile trials and testing
on third tercile trials compared with training on third tercile trials and testing on first tercile trials ( p � 0.06, paired t test).
D, Illustration of temporal alignment procedure on one striatal recording (88 cells). Distance matrix represents the Euclidean
distance between all pairs of population activity patterns in the trial-averaged trajectories for the first and third tercile trials. Red
line traces the minimum distance path along the distance matrix between the beginning and the end of the mean first tercile
trajectory. A deviation (red arrows) of this path from the diagonal (dashed yellow line) measures the temporal warping of the mean
third tercile trajectory relative to the mean first tercile trajectory. The upward shift observed here indicates that the mean third
tercile trajectory is consistently slower. E, Mean temporal warping of striatal (black) and orbitofrontal (blue) third tercile trajecto-
ries relative to their respective first tercile trajectories. Error bars indicate SEM.
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trained on striatal activity outperformed those trained on OFC
activity in predicting lick onset times during the task (p � 0.032,
unpaired t test; Fig. 8E).

Simultaneous OFC and striatal recordings exhibit a superior
code for elapsed time in the striatum
The above analyses suggest that the network dynamics of the
striatum constitute a better “clock” than the dynamics of the
OFC. However, it is possible that these observations are partially
influenced by differences in neural coding performance across
animals. In a subset of our recordings (n � 4), we were able to
measure at least 55 OFC pyramidal cells and 55 striatal MSNs
simultaneously within the same animal and session (Shobe et al.,
2015). Therefore, we investigated whether the observation that
striatal dynamics contain a better code for elapsed time than the
OFC was supported in these simultaneous dual region record-
ings. One particular advantage of this within-animal comparison
is that the SVM models are trained and tested with network data
in two brain regions that were recorded using identical behavioral
conditions and trials. Therefore, the networks share the same stim-
ulus inputs, interval durations, and lick onset times. A cursory com-
parison of the cross-temporal classification matrices for
simultaneously recorded brain regions in a single animal indicated
that its striatal population encoded elapsed time more robustly than
its OFC population (Fig. 9A). An accuracy comparison of the

elapsed time decoded from population activity in the two brain re-
gions across all simultaneously recorded network activity datasets
reasserted that the striatal networks’ temporal encoding efficacy was
consistently better (mean striatal correlation coefficient � 0.90,
SD � 0.041; mean OFC correlation coefficient � 0.71, SD � 0.13,
n � 4, p � 0.013, paired t test; Fig. 9B). We also measured whether
this effect was consistent at different sizes of the decoded neural
population. A two-way, repeated-measures ANOVA between brain
region and the decoded population size showed a significant effect of
brain region (F(1,3) �58.1, p�0.0047) and population size (F(5,15) �
73.4, p � 0.0001; Fig. 9C).

Simultaneous OFC and striatal recordings exhibit a superior
lick onset time prediction in the striatum
We also explored whether lick onset time prediction was signifi-
cantly better using striatal population activity within the simul-
taneously recorded striatal and OFC datasets. We again observed
that SVM models trained to identify population activity encoding
lick onset time appeared to be more precise when decoding from
striatal population activity than from OFC population activity
(Fig. 10A). When comparing lick onset prediction performance
between SVM models trained on simultaneously recorded net-
works as a function of the brain region and the size of the decoded
population, we found that the striatal networks encode lick onset
time with a significantly higher efficacy than OFC networks

Figure 8. Striatal networks outperform OFC networks at predicting lick onset time. A, Illustration of lick onset time prediction analysis. Raster plots show the same MSN population’s activity
during different correct CS � trials. Top schematic shows odor on time (blue rectangle), reward delivery (red triangle), and actual lick times (red/black lines) that correspond to the recorded raster
plots. Each correctly performed CS � trial has a lick onset time indicated by a red line. As in the elapsed time prediction analysis, in each trial, spiking activity of each unit was transformed into
corresponding firing rate estimates (data not shown) and the firing rates of simultaneously recorded units were binned (100 ms time bins) to construct population firing patterns for the trial. In each
trial, the bin during which the first lick occurred is labeled as its lick onset bin (violet shading). A binary SVM classifier, represented here by a readout unit, was trained to distinguish between lick onset
bins and non-lick onset bins (green shading). B, The model is tested using a Monte Carlo cross-validation approach. Population activity patterns for all time bins in a trial are presented to the classifier,
which predicts the lick onset bin for the trial as the time bin with the maximal readout value. C, Heat plot showing normalized trial-averaged readout values generated by the SVM trained and tested
on striatal network activity of one mouse. Trials are sorted by decreasing latency to lick onset time, indicated by a red tick mark. D, 2D density plot showing the joint distribution of actual lick onset
times and those predicted by the SVM from striatal network activity, for one mouse. Prediction performance is measured as the RMSE. Lick onset bin classification was repeated 30 times for each trial
(see Materials and Methods). Actual and predicted lick onset bins were jittered (Gaussian noise with 0 mean, 0.3 SD) to separate overlapping points. E, Comparison of mean predicted lick onset bin
RMSEs across all striatal and OFC recordings (55 units per region, n � 9 striatal recordings and 6 OFC recordings) showed that models trained on striatal network data performed significantly better
( p � 0.032, unpaired t test). Bin-shuffled models based on striatal recordings performed significantly worse than corresponding nonshuffled models ( p � 0.0001, paired t test). Bin-shuffled
models based on OFC recordings also performed worse than corresponding nonshuffled models ( p � 0.0002, paired t test). Error bars indicate SEM.
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(F(1,3) � 18.9, p � 0.022, two-way,
repeated-measures ANOVA). There was
also a highly significant effect of population
size on lick onset prediction performance
across the two brain regions (F(5,15) � 178.4,
p � 0.0001, two-way, repeated-measures
ANOVA; Fig. 10B).

Last, we investigated how far in ad-
vance the neural activity could predict
lick onset time. This allowed us to fur-
ther investigate whether lick onset pre-
diction was not simply a product of
neural activity directly driving motor
responses. For this analysis, we trained
separate SVM classifiers on increasingly
earlier target bins, moving the target bin
backward in time with respect to the ac-
tual lick onset bin (see Materials and
Methods). In each brain region, a com-
parison of the readout value distribu-
tions when the classifier is trained on
the actual lick onset bin (Fig. 10A) ver-
sus on the bin occurring 500 ms ahead of
the actual lick onset bin (Fig. 10C) indi-
cates that either time bin can be decoded
with similar reliability (Fig. 10D). A
two-way, repeated-measures ANOVA
revealed a significant effect of brain re-
gion (F(1,3) � 16.0, p � 0.028). SVM
models trained to decode prelick onset
time bins from OFC population activity
were consistently worse than those
based on striatal population activity.
There was also a significant effect of
time (F(15,45) � 8.8, p � 0.0001) in
which increasing the “look-ahead” time resulted in a decay in
classification performance at approximately 1 s. This effect
was more pronounced in the striatum, which maintained a
relatively constant RMSE until �1 s before actual lick onset.
Conversely, the OFC showed higher error at actual lick onset
compared with the striatum. Interestingly, the OFC showed a
slight improvement of classification further away in time from
the actual lick onset. These results suggest that striatal and
OFC dynamics are causally related to behavior and that the
activity patterns preceding the lick by up to 1 s encode when
the animal will lick. Again, the results show that stria-
tal dynamics provide more information about lick onset time.

An important question related to both the nature of the time code
and the mechanisms underlying the neural dynamics in the striatum
and OFC relates to the “complexity” of the dynamics. One way to
measure the complexity of patterns of neural activity is through its
effective dimensionality, a PCA-based measure calculated as the
number of PCs required to explain 95% of the variance in the trial-
averaged population dynamics (Rajan et al., 2016; see Materials and
Methods). The calculations show that the OFC dynamics (mean �
15.75, SD � 2.06) are of a significantly higher dimension than MSN
dynamics (mean � 11.25, SD � 1.5, p � 0.0001, paired t test) and
suggest that the OFC may encode other variables that are not imme-
diately relevant to the task.

Discussion
This study took advantage of the high single-unit recording
throughput of silicon microprobes (Shobe et al., 2015) to

examine the neural coding properties of large prefrontal and stri-
atal ensembles during a conditioning paradigm in which mice
learned to anticipate the timing of reward. We used a machine-
learning algorithm to quantify the ability of dynamically chang-
ing patterns of network activity to encode time at the single trial
level within individual animals. Using activity patterns in these
two brain regions, we decoded time elapsed from the onset of a
reward-predictive cue. We also could predict the time of antici-
patory licking onset. Our results show that the striatum consis-
tently outperformed the OFC in terms of the ability to encode
time. This superior time representation of striatal ensembles was
confirmed via simultaneous recordings in the OFC and striatum.

The large scale of the recordings (at least 55 simultaneously
measured units per animal) enabled quantitative comparisons of
decoding performance without the need for pooling units across
sessions or subjects. Although a few studies have recorded simul-
taneously in the cortex and striatum (Matell et al., 2003; Jin et al.,
2009), to our knowledge, this is the first study to compare quan-
titatively the quality of the time code between the striatum and
one area of the cortex, the OFC, while recording simultaneously
from large populations of neurons. Therefore, we anticipate that
the approaches outlined in this work offer new opportunities for
understanding the coding properties of neural ensembles across
multiple brain areas during behavior (Brown et al., 2004; Buzsáki,
2004).

Computational models (Medina et al., 2000; Buonomano and
Laje, 2010; Laje and Buonomano, 2013) and recent experimental
work (Stokes et al., 2013; Crowe et al., 2014; Carnevale et al.,

Figure 9. Simultaneous multiregion recordings indicate that striatum encodes elapsed time better than OFC. A, Left, Average
cross-temporal classification matrix showing mean performance of the elapsed time classifier across all correct CS � trials for one
striatal recording that occurred in parallel with a OFC recording in the same mouse. The classification matrix for the corresponding
OFC recording is shown at right. B, Mean correlation coefficient across simultaneous striatal and OFC recordings (55 units per
region, n � 4) for each brain region. SVM classification of population activity was repeated 30 times (see Materials and Methods).
SVM models trained on striatal activity performed better than when trained on OFC activity patterns ( p � 0.013, paired t test).
C, Performance comparison of SVM models trained and tested on striatal and OFC network activity from simultaneous recordings
as a function of number of units. There was a significant effect of brain region (F(1,3) � 58.1, p � 0.0047) and number of units
(F(5,15) � 73.4, p � 0.0001, two-way repeated-measures ANOVA). Error bars indicate SEM.
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2015) have suggested that motor timing may be encoded in dy-
namic patterns of neural activity: a “population clock”. In vivo,
population clocks in the form of either simple sequential patterns
of activity or complex high-dimensional patterns have now been
observed in many different brain areas, including the striatum
(Matell et al., 2003; Chiba et al., 2008; Jin et al., 2009; Gouvêa et
al., 2015; Mello et al., 2015; Bakhurin et al., 2016) and multiple
areas of the prefrontal cortex (Dietrich and Allen, 1998; Fuster,
2001; Brody et al., 2003; Oshio et al., 2008; Genovesio et al., 2009;
Jin et al., 2009; Merchant et al., 2011; Kim et al., 2013; Xu et al.,
2014; Carnevale et al., 2015). Our data are consistent with these
previous reports of dynamic time-varying coding properties of
neural ensembles and support population clock models for the
coding of time. This study provides evidence that different brain
regions, here the striatum and the OFC, may be part of a distrib-
uted but regionally specialized network for encoding time.

The brain’s code for time and the timing of movements are
highly interdependent; animals use a timing mechanism to deter-
mine when to generate actions, but those actions in turn cause
changes in brain activity, potentially influencing any observable
code for time. We have addressed such interdependences in our
data and show that, whereas licking-related activity can contrib-
ute to the population clock, there is a robust code in a number of
control analyses aimed at removing potential motor influences.
Because we trained mice to learn to time a single interval, we
exploited the fact that licking behavior demonstrated variable
onset timing, similar to the timing variability of lever pressing
during fixed-interval tasks (Matell et al., 2003; Mello et al., 2015).

Our study benefited from this natural variability in that we could
demonstrate that population codes reflected early or late onset
times within the single interval. Interestingly, we found evidence
that licking behavior that occurred particularly late or early
strongly covaries with the speed at which temporal codes evolved
along the entire duration of the trial. This was particularly appar-
ent in the striatum, which supported results in earlier work on
population coding in the dorsal striatum (Gouvêa et al., 2015).
Overall, these analyses support the notion of high-dimensional
multiplexed representations within the striatum and OFC (Rig-
otti et al., 2013; Fusi et al., 2016).

Our study focused on the OFC region of the prefrontal cortex,
an area that has not received extensive attention with respect to
encoding of time. Parts of the prefrontal cortex, including the
dorsolateral, medial, and premotor areas, have been shown pre-
viously to encode time (Onoe et al., 2001; Kim et al., 2009; Mer-
chant et al., 2013b; Crowe et al., 2014; Merchant et al., 2015). It is
therefore possible that these other areas exhibit a better code for
time than both the regions that we investigated in the OFC and
the striatum. Despite not having been studied extensively in the
context of coding time per se, neurons in the OFC has been
shown previously to be sensitive to time during reward expecta-
tion and other related behaviors such as temporal discounting, in
which rewards received earlier in time are preferred to those as-
sociated with a greater delay period (Roesch et al., 2006; Moor-
man and Aston-Jones, 2014, but see Jo et al., 2013). In this study,
we now show that the OFC is capable of encoding time using
population clocks. We also add to a growing literature that the

Figure 10. Simultaneous multiregion recordings show distinct prelick dynamics across striatal and OFC networks. A, Heat plots showing normalized readout values generated by SVM models
trained to detect lick onset times. Heat plots reflect trial-averaged readout values of SVM models trained and tested on striatal (left) and OFC (right) network activity from simultaneous recordings
from the same mouse (55 units per region, n � 4). Trials are sorted by decreasing latency to lick onset time, indicated by a red tick mark. B, Mean performance of lick onset bin prediction as a function
of number of units included in training and testing the SVM models for each simultaneously recorded brain region (55 units per region, n � 4). A two-way, repeated-measures ANOVA revealed a
significant effect of number of units (F(5,15) � 178.4, p � 0.0001) and a significant effect of brain region (F(1,3) � 18.9, p � 0.022). The ANOVA excluded the “all units” column because it contained
inconsistent numbers of cells between simultaneously recorded regions. C, Heat plots showing normalized readout values generated by SVM models trained to detect time bins occurring 500 ms
before actual lick onset times. Heat plots reflect trial-averaged readout values of SVM models trained and tested on striatal (left) and OFC (right) network activity from simultaneous recordings from
the same mouse. Trials are sorted by decreasing latency to actual lick onset time, indicated by a red tick mark. Magenta tick marks indicate 500 ms before lick onset (55 units per region, n � 4).
D, Mean RMSE values across all simultaneous striatal and OFC recordings (55 units per region, n � 4) quantifying performance of SVM models trained and tested to predict time bins that occurred
in advance of actual lick onset times. A two-way, repeated-measures ANOVA revealed a significant effect of time bin (F(15,45) � 8.8, p � 0.0001) and brain region (F(1,3) � 16.0, p � 0.028). Error
bars indicate SEM.
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OFC contains movement-related coding (Feierstein et al., 2006;
Furuyashiki et al., 2008; Simon et al., 2015). A further implication
of our data is that the OFC may be better suited for representing
higher-dimensional information about the behavioral task. This
was reflected in the effective dimensionality analysis and is con-
sistent with the role of the OFC in complex cognitive processing
(Fuster, 2001), which has been hypothesized to involve recurrent
circuit activity (Mante et al., 2013; Rigotti et al., 2013).

A major finding of this study is that ensembles in the striatum
outperform the OFC in terms of time encoding, even after con-
trolling for motor effects. A fundamental question thus pertains
to how these differences in coding arise. Is time encoding gener-
ated within the striatum, through a corticostriatal loop (Mer-
chant et al., 2013a), or is the striatum instantiating a readout of
the dynamics generated within neocortical areas? These ques-
tions cannot yet be answered, but we suggest that the most con-
sistent interpretation given the superior performance of the
striatum observed here is that the striatum is serving as a readout
of the dynamics generated in the cortex. The striatum is inner-
vated by a plethora of areas, including prefrontal regions and
motor areas (McGeorge and Faull, 1989; Voorn et al., 2004; Hin-
tiryan et al., 2016). As a result of its functionally diverse inputs,
the striatum as a whole integrates information that spans the
cue–reward delay period, including sensory stimuli, reward pre-
diction, and action initiation (Tremblay et al., 1998; Jog et al.,
1999; Nicola et al., 2004; Roitman et al., 2005; Jin and Costa, 2010;
Rueda-Orozco and Robbe, 2015). Our results therefore suggest
an important role for sensorimotor integration in the striatum
(Reig and Silberberg, 2014), which may lead to a more refined
representation of time in this structure than what was found in an
upstream frontal cortical area.

We subdivided our dataset into dorsal and ventral striatal
ensembles and showed that each subregion separately performed
as well in encoding time as when both subregions were pooled
together. Most studies of timing in the striatum have focused on
the dorsal striatum (Chiba et al., 2008; Jin et al., 2009; Bartolo et
al., 2014; Mello et al., 2015), with the exception of a study that
investigated how dopaminergic signaling in dorsal and ventral
areas contributed to timing behavior (Meck, 2006). Our results
show that the ventral striatum encodes time as effectively as the
dorsal striatum. We do not suggest that the ventral and dorsal
areas are encoding the same kinds of information (Bakhurin et
al., 2016), nor would they need to do so to represent time in their
distinct patterns of dynamic activity. It is also possible that the
synchronization of a temporal code could be attributed to local
striatal microcircuitry (Bakhurin et al., 2016; Barbera et al., 2016)
or to basal ganglia feedback loops (Haber et al., 2000).

Several studies using fMRI approaches in humans have shown
that dorsal areas of the striatum, including both the caudate and
the putamen, are involved in interval timing tasks (Harrington et
al., 2004; Wiener et al., 2010; Coull et al., 2011). It is important to
point out that, in contrast to the current results, the ventral stri-
atal subregions were not often modulated significantly in these
studies. This could be explained by differences between the tim-
ing tasks performed by subjects across these studies. For example,
successful performance in our task relies on animals anticipating
the delivery of a reward, thus explaining why the ventral striatum,
a region commonly implicated in reward processing (Day and
Carelli, 2007), may be recruited. Tasks developed for humans
may allow for more explicit control of the brain’s capacity to use
time, but also may rely less on simple Pavlovian associations that
we used to train mice. In addition, fundamental differences be-
tween single-unit spike and BOLD signal measurements could

make direct comparison of our data with fMRI experiments
challenging.

The neuronal architecture of striatum differs dramatically
from that of the neocortex: striatal circuits are characterized by
recurrent inhibition (Tepper et al., 2004), whereas neocortical
circuits contain recurrent excitation. Theoretical studies have
established that, in contrast to inhibitory circuits, excitatory re-
current circuits are ideally suited to generate self-sustaining time-
varying patterns of activity (Jaeger and Haas, 2004; Sussillo and
Abbott, 2009; Laje and Buonomano, 2013), although it is possible
for such patterns to emerge from circuits that exhibit recurrent
(feedback) inhibition (Mauk and Donegan, 1997; Medina et al.,
2000). Because of the lateral inhibition interactions among MSNs
(Taverna et al., 2008) and the influence of local interneurons
(Tepper et al., 2010), the striatal microcircuit may be well suited
to refine those signals into an improved time code through a
temporal, winners-take-all mechanism by ensuring that the time-
varying patterns of activity within cortical areas only activate a
subpopulation of MSN cells at a time (Humphries et al., 2009;
Carrillo-Reid et al., 2011; Ponzi and Wickens, 2012).

References
Averbeck BB, Lee D (2006) Effects of noise correlations on information

encoding and decoding. J Neurophysiol 95:3633–3644. CrossRef Medline
Averbeck BB, Latham PE, Pouget A (2006) Neural correlations, population

coding and computation. Nat Rev Neurosci 7:358 –366. CrossRef
Medline

Bakhurin KI, Mac V, Golshani P, Masmanidis SC (2016) Temporal correla-
tions among functionally specialized striatal neural ensembles in reward
conditioned mice. J Neurophysiol 115:1521–1532. CrossRef Medline

Barbera G, Liang B, Zhang L, Gerfen CR, Culurciello E, Chen R, Li Y, Lin DT
(2016) Spatially compact neural clusters in the dorsal striatum encode
locomotion relevant information. Neuron 92:202–213. CrossRef Medline

Bartolo R, Prado L, Merchant H (2014) Information processing in the pri-
mate basal ganglia during sensory-guided and internally driven rhythmic
tapping. J Neurosci 34:3910 –3923. CrossRef Medline

Bennett BD, Wilson CJ (1999) Spontaneous activity of neostriatal cholin-
ergic interneurons in vitro. J Neurosci 19:5586 –5596. Medline

Bermudez MA, Schultz W (2014) Timing in reward and decision processes.
Philos Trans R Soc Lond B Biol Sci 369:20120468. CrossRef Medline

Brody CD, Hernández A, Zainos A, Romo R (2003) Timing and neural
encoding of somatosensory parametric working memory in macaque pre-
frontal cortex. Cereb Cortex 13:1196 –1207. CrossRef Medline

Brown EN, Kass RE, Mitra PP (2004) Multiple neural spike train data anal-
ysis: state-of-the-art and future challenges. Nat Neurosci 7:456 – 461.
CrossRef Medline

Buhusi CV, Meck WH (2005) What makes us tick? Functional and neural
mechanisms of interval timing. Nat Rev Neurosci 6:755–765. CrossRef
Medline

Buonomano DV (2007) The biology of time across different scales. Nat
Chem Biol 3:594 –597. CrossRef Medline

Buonomano DV, Karmarkar UR (2002) How do we tell time? Neuroscien-
tist 8:42–51. CrossRef Medline

Buonomano DV, Laje R (2010) Population clocks: motor timing with neu-
ral dynamics. Trends Cogn Sci 14:520 –527. CrossRef Medline

Buonomano DV, Maass W (2009) State-dependent computations: spatio-
temporal processing in cortical networks. Nat Rev Neurosci 10:113–125.
CrossRef Medline

Buonomano DV, Merzenich MM (1995) Temporal information trans-
formed into a spatial code by a neural network with realistic properties.
Science 267:1028 –1030. CrossRef Medline
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Merchant H, Zarco W, Pérez O, Prado L, Bartolo R (2011) Measuring
time with different neural chronometers during a synchronization-
continuation task. Proc Natl Acad Sci U S A 108:19784 –19789. CrossRef
Medline

Merchant H, Harrington DL, Meck WH (2013a) Neural basis of the percep-
tion and estimation of time. Annu Rev Neurosci 36:313–336. CrossRef
Medline
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