
Mini-Symposium

Emerging Mechanisms Underlying Dynamics of GABAergic
Synapses

X Arianna Maffei,1 Cécile Charrier,2 Maddalena Delma Caiati,3 X Andrea Barberis,4 X Vivek Mahadevan,5

X Melanie A. Woodin,6 and X Shiva K. Tyagarajan7

1Department of Neurobiology and Behavior, State University of New York, Stony Brook, New York 11794-5230, 2Institut de Biologie de l’Ecole Normale
Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, PSL Research
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Inhibitory circuits are diverse, yet with a poorly understood cell biology. Functional characterization of distinct inhibitory neuron
subtypes has not been sufficient to explain how GABAergic neurotransmission sculpts principal cell activity in a relevant fashion. Our
Mini-Symposium brings together several emerging mechanisms that modulate GABAergic neurotransmission dynamically from either
the presynaptic or the postsynaptic site. The first two talks discuss novel developmental and neuronal subtype-specific contributions to
the excitatory/inhibitory balance and circuit maturation. The next three talks examine how interactions between cellular pathways,
lateral diffusion of proteins between synapses, and chloride transporter function at excitatory and inhibitory synapses and facilitate
inhibitory synapse adaptations. Finally, we address functional differences within GABAergic interneurons to highlight the importance of
diverse, flexible, and versatile inputs that shape network function. Together, the selection of topics demonstrates how developmental and
activity-dependent mechanisms coordinate inhibition in relation to the excitatory inputs and vice versa.
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Introduction
The mechanisms underlying the control of the neuronal net-
works by inhibitory neurons have become a central topic of in-
vestigation in neuroscience. As studies advance, it is becoming
clear that inhibitory neurotransmission is dynamic in nature and
facilitates a diverse range of functions, including dendritic inte-
gration, control of neural excitability, circuit reorganization, and
fine-scale refinement of network activity.

Diverse inhibitory neuron populations ensure morphological
and functional specificity of GABA signaling on principal cells in
a coordinated fashion (Klausberger and Somogyi, 2008; Lapray et
al., 2012). Specific subcellular targeting (e.g., dendrites, soma,
axon-initial segment) of postsynaptic cells by different GABAergic
neurons contributes to input differences; similarly, heterogeneity
within postsynaptic compartments is considered to couple inhib-
itory neuron-specific inputs to principal cell outputs. However,
molecular events governing input coupling at different GABAergic
postsynaptic sites are currently not fully understood. It is easy to
conceive that many of the functional processes involving circuit
maturation and fine-scale refinement of network activity depend

on interactions between GABAergic and glutamatergic synapses.
Hence, it is not surprising that several neurodevelopmental and
neuropsychiatric disorders implicate both excitatory and inhibi-
tory neurotransmission systems (Rubenstein and Merzenich,
2003; Nelson and Valakh, 2015; Mullins et al., 2016).

A major tenet of our Mini-Symposium is that synaptic and
circuit adaptability relies on signaling cascades regulating in
parallel, or even coregulating, the efficacy of GABAergic and glu-
tamatergic transmission. Such convergence becomes apparent
when concerted changes in synaptic function are produced by
specific proteins, signaling molecules, as well as in the differential
regulation of interacting protein complexes that are present at
both excitatory and inhibitory postsynaptic compartments. This
Mini-Symposium will provide evidence for six emerging con-
cepts in the field of GABAergic inhibitory neurotransmission:
(1) intrinsic molecular mechanisms coordinate excitatory and
inhibitory synaptogenesis in the postsynaptic neuron; (2) devel-
opmental control of Gi/o coupled signaling shapes the function
of a subset of parvalbumin (PV) interneurons in mouse PFC;
(3) intracellular signaling cascades modulate synaptic protein
scaffold for dynamic GABAergic neurotransmission; (4) local
synaptic interactions and diffusion events coordinate glutama-
tergic and GABAergic synaptic plasticity; (5) protein moonlight-
ing between glutamatergic and GABAergic synapses couple
chloride homeostasis and synapse function; and (6) distinct in-
hibitory inputs refine and define cortical networks. The common
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thread for these apparently disparate topics is the discussion of
“mechanisms regulating dynamics at GABAergic synapses.”

Developmental and neuron specific contributions to
excitatory/inhibitory (E/I) ratios
Postsynaptic mechanisms coordinating excitatory and
inhibitory synaptogenesis
The proportion of excitatory and inhibitory synapses (E/I ratio)
is established early in life, before fine-scale experience-dependent
refinement (Zhao et al., 2005; Soto et al., 2011; Froemke, 2015).
Yet, the cell-autonomous, genetic mechanisms coordinating the
development of both types of synapses are poorly understood.
Recent reports on the role of a gene specifically duplicated in
humans, SRGAP2 (Slit-Robo Rho GTPAse-activating protein 2),
have provided new insights into the balanced development of
excitatory and inhibitory synapses.

The parental gene, SRGAP2A, is highly expressed during syn-
aptogenesis (Guerrier et al., 2009). It accumulates at both excit-
atory and inhibitory synapses (Fossati et al., 2016), where it
promotes their maturation and limits their density. Partial dupli-
cation of SRGAP2A generated a human-specific gene, SRGAP2C,
at a time corresponding to the emergence of Homo (Charrier et
al., 2012; Dennis et al., 2012). SRGAP2C is expressed in the hu-
man brain along with SRGAP2A and inhibits its function (Char-
rier et al., 2012; Dennis et al., 2012). Similarly, in mouse neurons,
SRGA2C expression or SRGAP2A inactivation delays the matu-
ration of excitatory and inhibitory synapses, also increasing both
inhibitory and excitatory synapse density. Cortical pyramidal
neurons expressing SRGAP2C exhibit dendritic spines with lon-
ger necks, along with a higher occurrence of inhibitory synapses
formed directly on spines. These morphological changes reflect
an increased compartmentalization of synapses, which are more
frequently silent in juvenile mice (Charrier et al., 2012; Fossati et
al., 2016). Protracted maturation, increased synaptic density, and
increased morphological complexity characterize human cortical
pyramidal neurons compared with rodents or nonhuman pri-
mates (Defelipe, 2011). This suggests that SRGAP2 genes support
E/I coordination in mammalian species and may contribute to
distinctive properties of human neurons.

Biochemical characterization and in vivo molecular dissection
of SRGAP2A function demonstrated that the protein interacts,
via distinct functional domains, with major excitatory and
inhibitory postsynaptic scaffolding proteins, namely, homer and
gephyrin (Okada et al., 2011; Fossati et al., 2016), through which
it promotes excitatory and inhibitory synaptic maturation, re-
spectively. Furthermore, SRGAP2A limits the density of both
types of synapses through its Rac1-GAP activity. With regard to
inhibitory synapses, this unravels the role of SRGAP2A in pro-
moting the growth of gephyrin clusters and the accumulation of
GABAA receptors. It also highlights the role of Rac1 signaling in
regulating the density of inhibitory synapses within dendrites and
their subcellular distribution. Together, it is emerging that pro-
teins, such as SRGAP2, cannot be classified as excitatory or
inhibitory synapse component, instead go on to create a novel
class of shared molecular component, which plays a key role in
E/I coordination.

Neuronal cell specific contribution to GABAergic inhibition
Single-cell RNA sequencing (RNA-seq), combined with classical
single-cell morphological and electrophysiological analysis, rep-
resents a powerful tool to disclose the exquisite functional diver-
sity of inhibitory neuron subtypes within specific brain regions
(Cembrowski et al., 2016; Tasic et al., 2016). This graded change

in neuronal identity is emerging as a general feature defining
neuronal development, connectivity, and function.

One specific example of cell type specific gene expression that
contributes to functional identity is the Gi/o protein-coupled can-
nabinoid receptor (CB1r). Widely distributed in the brain, CB1r
were originally thought to be localized predominantly at chole-
cystokinin (CCK�) presynaptic terminals where they modulate
synaptic transmission and activity-dependent synaptic plasticity.
However, development of novel experimental tools in recent years
has identified these receptor expression and function within diverse
other cell types (including glutamatergic and serotoninergic neu-
rons, among others) (for an extensive review, see Busquets-Garcia et
al., 2017), unraveling an extraordinary complexity, whose functional
implications are far from being fully deciphered.

Intriguingly, the expression of CB1r is highly developmentally
regulated (Caiati et al., 2012; Long et al., 2012; Yoneda et al.,
2013) and plays a central role in critical period plasticity in so-
matosensory (Liu et al., 2008), visual (Jiang et al., 2010; Garkun
and Maffei, 2014), and PFC (Cass et al., 2014; Lee et al., 2016;
Renard et al., 2016; Rubino and Parolaro, 2016). However, de-
spite the wealth of studies linking age-dependent CB1r disrup-
tion to altered cortical maturation and function (Cass et al., 2014;
Raver and Keller, 2014), the precise underlying cellular mecha-
nisms remain poorly understood.

Recent work showed that CB1r are also localized at the somato-
dendritic compartment in a subset of pyramidal neurons in hip-
pocampal CA1 and regulate hyperpolarization-activated cyclic
nucleotide-gated (HCN)-mediated h-current (Ih) (Maroso et al.,
2016). Intriguingly, HCN channel can be enriched in parvalbumin-
expressing (PV�) neurons (Omrani et al., 2015), which orchestrate
cortical critical period plasticity (Hensch, 2005). New experimental
evidence has revealed a surprising cell-autonomous and develop-
mental modulation of Ih by CB1r in a subset of PV� neurons in
mouse PFC and visual cortex, highlighting a novel functional iden-
tity for a subset of PV� cells and linking CB1r modulation of Ih
currents to GABAergic inhibition.

Shared molecular pathways for plasticity at excitatory and
inhibitory postsynaptic sites
Post-translational modification of protein scaffold regulates
dynamic GABAergic neurotransmission
The generation and characterization of various knock-out mice lines
for specific GABAA receptor (GABAAR) subunits advanced the
morphological and functional understanding of circuit-specific
GABAAR in the rodent brain (Rudolph and Möhler, 2014). The
protein identified to play a preeminent role in the formation and
maintenance of the inhibitory postsynaptic density is gephyrin, a
multifunctional scaffolding protein that interacts with numerous
signaling molecules, and with �1, �2, and �3 subunit-containing
GABAAR (Tyagarajan and Fritschy, 2014).

Synaptic proteins are often heavily regulated by diverse post-
translational modifications, including phosphorylation, acetylation,
SUMOylation, ubiquitination, palmitoylation, nitrosylation, pro-
teolytic cleavage, etc. (Tyagarajan and Fritschy, 2014). However,
regulation of post-translational modifications for GABAergic
synaptic function has received less attention so far compared with
glutamatergic postsynapse. Several signal transduction pathways
crosstalk to influence gephyrin post-translational modification,
and, in turn, altering protein networks at synapses (Ghosh et al.,
2016). Although these modifications are often reversible, they
impact the biochemical properties of gephyrin, initiating long-
lasting downstream signaling changes. Post-translational modi-
fications of synaptic proteins are known to regulate intracellular
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trafficking, synapse turnover, and protein conformation changes
leading to the formation of new protein networks, etc. Therefore,
signaling pathways offer a dynamic springboard for adapting
synaptic strength over vastly different time scales, and respond-
ing to specific synaptic inputs to ensure stability of neuronal
networks following changes in connectivity or activity.

Several studies demonstrated that variations in inhibitory syn-
aptic strength closely match changes in synaptic accumulation of
gephyrin (Charrier et al., 2010; Muir et al., 2010; Tyagarajan et al.,
2013; Petrini et al., 2014; Flores et al., 2015). In addition, phos-
phorylation, nitrosylation, palmitoylation, acetylation, and
SUMOylation pathways converge onto GABAergic postsynaptic
density and influence inhibitory neurotransmission (Tyagarajan
et al., 2011, 2013; Dejanovic et al., 2014; Ghosh et al., 2016). More
importantly, these observations have given support to the notion
that GABAergic synapses are highly dynamic structures. Identi-
fication and characterization of gephyrin at the resolution of sin-
gle amino acid provide the necessary molecular tools to render
GABAergic synapses insensitive to specific signal transduction
pathways. For example, ERK1/2 and GSK3� pathways reduce
GABAergic neurotransmission by phosphorylating gephyrin at
S268 and S270, respectively, resulting in destabilization of inhib-
itory synapses. In addition, NMDAR activity causes gephyrin
phosphorylation at S305 by the CaMKII� pathway, leading to
activity-dependent adaptation at the GABAergic postsynapse
(Flores et al., 2015).

Such dynamic interactions between signaling pathways may
be at play in processes that have the potential to destabilize
networks, such as synapse strengthening as a consequence of
learning and memory consolidation. The evidence supporting
common signaling pathways between GABAergic and glutama-
tergic synapse in baseline transmission and plasticity further
demonstrates the need to explore the full extent of their molecu-
lar overlap and determine possible pathways of interactions.

Local synaptic interactions and diffusion events coordinate
glutamatergic and GABAergic synaptic plasticity
The use of single-particle tracking techniques to study the lateral
mobility of surface neurotransmitter receptors has offered a
unique opportunity to investigate the implications of GABAAR
recruitment at synapses to adjust synaptic strength (Choquet and
Triller, 2013; Petrini and Barberis, 2014). Sustained network ac-
tivity reduces inhibitory synaptic strength through the dispersal
of GABAAR from synapses due to calcineurin-dependent in-
creased lateral mobility of synaptic GABAARs (Bannai et al., 2009;
Muir et al., 2010). Rapid dispersal of GABAAR leading to reduced
inhibition is paralleled by the decreased clustering of gephyrin
clustering (Bannai et al., 2009). In a reverse paradigm, Petrini et
al. (2014) studied the mechanisms potentiating inhibitory neu-
rotransmission and reported induction of chemical inhibitory
LTP, where GABAARs are confined and immobilized at synapses
while extrasynaptic gephyrin is actively recruited to synaptic
compartments, leading to larger scaffolding. Such increase of
both GABAAR and gephyrin at synapses during inhibitory LTP
requires the phosphorylation of the GABAAR-�3 subunit by
CaMKII�. Likewise, the CaMKII� phosphorylation of �3:
(1) increases the surface expression of GABAARs (Houston and
Smart, 2006); (2) modulates the amplitude and the kinetics of
synaptic currents (Houston et al., 2008); and (3) promotes the
exocytosis of the �5-containing GABAAR mediating inhibitory
tonic currents (Saliba et al., 2012). In line with these findings,
CaMKII� activity has been implicated in postsynaptic mIPSC
potentiation both at cerebellar (Kano et al., 1996) and hippocam-

pal inhibitory synapses (Marsden et al., 2007). Taking into ac-
count the well-established roles for CaMKII� in glutamatergic
synaptic plasticity (Herring and Nicoll, 2016), it is emerging that
CaMKII� signaling contributes to both excitatory and inhibitory
synaptic plasticity. Most kinases may phosphorylate many pro-
teins at both excitatory and inhibitory synapses. However, selec-
tive control of phosphorylation (or other post-translational
modification) at excitatory or inhibitory synapses, in contrast,
may be crucial for the coordination of plasticity and synapse
crosstalk.

The notion that neuronal activity may concomitantly elicit
inhibitory and excitatory synaptic plasticity poses the obvious
question about the spatial rules of such plasticity interplay. Glu-
tamatergic LTP can be restricted to single-spine level (Matsuzaki
et al., 2004), and dendritic calcium signaling can be shaped at
single inhibitory and excitatory inputs (Chiu et al., 2013). Thus,
interactions between plasticity at glutamatergic and GABAergic
synapses are likely to occur in microdomains generated by diffu-
sion of calcium, CaMKII�, or other signaling molecules. Re-
cently, it was revealed that desensitized GABAARs may laterally
diffuse from a “donor” GABAergic synapse to an adjacent “ac-
ceptor” GABAergic synapse (spaced by 2– 4 �m), where inclu-
sion of desensitized receptors decreases the amplitude of synaptic
inhibitory signals (de Luca et al., 2017). Interestingly, intracellu-
lar calcium rise due to activation of intercalated glutamatergic
synapses limits the receptor diffusion-dependent functional in-
terplay among neighboring GABAergic synapses. This short-
term synaptic plasticity paradigm reveals the general concept that
“local synaptic interactions” and “diffusion events” significantly
shape synaptic signaling, implying that the relative distance/dis-
tribution of glutamatergic and GABAergic synapses along den-
drites is an important player in activity-dependent modifications
of synaptic strength.

Proteins moonlighting between GABAergic and glutamatergic
synapses couple chloride homeostasis with synapse function
The strength of GABAergic transmission not only depends on
synaptic conductance mediated by Cl�-permeable GABAARs but
is also dependent on the gradient for Cl� across the neuronal
membrane. The neuronal Cl� gradient is dynamically regulated
by the cation-chloride cotransporters NKCC1 and KCC2 (Kaila
et al., 2014). During embryonic development, NKCC1 expres-
sion is relatively high compared with KCC2, resulting in elevated
neuronal Cl�, which renders GABAergic transmission excitatory
(Pfeffer et al., 2009). Early in postnatal development, upregulation
of KCC2, which transports Cl� out of the neuron, lowers intracel-
lular Cl�, resulting in hyperpolarizing inhibitory GABAergic trans-
mission in the mature CNS (Rivera et al., 1999; Acton et al.,
2012). Thus, KCC2 is primarily responsible for what is com-
monly termed the GABA “switch” from excitation to inhibition
(Ben-Ari et al., 2012).

Despite the importance of KCC2 for inhibition, multiple in-
dependent lines of evidence indicate that KCC2 is highly localized
at excitatory postsynaptic sites: (1) immunogold electron micros-
copy and single-particle tracking data reveal that KCC2 is highly
expressed in the vicinity of excitatory synapses (Gulyás et al.,
2001; Chamma et al., 2013); (2) KCC2 plays a critical role in spine
formation, excitatory synaptogenesis, and synaptic plasticity (Li
et al., 2007; Gauvain et al., 2011; Chamma et al., 2012; Fiumelli et
al., 2013; Chevy et al., 2015; Llano et al., 2015); and (3) KCC2
interacts with proteins associated with neuronal excitation
(Banke and Gegelashvili, 2008; Ivakine et al., 2013; Mahadevan et
al., 2014; Mahadevan and Woodin, 2016; Pressey et al., 2017).
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More recent quantum-dot-based single-particle tracking of
KCC2 in cultured hippocampal neurons reported that KCC2 lat-
erally diffuses in the surface membrane; however, this diffusion is
constrained in the vicinity of synapses (Chamma et al., 2013).
Although KCC2 dwells relatively longer at excitatory synapses, it
also resides at inhibitory synapses, albeit for significantly shorter
periods of time (Chamma et al., 2013). The mechanism underly-
ing the relatively tight confinement of KCC2 to excitatory syn-
apses involves a KCC2-actin interaction, whereas the mechanism
for confinement at inhibitory synapses is unknown. Thus, KCC2
appears to be a “moonlighting” protein, where individual trans-
porter molecules can shuttle between inhibitory and excitatory
synapses.

Activity regulates the confinement of KCC2 at excitatory syn-
apses via an NMDAR-mediated Ca 2� influx, which dephospho-
rylates the S940 residue and activates calpain protease cleavage of
the transporter, resulting in reduced KCC2 clustering and trans-
port (Chamma et al., 2013). Not only does excitatory synaptic
transmission affect KCC2 expression and function, but KCC2
also regulates excitatory synapses. Specifically, KCC2 influences
postsynaptic AMPAR content (Gauvain et al., 2011) and gates
activity-driven AMPAR traffic (Chevy et al., 2015). Thus, the
moonlighting of KCC2 between excitatory and inhibitory syn-
apses could play an essential role in dynamically regulating syn-
apse equilibrium.

Detailed analysis of KCC2 interactome has revealed 181 pro-
tein interaction partners in the mouse brain (Mahadevan et al.,
2017). Of these interacting proteins, 60% are localized at either
excitatory or inhibitory synapses, �43% are exclusively expre-
ssed at excitatory synapses, whereas only �2% are exclusive to
inhibitory synapses. Ingenuity pathway analysis identified excit-
atory synapse-enriched regulators of receptor recycling as top
candidates for determining KCC2 expression at excitatory syn-
apses. Furthermore, pathway analysis also identified many regu-
lators of dendritic cytoskeleton, suggesting that these are likely
candidates for constraining KCC2 at excitatory synapse loci. In
addition, �15% of proteins in the interactome are found at both
inhibitory and excitatory synapses, suggesting that KCC2 moon-
lighting between synapses might subserve previously unrecog-
nized biological functions (Mahadevan et al., 2017).

What does the emerging moonlighting of KCC2 between in-
hibitory and excitatory synapses reveal about KCC2 function and
the dynamic nature of inhibition? Ionotropic and/or metabo-
tropic glutamate receptor could regulate KCC2 function and,
thus, the strength of inhibition in the immediate vicinity of excit-
atory synapses. Such a notion is supported by evidence showing
that inhibitory synapses can be in very close proximity to excit-
atory synapses (Wang et al., 2004; Chen et al., 2012; Chiu et al.,
2013; Higley, 2014). Furthermore, independent studies reported
activity-dependent regulation of KCC2 for inhibitory synaptic
plasticity (Woodin et al., 2003; Fiumelli et al., 2005; Ormond and
Woodin, 2009; Lamsa et al., 2010; Lee et al., 2011; Ormond and
Woodin, 2011; Woodin and Maffei, 2011; Huang et al., 2013;
Vogels et al., 2013; Mahadevan and Woodin, 2016; Nakamura et
al., 2016).

But how local are these Cl� gradients or does the Cl� diffuse
to neighboring synapses, altering the strength of multiple inhib-
itory synapses? To answer such questions precisely, further
advances in Cl� imaging are required, in particular, the develop-
ment of pH-insensitive Cl� indicators with suitable dynamic
ranges for low Cl� concentrations. We can however make some
informed estimates: it is clear that Cl� gradients can be confined
to neuronal compartments (Duebel et al., 2006; Szabadics et al.,

2006), but how locally those gradients are confined within a den-
drite is unclear. Cl� can diffuse between synapses located in close
proximity on the same dendritic branch (Ormond and Woodin,
2011), but computational studies predict that this diffusion is
limited to �50 �m in spiny dendrites (Mohapatra et al., 2016).
Determining the kinetics of Cl� diffusion within neuronal com-
partments is a critical avenue for future investigation that will be
essential to our understanding of E/I balance.

Multiple roles for GABAergic inhibition in cortical circuits
A full understanding of the role of GABAergic inhibition in neu-
ral circuit depends not only on signaling mechanisms, but also on
how inhibitory circuits are recruited. Many GABAergic neuron
subgroups project locally, acting as interneurons (Fino et al.,
2013; Pfeffer et al., 2013), and are thought to modulate gain (Car-
din et al., 2009; Isaacson and Scanziani, 2011) and timing (Wehr
and Zador, 2003) of incoming signals.

Independent reports demonstrated that diverse projection
neurons can regulate GABAergic interneuron function within
cortical circuits. Thalamic afferents, for example, directly regu-
late GABAergic neurons activity in sensory cortex (Porter et al.,
2001; Hull et al., 2009; Kloc and Maffei, 2014; Delevich et al.,
2015). While fast spiking, parvalbumin expressing (PV �) in-
hibitory neurons receive direct thalamocortical inputs in
many cortical regions; the contribution of other groups of inhib-
itory neurons to thalamocortical circuits varies by region (Porter
et al., 2001; Beierlein et al., 2003; Verbny et al., 2006; Cruikshank
et al., 2010; Kloc and Maffei, 2014), suggesting differential con-
tribution to sensory processing. Cortical GABAergic neurons are
also activated by axonal projections from higher-order thalamic
nuclei (Lee et al., 2010; Delevich et al., 2015; Audette et al., 2017),
contributing to the cortico-thalamo-cortical loop. Afferents
from higher-order nuclei often exhibit connectivity preference to
groups of GABAergic neurons that inhibit other inhibitory neu-
rons (Dávid et al., 2007; Lee et al., 2010; Audette et al., 2017).
Cortical GABAergic neurons can also be directly recruited by
amygdalar afferents (Dilgen et al., 2013; Haley et al., 2016), car-
rying information about expectation (Samuelsen et al., 2012) and
about the hedonic value of sensory stimuli (Piette et al., 2012).
Thus, different behavioral states can recruit different GABAergic
cells, influencing functional connectivity within cortical circuits.

Somatostatin-expressing inhibitory neurons are active in
awake states (Kvitsiani et al., 2013); PV-expressing neurons act as
gain modulators (Cardin et al., 2008); and vasointestinal peptide-
positive neurons can be activated by locomotion (Fu et al., 2014).
These patterns of activation also change with context (Pakan et al.,
2016), highlighting the flexibility of inhibitory neuron recruitment.
Within the cortex, GABAergic neurons can be connected by electri-
cal coupling facilitating network synchronization (Cardin et al.,
2009; Veit et al., 2017). Most work aimed at understanding the role
of GABAergic neurons in cortical circuit function focused on locally
projecting interneurons; however, there is now well-supported evi-
dence that inhibitory neurons can also project to subcortical regions
(Melzer et al., 2017), likely contributing to modulating activity
across brain areas.

In addition to fast synaptic inhibition, extrasynaptic GABAARs
contribute to tonic inhibition (Kullmann et al., 2005). Volume
transmission can influence circuit activity when GABAergic in-
hibitory neurons fire action potentials at high frequency, leading
to tonic increases of GABA and following activation of a popula-
tion of inhibitory neurons, neurogliaform cells (Oláh et al.,
2009).
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Finally, GABAergic synapses made by different groups of in-
hibitory neurons can locally alter their efficacy in response to
patterned activity (Komatsu, 1996; Woodin et al., 2003; Maffei et
al., 2006; Woodin and Maffei, 2011). GABAergic synaptic plas-
ticity is altered during development (Lefort et al., 2013), by expe-
rience (Maffei et al., 2006; Wang and Maffei, 2014), and during
learning (Letzkus et al., 2011). Such diversity within GABAergic
neuron function and capacity for plasticity suggests that inhibitory
neurons can play a diverse array of functions, including preserving
circuit excitability (Maffei et al., 2004), as well as activity-dependent
fine-scale circuit refinement.

In conclusion, in this Mini-Symposium, we discuss the emerging
complexity regarding the role of GABAergic transmission in neural
circuits. We report results demonstrating that specific signaling
pathways are shared between excitatory and inhibitory synapses,
and these pathways often share functional interactions. Identifi-
cation of moonlighting proteins, such as SRGAP2, which is op-
erational already during early brain development, and KCC2 and
CaMKII�, highlights complex aspects of synaptic transmission
and plasticity. To add to this complexity, we also report the in-
fluence of CB1r on HCN channel, expressed by PV-expressing
GABAergic neurons during postnatal development. These results
are particularly relevant as smoking marijuana during adoles-
cence is widely associated with impaired cognition, increased risk
for psychiatric diseases, such as schizophrenia and depression, as
well as increased propensity for substance abuse (Dow-Edwards
and Silva, 2017). Such pathological conditions are associated with
alterations in the E/I balance, highlighting the importance of in-
vestigating the mechanisms promoting coordinated regulation of
E/I ratios to further our understanding of processes involved
contributing to healthy circuit maturation and function.

In addition to regulating receptors, channels, and transport-
ers, we highlighted a diverse range of cellular signaling pathways
impinging upon GABAergic inhibition via the main protein scaf-
fold gephyrin. Protein scaffolds are also fundamentally involved
in regulating E/I ratios, although their effect is primarily exerted
by contributing to plastic changes in synaptic strength. Emer-
gence of protein scaffolds as signaling hubs offers yet another
perspective into synaptic plasticity mechanisms connecting dif-
ferent neurotransmitter systems. Our data identify a central role
for CaMKII� not only in facilitating signal transduction down-
stream of GABAergic synapse, but also in assimilating informa-
tion from other neurotransmission systems.

Finally, inhibitory neurons can be activated by a variety of
inputs carrying information about different aspects of neural cir-
cuit function, including the perception of sensory stimuli and
their affective dimensions, indicating that GABAergic inhibitory
circuits are centrally positioned to participate in all aspects of
brain function throughout life. Although much work is still
needed to fully understand the role of inhibition in brain func-
tion, the scope of this Mini-Symposium was to bring to light the
dynamics of interaction between inhibition and other neu-
rotransmitter systems for healthy brain function and disease.
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Rune GM, Jentsch TJ, Hübner CA (2009) NKCC1-dependent GABAergic
excitation drives synaptic network maturation during early hippocampal
development. J Neurosci 29:3419–3430. CrossRef Medline

Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M (2013) Inhibition of
inhibition in visual cortex: the logic of connections between molecularly
distinct interneurons. Nat Neurosci 16:1068 –1076. CrossRef Medline

Piette CE, Baez-Santiago MA, Reid EE, Katz DB, Moran A (2012) Inactiva-
tion of basolateral amygdala specifically eliminates palatability-related
information in cortical sensory responses. J Neurosci 32:9981–9991. CrossRef
Medline

Porter JT, Johnson CK, Agmon A (2001) Diverse types of interneurons gen-
erate thalamus-evoked feedforward inhibition in the mouse barrel cortex.
J Neurosci 21:2699 –2710. Medline

Pressey JC, Mahadevan V, Khademullah CS, Dargaei Z, Chevrier J, Ye W,
Huang M, Chauhan AK, Meas SJ, Uvarov P, Airaksinen MS, Woodin MA
(2017) A kainate receptor subunit promotes the recycling of the neuron-
specific K sup�/sup-Cl sup-/sup co-transporter KCC2 in hippocampal
neurons. J Biol Chem 292:6190 – 6201. CrossRef Medline

Raver SM, Keller A (2014) Permanent suppression of cortical oscillations in
mice after adolescent exposure to cannabinoids: receptor mechanisms.
Neuropharmacology 86:161–173. CrossRef Medline

Renard J, Vitalis T, Rame M, Krebs MO, Lenkei Z, Le Pen G, Jay TM (2016)
Chronic cannabinoid exposure during adolescence leads to long-term
structural and functional changes in the prefrontal cortex. Eur Neuropsy-
chopharmacol 26:55– 64. CrossRef Medline

Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U,
Saarma M, Kaila K (1999) The K �/Cl � co-transporter KCC2 renders
GABA hyperpolarizing during neuronal maturation. Nature 397:251–
255. CrossRef Medline

Rubenstein JL, Merzenich MM (2003) Model of autism: increased ratio of
excitation/inhibition in key neural systems. Genes Brain Behav 2:255–
267. CrossRef Medline

Rubino T, Parolaro D (2016) The impact of exposure to cannabinoids in
adolescence: insights from animal models. Biol Psychiatry 79:578 –585.
CrossRef Medline
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Tyagarajan SK, Ghosh H, Yévenes GE, Nikonenko I, Ebeling C, Schwerdel C,
Sidler C, Zeilhofer HU, Gerrits B, Muller D, Fritschy JM (2011) Regula-
tion of GABAergic synapse formation and plasticity by GSK3beta-
dependent phosphorylation of gephyrin. Proc Natl Acad Sci U S A 108:
379 –384. CrossRef Medline
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