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Complex cognitive behaviors, such as context-switching and rule-following, are thought to be supported by the prefrontal cortex (PFC).
Neural activity in the PFC must thus be specialized to specific tasks while retaining flexibility. Nonlinear “mixed” selectivity is an
important neurophysiological trait for enabling complex and context-dependent behaviors. Here we investigate (1) the extent to which
the PFC exhibits computationally relevant properties, such as mixed selectivity, and (2) how such properties could arise via circuit
mechanisms. We show that PFC cells recorded from male and female rhesus macaques during a complex task show a moderate level of
specialization and structure that is not replicated by a model wherein cells receive random feedforward inputs. While random connec-
tivity can be effective at generating mixed selectivity, the data show significantly more mixed selectivity than predicted by a model with
otherwise matched parameters. A simple Hebbian learning rule applied to the random connectivity, however, increases mixed selectivity
and enables the model to match the data more accurately. To explain how learning achieves this, we provide analysis along with a clear
geometric interpretation of the impact of learning on selectivity. After learning, the model also matches the data on measures of noise,
response density, clustering, and the distribution of selectivities. Of two styles of Hebbian learning tested, the simpler and more biolog-
ically plausible option better matches the data. These modeling results provide clues about how neural properties important for cognition
can arise in a circuit and make clear experimental predictions regarding how various measures of selectivity would evolve during animal
training.
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Introduction
The ability to execute complex, context-dependent behavior is
evolutionarily valuable and ethologically observed (Kalin et al.,

1991; Rendall et al., 1999). How the brain carries out complex
behaviors is thus the topic of many neuroscientific studies. A
region of focus is the prefrontal cortex (PFC; Duncan, 2001;
Miller and Cohen, 2001; Botvinick, 2008; Waskom et al., 2014),
as lesion (Szczepanski and Knight, 2014) and imaging (Miller and
D’Esposito, 2005; Bugatus et al., 2017) studies have implied its
role in complex cognitive tasks. As a result, several theories have
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Significance Statement

The prefrontal cortex is a brain region believed to support the ability of animals to engage in complex behavior. How neurons in
this area respond to stimuli—and in particular, to combinations of stimuli (“mixed selectivity”)—is a topic of interest. Even
though models with random feedforward connectivity are capable of creating computationally relevant mixed selectivity, such a
model does not match the levels of mixed selectivity seen in the data analyzed in this study. Adding simple Hebbian learning to the
model increases mixed selectivity to the correct level and makes the model match the data on several other relevant measures. This
study thus offers predictions on how mixed selectivity and other properties evolve with training.
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been put forth to explain how the PFC can support complexity on
the computational and neural levels (Miller and Cohen, 2001;
Wood and Grafman, 2003; Fusi et al., 2016).

A common way to investigate a neural population’s role in a
computation is by observing the selectivity profiles of that popu-
lation’s constituent cells. In its simplest form, this involves mod-
eling a neuron’s firing rate as a function of a single stimulus, or,
perhaps, as an additive function of multiple stimuli (Duhamel et
al., 1998; Sahani and Linden, 2003; Moser et al., 2008). More
recently, however, the role of neurons that combine inputs in a
nonlinear way has been investigated (Mante et al., 2013; Meister
et al., 2013; Pagan et al., 2013; Rigotti et al., 2013; Stokes et al.,
2013; Raposo et al., 2014; Fusi et al., 2016), often in the PFC.
Rather than responding only to changes in one input, or to
changes in multiple inputs in a linear way, neurons with nonlin-
ear mixed selectivity have firing rate responses that are a nonlin-
ear function of �2 inputs (Fig. 1B). Cells with this selectivity
(which we call simply “mixed”) are important for population
coding because of their effect on the dimensionality of the repre-
sentation: they increase the dimensionality of the population
response, which increases the number of patterns that a linear

classifier can read out. This means that arbitrary combinations of
inputs can be mapped to arbitrary outputs. In relation to complex
behaviors, mixed selectivity allows for a change in context, for
example, to lead to different behavioral outputs, even if stimulus
inputs are the same (Fusi et al., 2016).

Theoretical work on how these properties can arise on a cir-
cuit level shows that random connectivity is surprisingly efficient
at increasing the dimensionality of the neural representation (Maass
et al., 2002; Jaeger and Haas, 2004; Buonomano and Maass, 2009;
Rigotti et al., 2010; Barak et al., 2013; Babadi and Sompolinsky, 2014;
Litwin-Kumar et al., 2017). This means that mixed selectivity can be
observed even without learning. However, learning can greatly im-
prove the ability of a linear readout to generalize and hence to make
the readout response more robust to noise and variations in the
sensory inputs (Fusi et al., 2016). The ideal situation would be one in
which a neural population represents only the task-relevant variables
and the representation has the maximal dimensionality. In brain
areas like the PFC, where there is a huge convergence of inputs from
many other brain areas, it might be important to bias the mixed-
selectivity representations toward the task-relevant variables, which
can be achieved only with learning.

Figure 1. Description of PFC data and relevant measures of selectivity A, Task design. In both task types, the animal fixated as two image cues were shown in sequence. After a delay, the animal
had to either indicate that a second presented sequence matched the first or not (“Recognition”) or saccade to the two images in correct order from a selection of three images (“Recall”). B, What
nonlinear mixed selectivity can look like in neural responses and its impact on computation. The bar graphs on the left depict three different imagined neurons and their responses to combinations
of two task variables A and B. The black neuron has selectivity only to A, as its responses are invariant to changes in B. The blue neuron has linear mixed selectivity to A and B: its responses to different
values of A are affected by the value of B, but in a purely additive way. The red neuron has nonlinear mixed selectivity: its responses to A are affected nonlinearly by a change in the value of B. The
figures on the right show how including a cell with nonlinear mixed selectivity in a population increases the dimensionality of the representation. With the nonlinearly selective cell (bottom), the
black dot can be separated with a line from the green dots. Without it (top), it cannot. C, A depiction of measures of trial-to-trial noise (FFT) and the distribution of responses across conditions (RV).
The x-axis labels the condition. Each dot is the firing rate for an individual trial. The crosses are condition means used for calculating RV (data from a real neuron; recognition task not shown). D,
Conceptual depiction of the clustering measure. Each cell was represented as a vector (blue) in a space wherein the axes (black) represent preference for task-variable identities, as determined by
the coefficients from a GLM (only 3 are shown here). The clustering measure determines whether these vectors are uniformly distributed.
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In this study, we characterize the response of a population of
PFC cells in terms of the distribution of linear and nonlinear
selectivity, the response density, and the clustering of selectivities.
All these properties characterize the dimensionality of neural rep-
resentations and are important for the readout performance. As
described above, nonlinear mixed selectivity is important for
increasing dimensionality. High dimensionality, however, also
requires a diversity of responses. We studied this by determining
how the preference to different stimuli are distributed across the
population. In some lower sensory areas, cells tend to be catego-
rizable; that is, there are groups of cells that display similar pref-
erence profiles (Goard et al., 2016). More associative areas tend to
lose this clustering of cell types. Such categories may be useful
when an area is specialized for a given task, but diversity is needed
for flexibility (Raposo et al., 2014).

After characterizing the PFC response, we show that a model
with random connectivity can only partially explain the PFC rep-
resentation. However, with a relatively small deviation from
random connectivity— obtained with a simple form of Hebbian
learning characterized by only two parameters—the model de-
scribes the data significantly better.

Materials and Methods
Task design. The data used in this study come from previously published
work (Warden and Miller, 2010). In brief, two monkeys performed two
variants of a delayed match-to-sample task (Fig. 1A). In both task types,
after initial fixation, two image cues (chosen from four possible cues)
were presented in sequence for 500 ms each with a 1000 ms delay period
between the first and second cue. After a second delay period, also lasting
1000 ms, one of two events occurred, depending on the task type. In the
“recognition” task, another sequence of two images was shown and the
monkey was instructed to release a bar if this test sequence matched
the initial sample sequence. In the “recall” task, an array of three images
appeared on the screen, and the monkey had to saccade to the two images
from the sample sequence in the correct order. Blocks of recall and rec-
ognition tasks were interleaved during each recording session. Given that
each sequence had two different image cues chosen from the four total
image identity options and that there were two task types, the total num-
ber of conditions was 4 � 3 � 2 � 24.

Neural data. Recordings were made using grids with 1 mm spacing
(Crist Instrument) and custom-made independently moveable micro-
drives to lower eight dura-puncturing Epoxylite-coated tungsten micro-
electrodes (FHC) until single neurons were isolated. Cells were recorded
from two adult rhesus monkeys (Macaca mulatta), one female and one
male, and combined for analysis. No attempt was made to prescreen
neurons, and a total of 248 neurons were recorded (with each neuron
observed under both task types).

For the purposes of this study, firing rates for each neuron were calcu-
lated as the total number of spikes during the last 900 ms of the second
delay period, as it was at this point that the identities of all task variables
were known. Any cells that did not have �10 trials for each condition or
did not have a mean firing rate of �1 spike/s as averaged over all trials and
conditions were discarded. This left 90 cells.

Fano factor measurements. Noise is an important variable when mea-
suring selectivity. High noise levels require stronger tuning signals to be
useful for downstream areas and to reach significance in statistical test-
ing. Thus, any model attempting to match the selectivity profile of a
population must be constrained to have the same level of noise. Here, we
measure noise as the Fano factor (variance divided by mean) of each cell’s
activity across trials for each condition (spike count taken from last 900
ms of the two-object delay). This gives 24 values per cell. This is the trial
Fano factor. Averaging over conditions gives one trial Fano Factor value
per cell, and averaging over cells gives a single number representing the
average noise level of the network. Unless otherwise stated, FFT refers to
this network-averaged measure.

Another measure of interest is how a neuron’s response is distributed
across conditions. Do neurons respond differentially to a small number

of conditions (i.e., a sparse response), or is the distribution flatter? To
measure this, the firing rate for each condition (averaged across trials)
was calculated for each neuron and the Fano factor was calculated across
conditions. In this case, a large value means that some conditions elicit a
very different response than others, while a small value suggests the responses
across conditions are more similar. We call this value the response variability
(RV). Averaging across all cells gives the RV of the network.

See Figure 1C for a visualization of these measures in an example
neuron.

Selectivity measurements. A neuron is selective to a task variable if its
firing rate is significantly and reliably affected by the identity of that task
variable. In this task, each condition contains three task variables: task
type (TT), the identity of the first cue [Cue 1 (C1)], and the identity of the
second cue [Cue 2 (C2)]. Therefore, we used a three-way ANOVA to
determine whether a given neuron’s firing rate was significantly ( p �
0.05) affected by a task variable or combination of task variables. Selec-
tivity can be of two types: pure or nonlinearly mixed (referred to as just
“mixed”), based on which terms in the ANOVA are significant. If a
neuron has a significant effect from one of the task variables, for example,
it would have pure selectivity to that variable. Interaction terms in the
ANOVA represent nonlinear effects from combinations of variables.
Therefore, any neurons that have significant contributions from interac-
tion terms as determined by the ANOVA have nonlinear mixed selectiv-
ity. As an example, if a neuron’s firing rate can be described by a function
that is linear in the identity of the TT, the identity of C2, and the identity
of the combination of TT and C1, then that neuron has pure selectivity to
TT, pure selectivity to C2 and mixed selectivity to the combination of TT
and C1 (TT � C1). Note that having pure selectivity to �2 task variables
is not the same as having nonlinear mixed selectivity to a combination of
those task variables.

We also investigate whether the nonlinear interactions we observe
indicate supralinear or sublinear effects. To do this, we fit a general linear
model that includes second-order interaction terms to each neuron’s
response. The signs of the coefficients for the second-order terms indicate
whether a certain nonlinear effect leads to a response higher (supralinear) or
lower (sublinear) than expected from a purely additive relationship.

Clustering measurement. Beyond the numbers of neurons selective to
different task variables, an understanding of how preferences to task-
variable identities cluster can inform network models. For this, we use a
method inspired by the projection angle index of response similarity
(PAIRS) measurement as described by Raposo et al. (2014). For this
measure, each neuron is treated as a vector in selectivity space, where the
dimensions represent preference to a given task-variable identity (Fig.
1D). To get these values, neuronal responses are fit with a general linear
model (GLM) to find which task-variable identities significantly contrib-
ute to the firing rate. Note that this gives a � coefficient for each value of
each task variable, such as C1 � B. These values dictate how the firing rate
changes as task-variable identities differ from the reference condition
TT � Recognition, C1 � A, and C2 � B. This is expressed as follows: FR �
FRref � b1[TT � Recall] � b2[C1 � B] � b3[C1 � C] � b4[C1 � D] �
b5[C2 � A] � b6[C2 � C] � b7 [C2 � D]. The � values found for each
cell via this method are shown in Figure 3C (nonsignificant coeffi-
cients—those with p � 0.05—are set to 0).

This analysis does not include interaction terms (second-order or
third-order terms). The reason for this is partly that, given the relatively
few trials, the high-dimensional full GLM model would be difficult to
confidently fit. In addition, analysis of clustering in a high-dimensional
space (the full model would yield a 45-dimensional space) with a rela-
tively small number of neurons would be difficult to interpret. Therefore,
we look only at how the cells cluster according to their preference of the
identities associated with the pure terms.

The coefficients derived from the GLM define a vector in a 7-D vector
space for each neuron (Fig. 1D). The clustering method compares the
distribution of vectors generated by the data (each normalized to be unit
length) to a uniform distribution on the unit hypersphere to determine
whether certain combinations of preferences are more common than
expected by chance.

In PAIRS (Raposo et al., 2014), this comparison is done by first com-
puting the average angle between a given vector and its k nearest neigh-
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bors and seeing whether the distribution of those values differs between
the data and a random population. That approach is less reliable in
higher dimensions. Therefore, we use the Bingham test instead of PAIRS
(Mardia and Jupp, 2000). The Bingham test calculates the test statistic

S �
p�p � 2�

2
n �Tr�T2� �

1

p�. This statistic, which we refer to as the

clustering value, measures the extent to which the scatter matrix, T (an
approximation of the covariance matrix) differs from the identity matrix
(scaled by 1/p), where p and n are the dimensions of the selectivity space
(seven) and the number of cells (90), respectively. The higher this value
is, the more the data deviates from a random population of vectors
wherein selectivity values are assumed to be independent and identically
distributed random variables. Thus, a high value suggests that neurons in
the population cluster according to task-variable identity preferences. To
put this clustering value into context, we compared the value found from
the data to two distributions: one generated by shuffled data and one
generated from data designed to be highly clustered. For the shuffled
data, we created “fake” cell vectors by shuffling the selectivity values
across all cells. For the clustered data, we created three categories of fake
cells, each defined by pure selectivity to two specific task-variable iden-
tities. A population of 90 cells was created by combining 30 cells from
each category (the population was also designed to have the same average
firing rate and FFT of the data). This results in a population that has three
clear clusters of cell types in selectivity space. One hundred populations
based on each type of fake data were created to generate distributions that
represent random and clustered data.

Using the Giné–Ajne test of uniformity on the hypersphere (Giné,
1975) gives very similar results to the Bingham test results.

Circuit model. To explore the circuit mechanisms behind PFC selectiv-
ity, we built a simple two-layer neural model, modeled on previous work
(Barak et al., 2013; see Fig. 4A). The first layer consists of populations of
binary neurons, with each population representing a task-variable iden-
tity. To replicate a given condition, the populations associated with the
task-variable identities of that condition are turned on (set to 1) and all
other populations are off (set to 0). Each population has a baseline of
50 neurons. To capture the biases in selectivities found in this dataset
(particularly the fact that, in the 900 ms period we used for this analysis,
many more cells show selectivity to TT than C2 and to C2 than C1), the
number of neurons in the TT and C2 populations are scaled by factors
that reflect these biases (80 cells in each TT population and 60 in each C2
population). The exact values of these weightings do not have a signifi-
cant impact on properties of interest in the model.

The second layer represents PFC cells. These cells get weighted input
from a subset of the first-layer cells. Cells from the input layer to the PFC
layer are connected with probability 0.25 (unless otherwise stated), and
weights for the existing connections are drawn from a Gaussian distribu-
tion (�W � 0.207, and �W � �W unless otherwise stated; because nega-
tive weights are set to 0, the actual connection probability and �W may be
slightly lower than given).

The activity of a PFC cell on each trial, t, is a sigmoidal function of the
sum of its inputs (Eq. 1):

ri
t � k	� �

j
wijxj

t � 
A
t � 	i�

	� z� �
1

1 � e
z


A
t � ��0, �A

2 � �A � a�w

where xj is the activity (0 or 1) of the jth input neuron and wij is the weight
from the jth input neuron to the ith output neuron. �i is the threshold for
the ith output neuron, which is calculated as a percentage of the total
weight it receives: �i � ��jwij. The � value is constant across all cells,
making � cell-dependent. k scales the responses so that the average
model firing rate matches that of the data.

Two sources of noise are used to model trial-to-trial variability. 
A is an
additive synaptic noise term drawn independently on each trial for each
cell from a Gaussian distribution with mean zero. The SD for this distri-
bution is controlled by the parameter a, which defines �A in units of the

mean of the weight distribution, �W. The second noise source is multi-
plicative and depends on the activity of a given cell on each trial (Eq. 2):

yi
t � ��ri

t, �Mi

t2 �
�Mi

t � mri
t

Thus, the final activity of an output PFC cell on each trial, yi
t, is drawn

from a Gaussian with an SD that is a function of ri
t. This SD is controlled

by the parameter m. Both m and a are fit to make the model FFT match
that of the data.

To make the model as comparable to the data as possible, 10 trials are
run for each condition and 90 model PFC cells are used for inclusion in
the analysis.

Hebbian learning. A simplified version of Hebbian learning is imple-
mented in the network in a manner that captures the “rich get richer”
nature of Hebbian learning while keeping the overall input to an individ-
ual cell constant. In traditional Hebbian learning, weight updates are a
function of the activity levels of the presynaptic and postsynaptic neu-
rons: � wij � g(xj, yi). In this simplified model, we use connection
strength as a proxy for joint activity levels: � wij � g(wij). We also imple-
ment a weight-normalization procedure so that the total input weight to
a cell remains constant as weights change.

To do this, we first calculate the total amount of input each output cell,
i, receives from each input population, p (Eq. 3):

Ii
p � �

j�p
wij

The input populations (each corresponding to one task-variable iden-
tity) are then ranked according to this value. The top NL populations
according to this ranking (that is, those with the strongest total weights
onto to the output cell) have the weights from their constituent cells
increased according to the following equation (Eq. 4):

wij � �1 � ��wij, j � P1:NL

where � is the learning rate (set to 0.2 unless otherwise stated). This
amounts to a multiplicative scaling of synaptic weights, which is compat-
ible with experimental observations (Turrigiano et al., 1998; Loewenstein
et al., 2011). After this, all weights into the cell are normalized via the
following equation (Eq. 5):

wi � wi

�p�1
P Ii

p

�j�1
J wij

Note, the numerator in the second term is the sum of all weights into the
cell before Equation 4 is applied and the denominator is the sum after it
is applied. As learning progresses according to this rule, weights from
cells that are not in the top NL populations trend to zero. At that point,
each learning step increases the weights of all remaining connections by �
and normalizes them all by the same amount, resulting in no further
changes in the weight matrix.

In this work, two versions of Hebbian learning are tested. In the unre-
stricted, or “free,” learning condition described above, the top NL popu-
lations are chosen freely from all input populations (equivalently, all
task-variable identities) based solely on the total input coming from each
population after the random weights are assigned. The alternative, “con-
strained” learning, is largely the same, but with a constraint on how these
top NL populations are chosen: all task variables must be represented
before any can be repeated. So, two populations representing different
identities of the same task variable (e.g., Cue 1A and Cue 1B) will not
both be included in the NL populations unless both other task variables
already have a population included (which would require that NL � 3).
So, with NL � 3, exactly one population from each task variable (TT, C1,
C2) will have weights increased. This variant of the learning procedure
was designed to ensure that inputs could be mixed from different task
variables to increase the likelihood that mixed selectivity would arise.
Both forms of learning are demonstrated for an example cell in Figure 4B.

In both forms of learning, the combination of weight updating and
normalization is applied to each cell once per learning step.
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Classification performance. The measures of selectivity we have looked
at in the data are important for the ability of a population to represent
task information in a way that can be readily read out. We also test
directly the ability to read out task information from our model popula-
tions using linear discriminant analysis (LDA). We generate 20 trials per
condition from the model and use 10 to train the classifiers and 10 to test.
Three separate classifiers are trained to read out each of the three linear
terms: TT identity, C1 identity, and C2 identity. The average perfor-
mance across these three tasks gives the “linear” performance. An addi-
tional four classifiers were trained to read out each of the joint identities
of TT–C1, TT–C2, C1–C2, and TT–C1–C2. The average performance
across these four tasks is called the “higher-order” performance.

We also conduct an explicit test of the model’s ability to perform a
nonlinearly separable task. For this, all combinations of identities for C1
and C2 are generated as inputs to the network, and the classification task
is to determine whether the identities are the same or different (the TT
input is held constant). Fifty trials are used for training (using LDA) and
50 for testing. We also measure the ability of the input population to
perform this task (by using the binary input population activity directly),
in which case additive noise is used to generate multiple trials, and the
mean firing rate and FFT are fit to match that of the data.

Toy model calculations. To make calculations and visualizations of the
impacts of learning easier, we use a further simplified toy model (see
Fig. 8A, left). Instead of a sigmoidal nonlinearity, the heaviside function
is used. The toy model has two task variables (T1 and T2) and each task
variable has two possible identities (A or B). Four random weights con-
nect these input populations to the output cell: W1A, W1B, W2A, W2B. On
each condition, exactly one task-variable identity from each task vari-
able is active (set to 1). This gives four possible conditions, each of
which is plotted as a point in the input space in Figure 2. The thresh-
old is denoted by the dotted lines. If the weighted sum of the inputs on
a given condition is above the threshold, the cell is active (green),
otherwise it is not.

The toy model follows the same learning rules defined for the full
model. Examples of the impacts of learning on the representation of the
four conditions are seen in Figure 2 A, B.

A cell’s selectivity is more robust to additive noise (which functions
like a shift in threshold) if there is a large range of threshold values for
which its selectivity does not change. To explore noise robustness in this
model, we will define the following (Eq. 6):

�x � W1B � W1A �y � W2B � W2 A 
 � �y/�x � 1

Figure 2. Signal and noise representation for the toy model shown in Figure 8A. Strength of weights from the four input populations are given as arrows in A and B and the threshold for the
heaviside function is shown as a dotted line. The cell is active for conditions above the threshold (green). Weight arrows omitted for visibility in C and D. A, Learning causes the representation of
conditions to change. This can change selectivity in multiple ways. Here, pure selectivity turns into mixed selectivity (top) and mixed selectivity turns into pure selectivity (bottom). B, Constrained
and free learning can lead to different signal changes. Constrained learning (top) guarantees that one population from each task variable is increased. This ensures that the representation spreads
out. In this case, the cell goes from no selectivity to mixed selectivity. With these starting weights, free learning increases both populations from T2, and the cell does not gain selectivity. C, Noise
robustness can be thought of as the range of thresholds that can sustain a particular type of selectivity. Relative noise robustness of mixed and pure selectivity depends on the shape of the
representation. 
 is the ratio of the differences between the weights from each task variable (top). In the two figures on the bottom, blue dotted lines show optimal threshold for pure selectivity,
red dotted lines show optimal threshold for mixed selectivity, and shaded areas show the range of thresholds created by trial-wise additive noise that can exist without altering the selectivity. When

 � 2, mixed selectivity is robust to larger noise ranges (bottom left). When 
 � 2, pure selectivity is more robust (bottom right). Given normally distributed weights, 
 � 2 is more common.
D, Two example cells showing how selectivity changes with changing �. Sets of weights for both cells are drawn from the same distribution. The resulting thresholds at three different � values
(labeled on the right cell but identical for each) are shown for each cell. With the smallest �, neither example cell has selectivity. With the middle � value Cell 1 gains mixed. Cell 2 gains pure
selectivity, which it retains at the higher �, while Cell 1 switches to the other type of mixed.
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Thus, 
 is the ratio of the side lengths of the rectangle formed by the four
conditions (Fig. 2C, top). Without loss of generality, we define the larger
of the two sides as associated with T2, W2B � W2A, and W1B � W1A.

For the cell to display pure selectivity to T2, the following inequality
must hold (Eq. 7):

W1B � W2 A � 	 � W1A � W2B

Therefore the range of thresholds that give rise to pure selectivity is as
follows (Eq. 8):

�W1A � W2B� � �W1B � W2 A� � �W2B � W2 A� � �W1A � W1B�

� �y � �x � �x�
 � 1�

The analogous calculations for mixed selectivity (assuming the T1B–T2B
condition is active only, but results are identical for T1A–T2A being the
only inactive condition) are as follows (Eq. 9):

W1A � W2B � 	 � W1B � W2B

W1B � W2B � �W1A � W2B� � �W1B � W1A� � �x

Thus, pure selectivity is more noise robust than mixed selectivity when

 � 2. This imbalance can be seen in Figure 2C.

Now we show that, given weights drawn at random from a Gaussian
distribution, 
 � 2 is more common than 
 � 2. The argument goes as
follows: because �x and �y are differences of normally distributed vari-
ables, they are themselves normally distributed (with � � 0, � � 2�w).
The ratio of these differences is thus given by a Cauchy distribution.
However, because 
 represents a ratio of lengths, we are only interested in
the magnitude of this ratio, which follows a standard half-Cauchy distri-
bution. Furthermore, 
 is defined such that the larger difference should
always be in the numerator. Thus, we propose the following equation
(Eq. 10):

P�
 � 2� � 1 � �
1/ 2

2 2

��1 � u2�
du � .5903.

Therefore, most cells can be expected to have 
 � 2 with random weights
and thus higher noise robustness for pure selectivity than for mixed.

This comparison of noise robustness, however, assumes the threshold
is placed at the location that is most noise robust for each type of selec-
tivity. Here, the threshold is defined as a fraction of the total weight going
into the cell: � � �
W. As we increase � then, the threshold is a line with
slope of 
1 that moves from the bottom left corner up to the top right.
Examples of how this affects selectivity are shown in Figure 2D.

To investigate how noise robustness changes with �, we generate a
large (10,000) population of cells, each with four random input weights
drawn from a Gaussian with positive mean and constrained to be non-
negative (qualitative results hold for many weight–variance pairs), and
calculate the size of the additive noise shift needed to cause each cell to
lose its selectivity (whichever it has).

Assuming a fixed threshold, we then explore how noise robustness
varies with learning. In the case of constrained learning with NL � 2, �x

and �y both increase. According to Equations 7 and 9, robustness to both
selectivities increases with �x. The relative increase in robustness will

depend on how 
 changes. It can be shown that if
W1B

W1A
�

W2B

W2 A
then �x

will expand more than �y and 
 will decrease, meaning the increase in

noise robustness favors mixed selectivity. If
W1B

W1A
�

W2B

W2 A
, then 
 will

grow, and the increase in noise robustness will be larger for pure than
mixed. However, this condition is less common.

When NL � 1, learning ultimately leads to a larger ratio between the
side lengths. This is straightforward for W2B � W1B (�y grows and �x

shrinks). However, if W1B � W2B, 
 will first decrease as �x grows and �y

shrinks. This is good for mixed noise robustness. The ratio then flips
(�x � � y), and �y (the side that is now shorter) is still shrinking and �x

is growing. In this circumstance, if �y/�x becomes �1⁄2, the representa-

tion will favor pure noise robustness over mixed. This flipping of 
 is

possible for some cells when NL � 2 if
W1B

W1A
�

W2B

W2 A
, but the weights

would likely plateau before 
 became �1⁄2, and so the drop in mixed
selectivity does not occur.

In free learning with NL � 2, cells that have W1A � W2B, will see both
weights from T1 increase and (due to the weight normalization) both
weights from T2 decrease. Because the weights change in proportion to
their value, �x increases, �y decreases, and so 
 goes down. This leads to
more noise robustness for mixed and less for pure. If W2A � W1B, these
trends are reversed and the cell has more noise robustness for pure and
less for mixed.

Experimental design and statistical analysis. As described in Selectivity
measurements, the main statistical test used in this work was a three-way
ANOVA (within-subjects, with a total 23 degrees of freedom). Each of
the 90 cells used had 10 trials from each condition. As part of calculating
the clustering value (see Clustering measurement), we calculated the p
value for the F statistic of the hypothesis test that each coefficient in our
GLM was equal to 0. All analyses were performed in Matlab.

Results
In this study, we analyzed various measures of selectivity of a
population of PFC cells recorded as an animal carried out a com-
plex delayed match-to-sample task. Through this process, several
properties of the representation in the PFC were discovered and a
simple circuit model that included Hebbian learning was able to
replicate them. These properties, combined with the modeling
results, provide support for the notion that PFC selectivities are
the result of Hebbian learning in a random network.

PFC population is moderately specialized and selective
The average firing rate of cells in this population was 4.9 � 5.1
spikes/s. Fano factor analyses provided measurements of the
noise and density of response in the data (Fig. 3B). The average
value of the across-trial Fano Factor (FFT � 2.8 � 1.7 spikes/s)
shows that the data have elevated levels of noise compared with a
Poisson assumption. Looking at RV—a measure of how a cell’s
response is distributed across conditions—suggests that PFC cells
are responding densely across the 24 conditions (RV � 1.1 � 1.1
spikes/s; for comparison, at the observed average firing rates, a
cell that responded only to a single condition would have RV �
120, one that responded to two conditions would have RV � 57).
This finding suggests that these cells are not responding sparsely
and are not very specialized for the individual conditions of this
task.

Each condition is defined by a unique combination of three
task variables: task type (TT), identity of image cue 1 (C1), and
identity of image cue 2 (C2) (Fig. 1A). Selectivity to task variables
was determined via a three-way ANOVA. The results of this anal-
ysis are shown in Figure 3A. This figure shows the percentage of
cells with selectivity to each task variable and combination of task
variables [as determined by a significant (p � 0.05) term in the
ANOVA]. A cell that has selectivity to any of the regular task
variables (TT, C1, C2) has “pure selectivity,” while a cell that has
selectivity to any of the interaction terms (combination of task
variables such as TT � C1, TT � C2, etc.) has nonlinear
“mixed” selectivity. The final two bars in Figure 3A show the
number of cells with pure and mixed selectivity defined this
way. Note that a cell can have both pure and mixed selectivity.
Thus, the two values sum to �100%.

Most cells (77 of 90) showed pure selectivity to �1 task vari-
able. But the population shows clear biases in the distribution of
these pure selectivities: TT selectivity is the most common (59
cells) and C2 is represented more than C1 (48 vs 30 cells; these
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biases are observable in the GLM fits as well; Fig. 3C). This latter
effect may be due to the time at which these rates were collected:
these rates were taken during the second delay, which comes
directly after the presentation of C2. The former effect is perhaps
more surprising. While the TT is changed in blocks and thus
knowable to the animal on each trial (with the exclusion of block
changes), there is no explicit need for the animal to store this
information: the presence of a second sequence or an array of
images will signal the TT without the need for prior knowledge.
However, regardless of its functional role in this task, contextual
encoding is a common occurrence (Eichenbaum et al., 2007;
Komorowski et al., 2013). Furthermore, the fact that the Recall
task is more challenging than the Recognition task may contrib-
ute to clear representation of TT. That is, it is possible that the
animals keep track of the TT to know how much effort to exert
during the task.

Approximately half of the cells (46) had some form of mixed
selectivity, mostly to combinations of two task variables. The
population had an approximately equal balance of both supralin-
ear and sublinear effects of these two-way interactions (ratio of
positive to negative terms: 1.07). The small number of cells with
selectivity to the three-way interaction term (TT � C1 � C2) is
consistent with the relatively low value of RV in this population,
as a strong preference for an individual condition would lead to a
high RV. The number of cells with only mixed selectivity was low
(only 1 of 90 cells), 32 cells had only pure selectivity, and 12 cells
had no selectivity.

We use a population-level analysis inspired by Raposo et al.
(2014) to measure the extent to which cell types are clustered into
categories. Here, we used this analysis to determine whether cells
cluster according to their responsiveness to different task-vari-
able identities (i.e., Recognition vs Recall). That is, are there
groups of neurons that all prefer the same TT and image identi-
ties, beyond what would be expected by chance? To explore this,
we first use a GLM, with task-variable identities as regressors, to
fit each neuron individually. The � coefficients from these fits
define a neuron’s position in selectivity space (these �-coefficient
values, which represent how the identity of each task variable
changes a neuron’s firing rate compared with the reference con-
dition, are shown in Fig. 3C; a schematic of how the clustering
measure works is shown in Fig. 1D). After normalizing each vec-
tor, the clustering measure then determines the extent to which
the population of vectors deviates from a uniform distribution on
the unit hypersphere. The data had a clustering value of 186.2.
Comparing this to the mean values of two distributions of artifi-
cially generated populations suggests the data have a mild but
significant deviation from random: the average clustering value
for populations generated by randomly shuffling the coefficient
values is 
23 � 22, and the average value of populations that
have three distinct clusters of selectivity is 706.7 � 6.8. As the
data-clustering value sits between these values and closer to the shuf-
fled data, we conclude that some structure does exist in the data, yet
the cells in this population do not appear to form strongly sepa-

Figure 3. Results from the experimental data. A, Selectivity profile of the 90 cells analyzed. A cell had pure selectivity to a given task variable if the term in the ANOVA associated with that task
variable was significant ( p � 0.05). A cell had nonlinear mixed selectivity to a combination of task variables if the interaction term for that combination was significant. On the right are the
percentages of cells that had �1 type of pure selectivity (blue) and percentage of cells that had �1 type of mixed selectivity (red). B, Values of firing rate, FFT, and RV for these data. Each open circle
is a neuron and the red markers are the population means. C, � Coefficients from GLM fits for each cell. The condition wherein TT � Recognition, C1 � A, and C2 � B was used as the reference
condition. These values were used to determine the clustering value. D, Clustering values for data and comparison populations. The red dot shows the clustering value calculated using the GLM
coefficients from the data. The shuffled data come from shuffling the GLM coefficients across cells. The clustered data are derived from populations of fake cells designed to have three different
categories of cell types defined according to selectivity.
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rable categories as defined by task-variable identity preference
(Fig. 3D).

Circuit model without Hebbian learning cannot replicate mix
of density and specialization
A simple circuit model was made to replicate the selectivity prop-
erties found in the data. The model contains two layers: an input
layer consisting of binary neurons that represent task-variable
identities and an output layer consisting of “PFC” neurons that
get randomly weighted input from the first layer and whose ac-
tivity is a nonlinear function of the sum of that input. The model
also has two forms of noise: an additive term applied before the
nonlinearity (which replicates input/background noise, and im-
plicitly shifts the threshold of the cell), and a multiplicative term
applied after (which enforces the observed relationship between
firing rate and variance; see Materials and Methods; Fig. 4A).

The output of the initial circuit model, before any Hebbian
learning, was analyzed in the same way as the data to determine
whether it matched the properties found in the PFC. The results
of this can be found in Figure 5. First, in Figure 5A, we demon-
strate the impact of the noise parameters on FFT, pure and mixed
selectivity, and the clustering value. As expected, increasing the
additive and/or multiplicative noise terms increases the FFT, as
this is a measure of trial variability. Increasing within-condition
noise also makes it less likely that a cell will show significant

differences across conditions, and thus the percentage of cells
with pure and mixed selectivity are inversely related to the noise
parameters (the relative sensitivities of mixed and pure selectivity
to noise will be discussed in depth later). For similar reasons, the
clustering value also decreases with noise (finding significant de-
viations from a uniform distribution is less likely if cells do not
show sufficiently strong preferences).

To determine the impact other properties of the model had on
our measures of interest, we varied several other parameters. Fig-
ure 5B shows what happens at different values of the threshold
parameter. Here, the threshold is given as the amount of input the
cell needs to reach half its maximal activity, expressed as a frac-
tion of its total input weight (keep in mind that, given the number
of input cells in each population and the task structure, approx-
imately one-third of input cells are on per trial). The colored lines
are, for each measure, the extent to which the model differs from
the data, expressed in units of the model’s SD (calculated over 100
instantiations of the model). Due to the impact of noise param-
eters discussed above, at each point in this graph the noise param-
eters were fit to ensure the model was within �1.5 SDs of the data
FFT (this generally meant that it varied from �2.8 to 2.9).

With an increasing threshold, the RV (Fig. 5B, green line)
increases. This is because higher thresholds mean cells respond to
only a few combinations of input, rather than responding simi-
larly to many, and the RV is a measure of variability in response

Figure 4. The full model and how learning occurs in it. A, The model consists of groups of binary input neurons (colored blocks) that each represent a task-variable identity. The number of neurons
per group is given in parenthesis. Each PFC cell (gray circles) receives random input from the binary cells. Connection probability is 25% and weights are Gaussian-distributed and non-negative. The
sum of inputs from the binary population and an additive noise term are combined as input to a sigmoidal function (bottom). The output of the PFC cell on a given trial is a function of the output of
the sigmoidal function, r, and a multiplicative noise term (see Materials and Methods). The threshold, �, is given as percentage of the sum total of the weights into to each cell. B, Two styles of
learning in the network, both of which are based on the idea that the input groups that initially give strong input to a PFC cell have their weights increased with learning (sum of weights from each
population are given next to each block). In “free” learning, the top NL input populations are chosen freely. In this example, that means two groups from the C1 task variable have their weights
increased (marked in blue). In “constrained” learning, the top NL populations are chosen with the constraint that they cannot come from the same task variable. In this case, that means that Cue 2D
is chosen over Cue 1C despite the latter having a larger summed weight. In both cases, all weights are then normalized. C, Learning curves as a function of learning steps for different values of NL.
Strength of changes in the weight matrix expressed as a percentage of the sum total of the weight matrix are plotted for each learning step (a learning step consists of both the weight increase and
normalization steps). Different colors represent different NL’s.
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across conditions (note that while RV appears to peak at �0.35
and decrease, this particular trend is driven by an increase in RV
SD; the mean continues to increase). The percentage of cells with
mixed selectivity (red line) also increases with threshold. With a
higher threshold, most conditions give input to the cell that lies in
the lower portion of the sigmoidal function (Fig. 4A, bottom).
The nonlinearity is strong here—with some input producing lit-
tle to no response—thus, more cells can attain nonlinear mixed
selectivity. Pure selectivity also increases with threshold, and the
percentage of cells with pure selectivity goes quickly to 100 (and
the SD of the model gets increasingly small). We go into more
detail about the reliance of selectivity on threshold later.

The clustering value relies on cells having preference for task-
variable identities and so increases as selectivity increases initially.
However, just having selectivity is not enough to form clusters,
and so the clustering value in the model levels off below the data
value even as the number of cells with pure selectivity reaches full
capacity. Thus, with the exception of the clustering value, the
model can reach the values found in the data by using different
thresholds. As Figure 5B shows, however, at no value of the
threshold are all measures of PFC response in the model simul-
taneously aligned with those in the data.

Figure 5C shows how the same measures change when the
width of the weight distribution from input to PFC cells is varied.
Here, the SD of the distribution from which connection strengths
are drawn (�W) is given as a factor of the mean weight, �W.
Increasing this value increases pure and mixed selectivity as well
as RV. Because a wider weight distribution increases the chances
of a very strong weight existing from an input cell to an output
cell, it makes it easier for selectivity to emerge (that is, the output
cell’s response will be strongly impacted by the task-variable
identity the input cell represents). The RV increase occurs for
similar reasons: a cell may have uneven responses across condi-
tions due to strong inputs from single-input cells. Clustering val-
ues, however, are unaffected by this parameter. At no point, then,
can the model recreate all aspects of the data by varying the weight
distribution. Furthermore, while values of mixed selectivity and
RV approach the data values with large �W/�W, such large values
are likely unrealistic. Data show that a �W/�W ratio of �1 is
consistent with observations of synaptic strengths from several
brain areas (Barbour et al., 2007).

Varying other parameters, such as the mean weight, number of
cells per population, and connection probability similarly does not

Figure 5. Results from the model without learning. A, FFT and other measures can be controlled by the additive and multiplicative noise parameters. Each circle’s color shows the value for the
given measure averaged over 25 networks for a set of a and m values (see Materials and Methods). FFT scales predictably with both noise parameters. Fraction of cells with mixed selectivity, fraction
of cells with pure selectivity, and clustering scale inversely with the noise parameters. Other model parameters are taken from the arrow locations in B and C. B, How the threshold parameter, �,
affects measures of selectivity. Lines show how the average value of the given measure in the model (in units of SDs calculated over 100 random instantiations of the model) differs from the data as
a function of the threshold parameter �, where�i ��
jwij. At each point, noise parameters are fit to keep FFT close to the data value. Note that SD values for mixed selectivity and clustering remain
steady across threshold values at�4% and 20.7 respectively. RV SD, however, increases from 0.0087 to 4.3 spikes/s and pure selectivity SD trends toward zero as all cells gain pure selectivity. C, Same
as B, but varying the width of the weight distribution rather than the threshold parameter. Here, RV SD increases only slightly, from 0.02 to 0.048 spikes/s, pure selectivity SD decreases slightly from
4.0 to 2.5% and mixed selectivity and clustering SDs remain fairly constant around 4.9% and 31.2 respectively. D, Example of the model results at the points given by the black arrows in B and C. On
the left, blue and red bars are the data values as in Figure 2. The lines are model values (averaged over 100 networks; error bars, �1 SD). On the right, histograms of model values over 100 networks.
The red markers are data values. This model has no learning.
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allow the model to capture all properties of the data (data not
shown).

Figure 5D shows the values of the model compared with the
data for the set of parameters marked with arrows in Figure 5B,C.
These parameters were chosen because they were capable of cap-
turing the amount of pure selectivity in the model (any lower
value of the threshold would lead to too few cells with pure selec-
tivity, for example). On the left are the percentage of cells with
different selectivities as in Figure 3C. The bars are the data and the
lines are the model. On the right are histograms of model values
from 100 instantiations, with the red markers showing the data
values. The model matches the average firing rate and FFT of the
model, as it was fit to do so. Clustering, RV, and the amount of
mixed selectivity are too low in the model. We use these param-
eters as the starting point for learning in this model.

Circuit model with Hebbian learning captures PFC responses
As described above, responses of PFC cells have a set of qualities
that cannot be explained by random connectivity. In particular,
the inability of the random network to simultaneously capture
the values of RV, clustering, pure selectivity, and mixed selectivity
shows that PFC cells have a balance of specialization that may
require learning to achieve. Here, we tested two variants of Heb-
bian learning to determine whether a network endowed with
synaptic plasticity can capture the elements of the data that the
random network could not. The simple form of Hebbian learning
that we use is based on the idea that the input populations that
randomly start out giving strong inputs to a cell would likely
make that cell fire and thus have their weights increased.

In both variants of learning tested, each cell has the weights
from a subset (NL) of its input populations increased while the
rest are decreased to keep overall input constant (this is done via
a weight-increase step and a normalization step). Such balancing
of Hebbian and homeostatic plasticity has been observed exper-
imentally (Keck et al., 2017), particularly via the type of synaptic
up and down regulation used here (Lo and Poo, 1991; Scanziani
et al., 1996; Chistiakova and Volgushev, 2009; Bourne and Harris,
2011). Therefore, it is plausible for an individual neuron to be
able to implement such changes across its synapses.

The difference between our two variants of learning comes
from which input populations are increased. In general, the top
NL input populations from which the cell already receives the
most input have their weights increased (to capture the “rich get
richer” nature of Hebbian learning). In the “constrained” variant,
however, weight increases onto a PFC cell are restricted to pop-
ulations of input cells that come from different task variables
(e.g., C1 and C2; see Materials and Methods). This was done to
ensure that cells had enough variety of inputs to create mixed
selectivity. In the “free” variant, the populations from which a cell
receives increased input due to learning are unrestricted. That is,
they are determined only by the amount of input that the cell
originally received from each population as a result of the ran-
dom connectivity. This unrestricted form of learning is more
biologically plausible as it can be implemented in a way that is
local to the postsynaptic neuron, without knowledge of the iden-
tity of the upstream inputs. A toy example of each variant can be
found in Figure 4B. In this example, free learning and constrained
learning select different input populations to be enhanced. How-
ever, given random weights, free and constrained learning will
select the same input populations in some cells.

Figure 4C shows how the weight matrix changes with different
NL values (the number of populations from which weights are
increased during learning). Eventually, the learning leads to a

steady state in which each PFC cell receives input only from cells
in the top NL populations. The higher the NL, the faster the matrix
converges to its final state. When NL is low, convergence takes
longer as all the weight is transferred to a small number of cells.
This plot is shown with a learning rate of 0.2.

The results of both forms of learning are shown in Figure 6A.
The effects of learning are dependent on NL, and different NL

values are in different colors (NL � 1, 2, 3 are tested here). Free
learning is shown with solid lines, and constrained with dotted
lines, except for the case of NL � 1, where free and constrained
learning do not differ and only one line is shown. In each plot, the
data value is shown as a small black dotted line.

Clustering, mixed selectivity, and RV all increase with learn-
ing, for any value of NL and both learning variants. When NL � 1
(green line), mixed selectivity peaks and then plateaus at a lower
value (as connections to all but one population are pruned),
while other values of NL plateau at their highest values. As it was
designed to do so, constrained learning is very effective at increas-
ing mixed selectivity, eventually getting to nearly 100% of cells.
Free learning produces more modest increases in mixed selectiv-
ity, with NL � 2 leading to slightly larger increases than NL � 3.
Before learning, the model matches the data’s balance of supra-
linear and sublinear interaction effects (ratio of positive to nega-
tive terms: 1.100 � 0.048), and learning does not affect this
balance (1.095 � 0.053, SDs over 20 random instantiations).

A factor affecting selectivity in this model—and especially
with this task structure—is that cells that receive inputs from
multiple populations from a single task variable may not end up
having significant selectivity to that variable. This is especially
true for the “TT” variable, as cells can easily end up with input
from both “Recall” and “Recognition” populations. If the inputs
from these populations are somewhat similar in strength, the cell
does not respond preferentially to either. This can help under-
stand the discrepancy in how pure selectivity changes with free
and constrained learning. In constrained learning, pure selectiv-
ity necessarily increases with learning (to the point where nearly
all networks have 100% pure selectivity), whereas free learning
can have inputs that effectively cancel each other out. A more
direct investigation of how selectivity and other properties
change with learning comes with the analysis of our toy model in
the next two sections.

In these plots, both noise parameters are fixed, which allows
us to see how FFT varies with learning (this is also why the values
at step 0 in Fig. 6A do not always match those shown in Fig. 5, as
that model has noise parameters fit to match the data). The
changes in FFT stem from both changes in robustness to the
additive noise and from changes in the mean responses, which
affects FFT via the multiplicative noise term. Figure 6A shows that
the variant of learning has less of an impact on FFT than NL does.
In all cases, however, learning ultimately leads to lower trial vari-
ability in the model. This is consistent with observations made in
the PFC during training (Qi and Constantinidis, 2012).

Overall, low NL leads to more acutely distributed weights and
stronger structure and selectivity in the model. Constrained
learning, with its guarantee of enhancing weights from different
task variables, is also more efficient at enhancing structure and
selectivity. The PFC data show a moderate level of structure and
selectivity; therefore, the approach best able to capture it is free
learning with NL � 3. In Figure 6B, we show how all model values
compare to the data as this form of learning progresses. These
plots, similar to those in Figure 5B,C, show values in units of
model SDs away from the data. It is clear from these plots that this
form of learning leads all values in the model closer to those of the
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data. The best fit to the data comes after six learning steps with a
learning rate of 0.2 (black arrow). At this point the ratio of the SD
to the mean of the weight distribution has only slightly increased,
remaining within a biologically plausible range. While the best fit
to the data comes before the model reaches its steady state, all
values still eventually plateau to ��2.5 model SDs of the data.
Furthermore, there are many reasons why the PFC may not reach
steady state; for example, once the animal’s performance pla-
teaus, learning may slow (Glimcher, 2011). Also, other uses of the
PFC may interfere with learning and prevent the circuit from
overfitting to this particular task. A detailed exploration of these
mechanisms is beyond the scope of this study.

We plot the values of the data compared with the best-fit
model in Figure 6C, similarly to Figure 5D. At this point, the
average percentage of cells with only pure selectivity is 25.4 � 4.2,
with only mixed 4.4 � 2.2, and with no selectivity 15.9 � 4.1 (the
comparable data values are �36, 1, and 13%, respectively). Thus,
the model with learning is a much better fit to the data than the
purely random network.

In addition to matching the measured properties of the PFC
representation, we also tested whether learning makes the neural

representation more conducive to decoding. To do this for task
information, we trained linear classifiers to read out the task
inputs (i.e., the identities of TT, C1, and C2 separately) as well as
higher-order terms (i.e., the combined identities of TT–C1, TT–
C2, C1–C2, and TT–C1–C2). As expected from a higher-
dimensional representation, decoding performance is better in
the population after learning for both linear and higher-order
terms (Fig. 6D, left). Postlearning accuracy for linear terms is
83.2% and for the higher-order terms 70.5% (the respective val-
ues for constrained learning after the same number of steps are
88.2 and 83%, data not shown). We also used a same– different
task to demonstrate how the representation after learning allows
for better performance on a nonlinearly separable problem. Here,
all combinations of C1 and C2 identities were generated as in-
puts, and a linear classifier was trained to read out whether the
identities of the two cues were the same or not. Trying to read this
information out from the input population is not very successful
as these cells only have pure selectivity (Fig. 6D, right). Random
connectivity is sufficient to expand the dimensionality of the neu-
ral representations and to solve nonlinearly separable problems.
However, the model PFC population generated from random

Figure 6. The model with learning. A, How selectivity measures change with learning. In each plot, color represents NL value, solid lines are free learning, and dotted lines are constrained learning
(only 1 line is shown for NL � 1 as the free and constrained learning collapse to the same model in this circumstance). Step 0 is the random network. Black dotted lines are data values and error bars
are �1 SD over 100 networks. In the pure selectivity plot, with constrained learning and when NL � 1, the value maxes out at 100% in essentially all networks, leading to vanishing error bars. B, All
measures as a function of learning for the NL � 3 free learning case. Values are given in units of model SD away from the data value as in Figure 5 B, C. C, The model results at the learning step
indicated with the black arrow in B. On the left, blue and red bars are the data values as in Figure 3. The lines are model values (averaged over 100 networks; error bars, �1 SD). On the right,
histograms of model values over 100 networks. The red markers are data values. Here, the model provides a much better match to the data. D, Decoding performance increases with learning. Average
performance of classifiers trained to read out linear terms (top left) and higher-order terms (bottom left) from PFC population activity increases after learning compared with the random network
(learned model indicted by arrow in B). Error bars, � 1 SEM, over 10 random instantiations of the network. Read out of same versus different cue identities is better when using the PFC population
after learning (right).
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connectivity performs poorly because the
low threshold that we determined by fit-
ting the model to the data leads to low
levels of mixed selectivity. After learning,
the PFC population performs substan-
tially better on this task.

Understanding properties of selectivity
before learning
We have shown that Hebbian learning can
affect selectivity properties in a model of
the PFC. Some of these impacts, particu-
larly the increase in mixed selectivity, may
seem counterintuitive. Here we use a fur-
ther simplified toy neuron model to un-
derstand the properties of the network
before learning and then demonstrate how
learning causes these changes.

A schematic of this toy model is in Fig-
ure 7A, and it is described in the Materials
and Methods. Briefly, the cell gets four to-
tal inputs: two (A and B) from each of two
task variables (T1 and T2). The output of
the cell is binary: if the weighted sum of
the inputs is above the threshold, �, the
cell is active and otherwise it is not. As in
the full model, � is defined as a fraction,
�, of the sum of the input weights.

This format makes it easy to spot non-
linear mixed selectivity: if the cell is active
(or inactive) for exactly one of the four
conditions, it has nonlinear mixed selec-
tivity to the combination of T1–T2. If the
cell’s output can be determined by the
identity of only one task variable, it has pure selectivity (and
would be active for two of the four conditions). Otherwise it has
no selectivity (active or inactive for all conditions; Fig. 2A,B).

Learning affects selectivity by altering the way a cell represents
these four conditions. To say more about how this occurs, we
must first describe the properties of the representation in the
random network before learning.

To be robust to noise, the cell’s response should be constant
across trials within a condition. Additive noise can be thought of
as a shift in the threshold, which may lead to a change in the cell’s
response. Thus, trialwise additive noise drawn from a distribu-
tion centered on zero can be thought of as a range of effective
thresholds centered on the original one [Fig. 8A, black dotted
line (threshold without noise), gray shaded area (range of effec-
tive thresholds due to noise)]. If the inputs for a given condition
fall in this range, the response of the cell will be noisy (i.e., flipping
from trial to trial) and selectivity will be lost because the cell’s
activity will not be a reliable indicator of the condition. Robust-
ness to noise, then, can be measured as the range of thresholds a
representation can sustain without any responses flipped, with a
larger range implying higher noise robustness (if noise is drawn
from a Gaussian distribution, the noise range can represent
thresholds within 2 SDs, for example, implying that a cell is ro-
bust to noise as long as its response is consistent on 95% of trials).

Assuming optimal threshold values (i.e., those with highest
noise robustness) for each type of selectivity, the relative noise
robustness of mixed and pure selectivity can be calculated (see
Materials and Methods). We find that, thinking of the four con-
ditions as the corners of a rectangle (Fig. 2C), mixed selectivity

robustness depends on the length of the shorter side, while pure
selectivity noise robustness depends on the difference between
the two side lengths. We also find that, with random weights,
most cells will have a representation that has higher noise robust-
ness for pure selectivity than for mixed selectivity (see Materials
and Methods).

Noise robustness changes, however, as thresholds deviate
from optimal. The type of selectivity cells have in the absence of
noise also varies with threshold in a related way. For example,
using a low threshold may result in more cells with mixed selec-
tivity and/or cells with pure selectivity that have low noise robust-
ness (Fig. 2D). To quantify these trends, we varied the threshold
parameter � and determined both the probability of different
types of selectivity as well as the noise robustness for each type
(see Materials and Methods). In Figure 7B, we show for three
different values of � the fraction of cells that lose selectivity at a
given noise level. Noise robustness (plotted as a function of � in
Fig. 7C) is defined then as a normalized measure of the noise
value that causes 50% of cells to lose selectivity.

Figure 7C demonstrates why the random network from which
we start learning is necessarily in a condition of low mixed selec-
tivity. Specifically, the value of � we choose to use is constrained
by the fact that the data show high levels of pure selectivity.
Therefore, we need a value that has high probability of pure se-
lectivity and high noise robustness for it (especially because, as we
will show, pure selectivity is unlikely to increase much with learn-
ing). Values of � that meet this condition are not favorable for
mixed selectivity. Therefore, we need a value that leads to both a
high probability of pure selectivity and high noise robustness for

Figure 7. How noise robustness varies with threshold in a random network using the toy model. A, Schematic of the toy model:
four input populations (2 from each task variable) send weighted inputs to a cell with a threshold (�) nonlinearity. B, For a given
noise value, the fraction of cells that would lose selectivity if that noise value were used. Values are separated for cells with pure
(blue) and mixed (red) selectivity. Three � values shown, where � � �
 W. C, Based on plots like those in B, the noise value at
which 50% of cells have lost selectivity is calculated (“Noise Robustness” refers to these values normalized by the peak value; higher
values are better) and plotted as a function of � (solid lines). On the same plot, the percentage of cells with each type of selectivity
in the absence of noise is shown (dotted lines). The black dotted line marks a � value at which the probability of mixed and pure
selective cells is equal, but their noise robustness is unequal. This plot is mirror-symmetric around � � 0.5.
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pure selectivity (especially because, as we will show, pure selec-
tivity is unlikely to increase much with learning). The fact that
mixed selectivity is less noise robust than pure in the full model
can be seen in Figure 5A.

Note that while the � used for the random version of the full
model shown in Figure 5D was �0.27, that value is not directly
comparable to the � values in these plots for many reasons. First,
the full model has three task variables, compared with the two
used in the toy model. This means that, from the perspective of
mixed selectivity for two task variables, a given � value will create
a higher � in the full model with three task variables than in the
toy one that has only two (because � is a function of the sum total
of all weights, not just those relevant for the two-way selectivity).
In addition, in the toy model, 50% of the inputs are on for any
given condition, whereas the nature of the task in the full model
means that only 25% of inputs are on when looking at C1 � C2
mixed selectivity, while one-third are on for TT � C1, TT � C2,
and TT � C1 � C2 mixed selectivity. The percentage of cells are
also not directly comparable, as cells in the full model are labeled
as pure if they have any of three different types of pure selectivity,
and mixed if they have any of four different types of mixed. This
toy model is thus meant to provide intuition only.

How learning affects selectivity
For the reasons just discussed, the random
model starts in a regime where pure selec-
tivity has high noise robustness and mixed
selectivity does not. To match the amount
of mixed selectivity seen in the data, we
must then rely on learning to increase
noise robustness for mixed selectivity, al-
lowing more mixed cells to move out of
the noise range.

Learning affects noise robustness by
expanding the representation of the dif-
ferent conditions. An example of this is in
Figure 8A, where the gray shaded area
represents the noise-induced range of
the threshold. Before learning, the cell’s
response is affected by the noise. With
learning, different conditions get pulled
away from each other and the threshold,
creating a much more favorable condition
for mixed selectivity to be robust to noise.
As can be seen, the responses are now out-
side the noise range.

For the same reason that learning in-
creases noise robustness (because the ex-
pansion increases the range of thresholds
that support mixed selectivity), it can also
increase the probability of a cell having
mixed selectivity in the absence of noise.
This can be seen in Figure 8C (left), where
learning steps are indicated by increasing
color brightness (constrained learning
with rate of 0.25). At lower � values, cells
that are initially above threshold for all
conditions (no selectivity) gain mixed se-
lectivity with learning. But for � values
that support higher levels of pure selectiv-
ity (e.g., � � 0.4, marked with a black dot-
ted line), the percentage of cells with
mixed selectivity is not as affected by
learning. The percentage of cells with

pure selectivity increases only slightly at most � values.
Noise robustness has a different pattern of changes with learn-

ing (Fig. 8C, right). In particular, at � � 0.4, the noise robustness
still increases with learning even when the percentage of cells with
mixed selectivity does not change. Furthermore, when starting
from a � value that has unequal noise robustness for pure and
mixed selectivities, if most cells with pure selectivity are already
robust to a given noise value, an increase in noise robustness for
pure would only have a moderate effect on the population levels
of pure selectivity. Conversely, if most mixed cells have noise
robustness less than the current noise value, an increase in that
robustness could strongly affect the population. In the same vein,
a decrease in robustness will affect the pure population more than
the mixed population. Thus, changes in noise robustness seem to
play a large role in the increase in mixed selectivity observed in
the full model.

In particular, constrained learning with NL � 2 always in-
creases the lengths of both sides of the rectangle (as one weight
from each task variable increases and the other decreases). As
mentioned above, noise robustness for mixed selectivity scales
with the length of the shorter side and so it necessarily increases
with learning in this condition. Under certain weight conditions,

Figure 8. How learning affects noise robustness. A, A simple toy cell (left) with two task variables is used to show the effects of
learning. The four possible conditions are plotted as dots (green if above threshold, black if not), with the threshold as a dotted
black line. Colored arrows represent the weights from each population. Before learning (middle), the cell’s input on two of the
conditions falls within the range of the shifting threshold created by additive noise (gray area). After learning, all conditions are
outside the noise range. B, A third task variable is added to the model and is another source of additive noise from the perspective
of T1–T2 selectivity. The model’s outputs are color-coded according to which T3 population is active. Weight arrows are omitted for
visibility. After learning with NL � 2, input strength from T3 populations are decreased and the points from the same T1–T2
condition are closer together (less noisy). C, How the percentage of cells with a given selectivity (left) and their noise robustness
(right) change with constrained learning as a function of the threshold parameter �. Learning steps are symbolized by increasing
color brightness (the darkest line is the random model as displayed in Fig. 7C, and the dashed line shows where the percentage of
mixed and pure are the same in the random model).
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noise robustness will also increase for cells with pure selectivity
(Fig. 8C; see Materials and Methods).

If NL � 1, only one side length will increase and the other
decrease. If the shorter side decreases, mixed selectivity noise
robustness decreases. If the shorter side increases, mixed noise
robustness increases, up until the point at which side lengths are
equal. At that point the shorter side is now the decreasing side and
mixed noise robustness goes down. This trend is reflected in the
shape of the mixed selectivity changes seen with NL � 1 in Figure
6A (mixed selectivity increases, then decreases).

When using free learning (with NL � 2), a portion of the cells
will by chance have the same changes as with constrained learn-
ing. The remaining cells cause the differences observed between
the two versions of learning, and can be of two types. In the first
type, the larger side length increases and the smaller shrinks,
causing a decrease in mixed noise robustness. Free learning does
not achieve the same levels of mixed selectivity as constrained
learning because these cells continue to be too noisy. In the other
type, the shorter side increases and the larger decreases, reducing
the difference between the two side lengths and thus reducing
pure noise robustness. Free learning loses pure selectivity as these
cells become too noisy (Fig. 6A; see Materials and Methods).

Inputs from additional task variables can be thought of as a
source of noise as well. In Figure 8B, we add a third task variable
to the toy model. Now, in the case of the T1B–T2A condition, the
identity of T3 determines whether the cell is active or not. From
the perspective of T1–T2 mixed selectivity, this has the same
impact as shifting the threshold, and thus creates noise. If both T3
inputs are weaker than the strongest two inputs from T1 and T2
(as they are here), they will decrease with learning. This means
that not only do different T1–T2 conditions get pulled apart with
learning, but the same T1–T2 conditions become closer. This
reduces the impact of “noise” from other task variables, and ex-
plains why mixed selectivity increases more with NL � 2 than
with NL � 3 (Fig. 6A).

In sum, learning changes a cell’s representation of the task
conditions. Depending on the threshold value, this can create
changes in the probability of mixed and pure selectivity and the
relative noise robustness for each. Here, to match the high levels
of pure selectivity seen in the data, we use a threshold regime
where mixed selectivity noise robustness increases with learning.
This causes a gain in the number of cells with mixed selectivity,
such that it reaches the level seen in the data.

How learning affects other properties
This toy model helps us understand why other properties change
with learning as well. RV, for example, increases with learning
(Fig. 6A). The expansion that comes with learning places differ-
ent conditions at different distances from the threshold. With a
sigmoidal nonlinearity, this would translate to more variance in
the responses across conditions, increasing RV. Because con-
strained learning ensures the most expansion, it increases RV
more. These increases depend on NL because lower NL allows for
a more extreme skewing of weights, and thus a subset of condi-
tions will be far above threshold while the rest are below (leading
to a high RV). RV has a limit, however, because even with NL � 1,
the cell would still respond equally to a quarter of the conditions
(assuming an input from a cue variable).

Clustering values are also affected by how selectivity changes.
Clustering in the data appears to be driven by TT selectivity (Fig.
3C), and as TT preferences develop in the model, the clustering
value increases. Here, the relative sizes of the input populations
play a role. Because the input populations that represent TT con-

tain more cells (Fig. 4A), these populations are more likely to be
among the strongest inputs to a cell, and thus have their weights
increased (note that this bias in favor of TT could also arise from
the fact that only two TTs are possible, and thus these inputs are
on twice as often as cue inputs; such a mechanism cannot be
implemented in this model, however, so we use uneven numbers
of input cells). Therefore, TT selectivity becomes common and
clusters form around the axis representing the first regressor
(which captures TT preference). This effect is weaker with free
learning because both TT populations may have their weights
increased, which diminishes the strength of TT preference. Lower
NL, which minimizes preferences to other task-variable identities,
allows these clusters to be tighter.

Finally, it is important to note that the strength of inputs
shown in Figures 2 and 8 (colored arrows) correspond to, in the
full model, the summed input from all cells representing a given
task-variable identity (i.e., Ii

p), not just to weights from individual
cells. These summed values are what need to change to expand
the representation and see the observed changes. This is impor-
tant for why the Hebbian procedure described here is effective at
changing selectivity, as it assumes that many cells, acting in uni-
son to cause postsynaptic activity, would lead to the increase of
their individual synaptic weights, and thus an increase in the sum
of those weights. Merely increasing the variance of the individual
weights does not cause such a coordinated effect and would be
less effective at driving these changes (Fig. 5C), especially with
larger input population size.

Discussion
Here, motivated by several theoretical proposals about properties
that would benefit encoding, we explored how the PFC represents
task variables during a complex task. In particular, we were inter-
ested in measures of selectivity (particularly nonlinear mixed se-
lectivity), response density, and clustering of cell types according
to preferences. By quantifying and measuring these properties in
a PFC dataset, this work connects theoretical literature with ex-
perimental data to give insight into how the PFC is able to sup-
port complex and flexible behavior. Furthermore, we explored
how these response properties could be generated by a simple
network model. Through this, we find evidence that the particu-
lar level of specialization and structure in the PFC response is not
readily achievable in a random network without Hebbian learn-
ing. After Hebbian learning, the model— despite its relative sim-
plicity—is able to capture many response properties of the PFC.
The changes that come with learning act via an expansion of the
way cells represent conditions, and corresponding changes in
noise robustness.

Interestingly, the variant of Hebbian learning that best matches
the data is not the most effective at increasing mixed selectivity. It
may be that the more effective method (“constrained” learning)
would be too difficult to implement biologically, but perhaps
there is also a computational benefit to the balance of mixed and
pure selectivity found in the data. Particularly, preventing high
levels of selectivity to this particular task may allow the network
to retain flexibility.

In addition to retrospectively matching experimental results,
this model also makes predictions regarding how certain values
should change with training. In particular, clusters of cells de-
fined by selectivity are expected to emerge with training and cell
responses should become less dense across conditions. Previous
work (Rigotti et al., 2013) has shown the value of mixed selectivity
for the ability of a population to perform complex tasks. This
work shows that mixed selectivity increases with learning, and
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these changes in the PFC may correspond to increases in perfor-
mance (Pasupathy and Miller, 2005), as learning in our model
leads to increases in performance on classification tasks. Perhaps
surprisingly, this model also predicts a concurrent, though small,
decrease in pure selectivity. However, studies that have tracked
PFC responses during training show signs of these changes. For
example, in Meyer et al. (2011), the amount of pure selectivity
was measured directly before and after training, and a significant
drop in the percentage of cells with pure selectivity was indeed
observed. Furthermore, in the hippocampus, an increase in
mixed selectivity and a slight decrease in pure selectivity were also
observed with learning (Komorowski et al., 2009). Meyers et al.
(2012) showed that the ability to read out match/nonmatch of
two input stimuli from the population increases dramatically
with learning, suggesting an increase in mixed selectivity. How-
ever, the ability to decode the identity of the stimuli (in the com-
parable portion of the trial) decreases slightly after training,
which would be at odds with our linear classification results.

Our model makes many simplifying assumptions. The inputs,
for instance, are binary cells that encode only the identity of
different task variables. While this implies that the cells represent-
ing cue identities already have mixed selectivity (responding to
the combination of the image and its place as either C1 or C2), it
is still an assumption that the cells providing input to the PFC are
otherwise unmixed. This is something that, given current exper-
imental evidence, seems plausible (Pagan et al., 2013), but would
benefit from further experimental exploration.

It may seem possible that adding more layers to the network
would be a way to get the model to match the data without the
need to introduce learning. This, however, is unlikely. For one,
the data have high levels of pure selectivity, which would be dif-
ficult to maintain through layers of random connections. Mixed
selectivity, too, could decrease with layers, especially if each layer
is noisy (which would be the realistic way to build such a model).
It is also not obvious how such a model would achieve the clus-
tering values observed in the data. Preliminary work on multi-
layer models supports these notions (data not shown). Also, such
a model would not be able to address the changes with training
discussed above. Finally, such a model would necessarily contain
more parameters than a single layered network, and that would
need to be taken into account when comparing with our learning
model, which only introduces two additional parameters (NL and
the amount of learning, defined by the combination of learning
rate and number of steps).

Another valuable endeavor would be to expand this model in
the temporal domain. Currently in the model, all the task-
variable inputs are given to the network simultaneously. In the
experiment, of course, there is a delay between C1 and C2. Delay
activity is known to exist in such areas as the inferotemporal
cortex (Fuster and Jervey, 1982; Woloszyn and Sheinberg, 2009),
and so this information could be being fed into the PFC at the
same time. But presumably, recurrent connections in the PFC,
and even possibly between the PFC and its input areas, can en-
hance or alter selectivity. A recurrent model could also explore
how PFC responses and representation vary over the time course
of the trial, as recent experimental work has provided insight on
this (Murray et al., 2017). Interestingly, recent work has demon-
strated that Hebbian learning can be used to train recurrent neu-
ral networks on context-dependent tasks (Miconi, 2017).
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