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the Frontoparietal Cortex Mediates Behavioral Flexibility
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Cognitive flexibility forms the core of the extraordinary ability of humans to adapt, but the precise neural mechanisms underlying our
ability to nimbly shift between task sets remain poorly understood. Recent functional magnetic resonance imaging (fMRI) studies
employing multivoxel pattern analysis (MVPA) have shown that a currently relevant task set can be decoded from activity patterns in the
frontoparietal cortex, but whether these regions support the dynamic transformation of task sets from trial to trial is not clear. Here, we
combined a cued task-switching protocol with human (both sexes) fMRI, and harnessed representational similarity analysis (RSA) to
facilitate a novel assessment of trial-by-trial changes in neural task-set representations. We first used MVPA to define task-sensitive
frontoparietal and visual regions and found that neural task-set representations on switch trials are less stably encoded than on repeat
trials. We then exploited RSA to show that the neural representational pattern dissimilarity across consecutive trials is greater for switch
trials than for repeat trials, and that the degree of this pattern dissimilarity predicts behavior. Moreover, the overall neural pattern of
representational dissimilarities followed from the assumption that repeating sets, compared with switching sets, results in stronger
neural task representations. Finally, when moving from cue to target phase within a trial, pattern dissimilarities tracked the transforma-
tion from previous-trial task representations to the currently relevant set. These results provide neural evidence for the longstanding
assumptions of an effortful task-set reconfiguration process hampered by task-set inertia, and they demonstrate that frontoparietal and
stimulus processing regions support “dynamic adaptive coding,” flexibly representing changing task sets in a trial-by-trial fashion.
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Introduction
“Cognitive control” describes a set of processes that allows indi-
viduals to coordinate thoughts and actions in accordance with
internal goals (Miller and Cohen, 2001). A key component of

cognitive control is the capacity to flexibly configure, and switch
between, “task sets,” rule representations that define currently
relevant stimulus attributes and determine how they map onto
responses (for review, see Monsell, 2003; Kiesel et al., 2010; Vand-
ierendonck et al., 2010). Shifting task sets incurs a “switch cost,”
as reflected in slower and more error-prone responses when par-
ticipants are cued to perform a different task (switch trials) from
the previous trial, compared to when participants repeat the same
task (repeat trials). A large behavioral literature suggests that this
response-time (RT) cost is attributable to a combination of time
required for resolving proactive interference from residual acti-
vation of the previous, no-longer relevant set (“task-set inertia”;
Allport et al., 1994; Wylie and Allport, 2000) and of time required
for constructing or retrieving the newly cued set (“task-set recon-
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Significance Statement

Humans can fluently switch between different tasks, reflecting an ability to dynamically configure “task sets,” rule representations
that link stimuli to appropriate responses. Recent studies show that neural signals in frontal and parietal brain regions can tell us
which of two tasks a person is currently performing. However, it is not known whether these regions are also involved in dynamically
reconfiguring task-set representations when switching between tasks. Here we measured human brain activity during task switching and
tracked the similarity of neural task-set representations from trial to trial. We show that frontal and parietal brain regions flexibly recode
changing task sets in a trial-by-trial fashion, and that task-set similarity over consecutive trials predicts behavior.
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figuration”; Rogers and Monsell, 1995; Meiran, 1996, 2000).
Moreover, higher error rates on switch trials indicate that a newly
reconfigured set is more labile than a repeated set. However, the
exact way in which the flexible transition between task sets across
trials maps onto dynamic neural coding of task representations in
the human brain is presently not well understood.

One major reason for this is that most functional magnetic
resonance imaging (fMRI) studies delineating neural substrates
of task switching have simply contrasted mean activity levels be-
tween switch and repeat cues or trials. This work has implicated
the lateral inferior frontal cortex, the presupplementary motor
area (pre-SMA), superior and inferior parietal cortices, and the
striatum in switch processes (Dove et al., 2000; Sohn et al., 2000;
Brass and von Cramon, 2002, 2004; Johnston et al., 2007; Braem
et al., 2013; Ruge et al., 2013; Korb et al., 2017). However, mean
activation contrasts cannot speak directly to these regions’ poten-
tial roles in representing and modifying task sets. For that
purpose, multivariate, information-based brain mapping tech-
niques, like multivoxel pattern analysis (MVPA: Haynes and
Rees, 2006; Kriegeskorte et al., 2006) are required. A handful of
recent studies employing such multivariate methods have shown
that the currently relevant task set can be decoded from activity
patterns in frontoparietal and visual cortices (Woolgar et al.,
2011; Waskom et al., 2014; Wisniewski et al., 2015), and that task
distinctiveness in these areas can be enhanced by reward (Etzel et
al., 2016) and training (Garner and Dux, 2015). These studies
suggest a key role for frontoparietal and stimulus processing re-
gions in representing task sets, but they do not characterize the
role of these regions in the dynamic reconfiguration of task-set
representations from trial to trial.

In the present study, we generated a set of fundamental pre-
dictions about neural task-set representations based on the cog-
nitive literature, and tested those hypotheses by combining fMRI
during a cued task-switching protocol with MVPA and represen-
tational similarity analyses (RSA; Kriegeskorte and Kievit, 2013).
Specifically, we first replicated previous studies (Woolgar et al.,
2011; Waskom et al., 2014) in using MVPA to decode the cur-
rently relevant task set from activation patterns in frontoparietal
and visual regions, and we show that task sets are encoded with
less fidelity on switch trials than on repeat trials. Subsequently, we
used RSA to probe trial-to-trial dynamics of task-set representa-
tions. We first show that neural pattern similarity across trials is
greater for repeat trials than for switch trials, and that the degree
of this cross-trial task-set (dis)similarity predicts behavior. We
then use RSA to track the within-trial transformation of task-set
representations, showing how, on switch trials, multivoxel activ-
ity patterns gradually become more dissimilar to the no-longer
relevant, previous-trial task set (and more similar to the newly
relevant task set) when moving from processing of the switch cue
to the onset of the imperative task stimulus. Together, these data
show that behavioral rule switching is supported by dynamic
trial-by-trial recoding of task-set representations in frontoparie-
tal and stimulus processing regions.

Materials and Methods
Participants. Forty-six right-handed, healthy young adults participated in
our study. All of them had normal or corrected-to-normal vision, and
none of them had a history of neurological or psychiatric illness. Two
volunteers were excluded because they did not complete the tests. The
final sample (44 subjects; age range: 19 –25 years) included 27 females
with a mean age of 20.9 years (SD, 1.26) and 17 males with a mean age of
21.8 years (SD, 1.9). The study was approved by the Southwest University

Brain Imaging Center Institutional Review Board. We obtained written
informed consent from all the volunteers.

Stimuli. Cue stimuli consisted of black circle and square outlines on a
gray background, which were sized to be half the width of the target
stimuli. Each target stimulus consisted of one superimposed semitrans-
parent face and house picture (Fig. 1A). The face stimuli belonged to a set
of eight emotionally neutral faces, four males and four females, selected
from the Chinese Affective Picture System collection (Lu et al., 2005). A
set of eight house stimuli, including four one-story and four two-story
houses, was selected from the Internet. Each face was combined with each
house to form the target stimuli, thus producing 64 unique compound
stimuli. All target stimuli were gray-scaled, set to the same luminance,
and presented with the same resolution (260 � 300 pixels; Fig. 1A). The
contrast of the monitor was set to be constant across subjects.

Task and procedure. We employed a cued task-switching paradigm
(Allport et al., 1994) where, on each trial, subjects were cued to perform
one of two alternative tasks (face task vs house task). In the face task,
subjects had to decide if the face feature of the compound stimulus was
male or female. The right index and the left middle finger were used to
indicate the gender of the face. Responses with the right and left hand
were balanced such that half the participants responded to male with the
right index finger and female with the left middle finger, and the other
half had the opposite stimulus response mapping. In the house task,
subjects had to decide whether the house feature of the compound stim-
ulus was a one-story or a two-story building. The left index finger and the
right middle finger were used to categorize the house, and right-hand and
left-hand responses for the house task were also counter-balanced across
subjects. Thus, the task stimuli were physically identical in both tasks as
well as for repeat and switch trials.

Subjects underwent two scanning runs in the experiment, and each
run consisted of 128 trials. Each target stimulus was used twice in each
run in random sequence. During each run, participants were granted a
10 s rest after each block of 32 trials. Half the trials required participants
to perform the face task while the other half required participants to
perform the house task. Which task to perform next was presented in a
pseudorandom sequence and set unpredictably from trial to trial. Specif-
ically, there were 56 switch trials (where the cued task for the current trial
differed from that on the previous trial) and 68 repeat trials (where the
cued task for the current trial was the same as on the previous trial) in
each run, consisting of 28 face task-set repetition trials, 35 face task-set
switch trials, 28 house task-set repetition trials, and 33 house task-set
switch trials. For each run, four trials (the first in each block) were neither
repeat nor switch trials. As shown in Figure 1A, each trial started with a
fixation cross (random jitter for 1000, 2000, or 3000 ms), followed by a
cue stimulus (500 ms) indicating which task to perform. The circle cue
cued the face task, and the square cue cued the house task. A blank screen
(random jitter for 500, 1500, or 2500 ms) was then shown during the
cue-target interval (CTI). The target stimuli were present for 2000 ms,
and participants were asked to respond as soon as possible after target
onset (response deadline, 2000 ms), while striving for accuracy. Before
the main task, practice blocks comprising 20 trials were conducted out-
side the scanner. The formal task started if the accuracy rate in a practice
block reached 90%.

Note that the present task protocol employed a 1:1 mapping of cue-
to-task, which means that it was not designed to distinguish between
costs due to cue switching versus task switching (Arrington et al., 2007).
Rather, we here treat the processes of cue encoding/interpretation and
the subsequent task-set reconfiguration as representing two sequential
components of the broader process of interest, namely, the modification
of mental rule representations that takes place when participants are
prompted to change tasks.

Experimental design and statistical analysis. As detailed above, in terms
of behavior, the experimental task design created two conditions of in-
terest: task-repeat trials and task-switch trials. Behavioral effects of this
factor were assessed with paired-sample t tests on mean response time
and accuracy. Neuroimaging analyses examined both the task factor (face
task vs house task) and the task transition (repeat vs switch trial) factors.
As described in detail below, MVPA was used to search for brain regions
whose activity could distinguish between face-task and house-task trials
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(at above-chance levels, corrected for multiple comparisons), and also to
determine whether this classification success differed between repeat and
switch trials. As also described in detail below, RSA was used to measure
representational dissimilarity between different trial types from data in
regions of interest (ROIs) resulting from the above MVPA. Dissimilarity
was assessed between consecutive trials as a function of whether they
were repeat or switch trials, and between the four possible trial categories
of face–repeat, face–switch, house–repeat, and house–switch trials. All
statistical tests were corrected for false-positive inflation due to multiple
comparisons.

Generating predictions for neural representations. A number of funda-
mental, but largely untested, implications for the nature of neural task-
set representations follow from the cognitive psychology literature,
which we here make explicit in the form of hypotheses that can be tested
with MVPA and RSA approaches. To probe the nature of neural task-set

representations, we begin by localizing the key brain regions supporting
those representations. Following previous studies (Woolgar et al., 2011;
Waskom et al., 2014; Wisniewski et al., 2015), we conducted an MVPA to
delineate regions from which the nature of the currently active task set
(face or house task) can be reliably decoded (see Defining task-set-
sensitive regions with searchlight MVPA). Based on the common behav-
ioral finding of better performance in repeat compared with switch trials,
we derive Hypothesis 1 as follows: task-set representations on switch
trials should be more labile/less stable than on repeat trials (see,
Classification accuracy and distance to the hyperplane analysis).

Second, the basic assumption of task-set recoding within a common
set of brain regions implies Hypothesis 2 as follows: task-set representa-
tions over consecutive trials should be more similar for task-repeat trials
(since the same task set remains active) than for task-switch trials (where
sets need to be changed; see RSA of consecutive trials). Moreover, based on

Figure 1. Experimental protocol and behavior. A, On each trial of a cued task-switching paradigm, subjects were cued to perform either a face task (decide whether the face shown is male or
female) or a house task (decide whether the house shown is a one-story house or a two-story house) on stimuli consisting of semitransparent, overlaid face and house pictures. B, Mean reaction time
and accuracy rates (� mean SE) are displayed as a function of trial types (switch, repeat) and CTI. ACC, Accuracy.
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the fundamental assumption that the fidelity of
neural task-set representations determines our
ability to implement the task rules behavior-
ally, we derived Hypothesis 3 as follows: the
relative (dis)similarity of neural task-set repre-
sentation between consecutive trials should
predict behavior; high similarity should benefit
performance on repeat trials but impair it on
switch trials.

Hypothesis 4 concerns the overall pattern of
representational (dis)similarities implied by
the findings of task-set inertia and reconfigu-
ration costs. Figure 2A depicts the predicted
relative pattern dissimilarity of the four possi-
ble trial types in our experiment: repeat trials
with faces as the repeated relevant stimulus
feature [FaceRepeat (FR)], repeat trials with
houses as the repeated relevant stimulus fea-
ture [HouseRepeat (HR)], switch trials with
faces as the newly relevant stimulus feature
[FaceSwitch (FS)], and switch trials with
houses as the newly relevant stimulus feature
[HouseSwitch (HS)]. In Figure 2A, the point of
origin reflects the absence of a face/house task
set, and displacement to the left or right along
the horizontal axis reflects the adoption of an
increasingly stable/reliable representation of
the face task set or house task set, respectively.
The assumed dissimilarities of neural patterns
are reflected in the length of horizontal arrows
between conditions, where a longer line repre-
sents greater neural pattern dissimilarity.

Starting in an assumed neutral position (the
point of origin), if a subject is cued to perform
the face or house task, the respective task set is
being configured and representations get dis-
placed from the point of origin accordingly
(Fig. 2A, First trial arrows). If on the subse-
quent trial, the same task is cued again (repeat
trial), the task-set representation is reinforced,
and thus moves farther away from the point of
origin (Fig. 2A, FR and HR arrows). By con-
trast, if the alternative task is cued, the repre-
sentation has to be reconfigured, meaning that
it has to pass through the point of origin, and
our model assumes (in line with the behavioral
literature) that this traversing of representa-
tional space results in a less stable task-set rep-
resentation (less distance from the point of origin) than on repeat trials
(Fig. 2A, FS and HS arrows).

Based on these simple assumptions, the following predictions can be
derived: unsurprisingly, distances between trial pairs that involve the
same task are generally expected to be shorter than those between pairs
involving different tasks, such that the dissimilarity between FR and HS
(as well as FS and HR) trial types (Fig. 2A, iii, iv) is predicted to be greater
than that between FR and FS (as well as HR and HS) conditions (Fig. 2A,
i, iv). Note though that we cannot predict whether the dissimilarity between
FR and FS (as well as between HR and HS) conditions (Fig. 2A, i, vi) would
be smaller or greater than that between FS and HS conditions (Fig. 2A, v),
because we do not know the absolute starting and end points of the FR/HR
and HS/FS conditions. More interestingly though, in terms of contrasting
conditions involving face versus house task sets, we can predict that FR and
HR trials should have the most dissimilar representations (Fig. 2A, ii), and FS
and HS trials the least dissimilar representations (Fig. 2A, v), with the dis-
tances between FS and HR conditions and between FR and HS conditions
(Fig. 2A, iii, iv) falling between these extremes. In sum, if the pattern of neural
representations conforms to the predictions of this model (Hypothesis 4),
then the neural pattern dissimilarities should conform to the following

pattern: (FS–HS, HR–HS, FR–FS) � (FS–HR, FR–HS) � (FR–HR) (see,
Representational RSA of consecutive trials).

Finally, this model sketch also allows us to make predictions about
how representational distance (dissimilarity) should dynamically change
in the course of cue and target processing. Specifically, based on the
fundamental assumption that during switching, the neural representa-
tion moves from representing the previous trial set (task-set inertia) to
being reconfigured to represent the newly relevant set, we derive Hypoth-
esis 5 as follows: as the participant moves from encoding the task cue to
the onset of the target stimulus, the dissimilarity between FS and HS
should increase, while the dissimilarity between FR and FS (as well as
between HR and HS) should decrease; moreover, the dissimilarity be-
tween FR and HS (as well as between FS and HR) should increase when
moving from the cue to the target period (see Using RSA to track task-set
transformation).

fMRI data collection. All fMRIs were collected on a Siemens 3T Trio
scanner (Siemens Medical Systems). A foam pad was used to minimize
subjects’ head motion. fMRI images were acquired using gradient-echo
echo planar imaging sequence (TR/TE � 1500/30 ms; flip angle, 90°;
resolution matrix, 64 � 64; FOV, 192 � 192 mm 2; slice thickness, 5 mm;

Figure 2. Predicted and observed patterns of ROI-based representational dissimilarities. A, A graphical depiction of the pre-
dicted pattern of neural representational dissimilarities (or distances) between the four possible trial types: FR, FS, HR, and HS.
Displacement to the left or right along the horizontal axis from the point of origin reflects the adoption of an increasingly stable/
reliable representation of the face task set or house task set, respectively. The assumed dissimilarities of neural patterns are
reflected in the length of horizontal arrows between conditions, where a longer line represents greater neural pattern dissimilarity.
Roman numerals are used to denote distances between different pairs of conditions (see Generating predictions for neural repre-
sentations and Using RSA to track task-set transformation). B, The observed mean neural pattern dissimilarities (� mean SE),
averaged across ROIs, are shown for the cue and target phase, respectively, for each condition pairing. HR–HS, house repeat–
house switch distance (i); FR–HR, face repeat– house repeat distance (ii); FS–HR, face switch– house repeat distance (iii); FR–HS,
face repeat– house switch distance (iv); FS–HS, face switch– house switch distance (v); FR–FS, face repeat–face switch distance
(vi). *p � 0.05.
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acquisition voxel size, 3.0 � 3.0 � 5 mm 3). A total of 24 slices were used
to cover the whole brain.

Data preprocessing. fMRI data were preprocessed using Statistical
Parametric Mapping 8 (Welcome Trust Centre for Neuroimaging, Lon-
don, UK; http://www.fil.ion.ucl.ac.uk/spm; RRID:SCR_007037) imple-
mented in Matlab 2009b (Mathworks; RRID:SCR_001622). For each
run, the first five functional volumes of each participant served for the
scanner to reach steady state and were discarded before analyses. The
remaining scans were slice-time corrected and subsequently realigned
to the first image to correct for head motion. The MVPA and pattern-
similarity analyses were performed within native space. The time series
for each voxel within a run was detrended to correct for drift, and z-score
normalized to account for voxelwise signal change between runs (Pereira
et al., 2009; Guidotti et al., 2015). For classification analyses, the data
were not smoothed (Waskom et al., 2014; Vickery et al., 2015).

Behavioral data analysis. The mean RT and mean accuracy rate for trial
types � CTIs were calculated for each subject. Extreme RTs (3 SDs above
or below the mean) and incorrect responses were excluded from the RT
analyses. To assess switch costs as a function of CTI, a 2 (trial type: switch
vs repeat) � 3 (CTI: 500, 1500, 2500 ms) repeat-measures ANOVA was
performed for the mean RTs and accuracy rates, respectively.

MVPA. MVPAs were implemented using the Princeton MVPA tool-
box (http://code.google.com/p/princeton-mvpa-toolbox) in combina-
tion with a linear support vector machine (SVM) classifier from the
Library for Support Vector Machines (RRID:SCR_010243; Chang and
Lin, 2001). Whole-brain � maps were estimated from the first-level
subject-wise GLM analyses, and a searchlight approach was then applied
to these � maps (Kriegeskorte et al., 2006; Haynes et al., 2007). To obtain
these � maps, we adopted a “least-squares all” approach (Mumford et al.,
2012). The decoding analysis focused on the cue stage of each trial rather
than on the target stage, because in this analysis we were interested in
brain activity associated with cue-related task-set reconfiguration and
interference resolution processes rather than task implementation and
response execution. Specifically, a separate task-cue event regressor
(stick function with 0 duration, convolved with SPM’s hemodynamic
response function) for each trial was defined in the design matrix and
regressed against the neural data. Additionally, six head-motion param-
eters were modeled as nuisance variables. With this procedure, the neural
cue response for each trial resulted in a single � map per trial. Because
each trial was defined by a separate regressor in the same design matrix,
the �’s reflected the unique variance accounted for by each cue response.
The patterns of activation (one � map for each trial) were then concate-
nated to construct a subject-wise activation magnitude (Rissman et al.,
2004).

Defining task-set-sensitive regions with searchlight MVPA. In our initial
analyses, we employed searchlight MVPA to identify brain regions that
encoded task-set representations, asking from which voxel clusters in the
brain we could decode the currently relevant task set (cf. Woolgar et al.,
2011; Waskom et al., 2014). This analysis served to replicate previous
studies and to define ROIs for our main analyses, where we used RSA to
track changes in neural task-set representations across and within trials.
We employed two-voxel radius searchlights (each searchlight contains
�33 voxels) in the searchlight analysis, and trained a classifier for each
subject separately. For each participant, the searchlight sphere extracted
data from the non-normalized and unsmoothed � images, and the
sphere moved around to include each voxel in the brain as its center voxel
once. A linear SVM, with the parameter set at c � 1, then classified each
sphere’s data into face task set or house task set. The classification accu-
racy value of each sphere was assigned to the center voxel in the sphere.
We calculated mean classification accuracies with a split-halves cross-
validation procedure. Specifically, for each cross-validation, one of the
two fMRI runs served as a training set, and the other run was employed as
the test set. This step was repeated twice, and the two accuracies for each
voxel were averaged to get the final mean accuracy map. A whole-brain
gray matter mask was employed to restrict the search regions for the
searchlights. Incorrect trials and trials with outlier RTs (�3 SDs or �3
SDs compared with the mean RT) were excluded from the classification
analysis. Because of this procedure, the number of face-task samples and
house-task samples was often unequal, which can bias the classifier. To

avoid this bias, we randomly sampled the valid face trials if the number of
valid face trials was larger than that of the house trials, and vice versa. In
this way, we conserved the most trials while submitting an equal number
of face and house samples to the classifier. The same was done before the
RSA analysis, including the RSA analysis among FR, FS, HR, and HS
trials. The accuracy images for individuals were normalized by applying
the warping parameters acquired at the preprocessing stage, resampled to
a resolution of 3 � 3 � 3 mm 3, and smoothed using an isotropic Gauss-
ian kernel with 6 mm 3 full-width at half-maximum (FWHM). These
normalized and smoothed images were then submitted to a second-level
(random effects) one-sample t test to locate voxels that showed signifi-
cantly higher classification accuracy than chance (0.5) at the group level.
The group statistical t map was then corrected for multiple comparisons
by using a cluster-level false discovery rate (FDR) at a corrected threshold
of p � 0.05. The FDR correction was done using SPM with a cluster-
forming threshold of p � 0.001, which is considered relatively conserva-
tive (Eklund et al. (2016). To create individual ROIs, 6-mm-radius
spheres were centered on the peak voxels of clusters identified in the
above analysis, resulting in 12 ROIs. These local peak-focused ROIs were
employed instead of the mean activity across entire clusters because some
of the clusters we observed stretched across different brain regions, which
we aimed to keep separate in our analyses. We used these ROIs for all
subsequent analyses.

Classification accuracy and distance to the hyperplane analysis. To test
Hypothesis 1, that task sets would be more stable and distinguishable for
repeat trials compared with those for switch trials, we compared the
respective distances of switch-trial versus repeat-trial exemplars from the
hyperplane in the above MVPA. It was expected that the distance from
the hyperplane would be shorter for switch trials than for the repeat trials,
and that there would be fewer correct classifications in switch trials com-
pared with repeat trials. Specifically, in the MVPA described above, the
fMRI data of the face and house task sets were projected onto a one-
dimensional “hyperplane,” defined by the decision boundary of the lin-
ear SVM classifier, which divides the feature space (the voxel-response
space in our study) into two areas, one corresponding to the response
pattern of the face task and the other one to the response pattern of the
house task. The multivoxel � value of each test exemplar is located at
some direction and distance from the hyperplane in one of the two areas
of the space. The ability of a voxel to classify a given exemplar is reflected
by the distance between the test exemplar and the SVM hyperplane:
exemplars farther from the hyperplane can be more easily classified and
more confidently assigned to that class than exemplars closer to the hy-
perplane (Frankland and Greene, 2015; Manelis and Reder, 2015; Etzel et
al., 2016).

We calculated the distance between each test exemplar and the hyper-
plane for each subject. The distances of the misclassified exemplars were
defined as negative. The classification function for each test exemplar is
given by the following equation (Eq. 1):

yi � sng�wTxi � b�,

i � 1, . . ., N, �N: number of samples)

Which class the exemplar belongs to is determined by the class label yi. If
the sample comes from a class of interest, then yi � 1. If the sample comes
from the other class (for binary classification problem), then yi � 	1.
sgn(.) is a sign function, sgn(x) � 
1, 0, 	1 if x � 0, x � 0, and x � 0,
respectively. xi denotes the voxel response vector for the present test trial,
w indicates the weight vector for each cross-validation iteration, T repre-
sents vector transposition, and b is the constant term. w and b are esti-
mated by a linear SVM from the training dataset. The weight vector w is
obtained by minimizing the following objective function (Eqs. 2– 4):

1

2
wT w � C�

i�1

N

�i

subject to yi�w
Txi � b� � 1 � �i

and �i � 0
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The slack variable �i is introduced to account for nonseparable cases (i.e.,
the two classes cannot be separated without classification error). The
slack variable is weighted by C (i.e., to the extent misclassification is
allowed).

We can combine the objective function Equation 2 and the constraint
Equations 3 and 4 into one nonconstraint function by introducing a
Lagrange multiplier. The weighted vector w can be solved from the com-
bined formula as follows (Eq. 5):

w � �
i�1

N

	i yi xi

Where 	i is the Lagrange multiplier, which determines whether the input
vector xi is a support vector. xi is the support vector if the corresponding
	i is nonzero.

The distance between a test exemplar and the hyperplane can then be
computed as follows (Eq. 6):

di �
�wTxi � b�

�w�

We calculated the mean distance and classification accuracy for switch
and repeat trials, respectively (per voxel, at the individual subject level,
using the searchlight method). Subsequently, these distance and accuracy
rate maps were normalized, resampled to 3 � 3 � 3 mm 3, and smoothed
with a 6 mm FWHM kernel. The distance and accuracy rate data were
then extracted for the ROIs from the maps, and several second-level
paired-sample t tests were employed to explore the difference between
the switch and repeat trials. To control the risk of false-positive results,
multiple-comparison correction was applied to keep the FDR at �0.05.
The same processing procedure pipeline for producing the statistical
maps (normalization, resampling, smoothing, and ROI data extraction)
was also applied for all the following analyses.

RSA of consecutive trials. To probe Hypothesis 2, the fundamental
assumption that neural task-set representations remain stable (similar)
in repeat trials but are altered in switch trials, we performed RSA to
compare the neural pattern similarities between consecutive trials for
switch versus repeat trials. RSA is used to describe representational struc-
ture and validate competing models of that structure (Kriegeskorte et al.,
2008; Kriegeskorte and Kievit, 2013). RSA is complementary to classifi-
cation analyses and tests whether the similarity of different stimuli or
conditions can be matched with the similarity of their corresponding
neural patterns. This approach provides a representational similarity ma-
trix (e.g., a pairwise correlation matrix for brain activity from different
conditions) of the neural data to calculate the similarity of different
conditions (Khaligh-Razavi and Kriegeskorte, 2014; Skerry and Saxe,
2015). Here, we first computed the correlation of the � maps between
consecutive trials for each voxel at the individual subject level. These
correlation maps were then r-to-z transformed, and averaged across trials
for task switch and repeat trials, respectively. To verify whether consec-
utive trial similarities would be larger in task-repeat trials compared with
task-switch trials, group-level paired-sample t tests were performed for
consecutive trial similarities between switch and repeat trials for each
ROI. Note that high temporal autocorrelation in the BOLD signal is likely
to promote a relatively high similarity of neural patterns across consec-
utive trials in a given brain region. However, this does not represent a
confound in the current analysis, as we make no claims about absolute
levels of pattern similarity but are only interested in comparing the rela-
tive dissimilarities of consecutive switch trials versus those of consecutive
repeat trials. Moreover, as each trial was defined by a separate regressor in
the same design matrix, the unique variance accounted for by each trial is
isolated by the multiple-regression analysis.

In addition to assessing representational similarities between task-set
representations of consecutive trials between repeat versus switch trials
(i.e., first-order trial sequences), we also conducted an RSA on second-
order task repetition (e.g., three face-set trials in a row) and switch se-
quences (e.g., a face-set, house-set, face-set trial sequence). This provided
another test of our model’s predictions. Here, our model predicts a
greater task-set similarity for consecutive (second-order) repeat trials
compared with a repeat trial that was preceded by a task switch (first-

order), as the successively repeated task set will become more ingrained
(moving farther away from the point of origin in Fig. 2A). For consecu-
tive (second-order) switch trials, the prediction is the same, but for a
different reason: namely, that a first-order switch (a switch trial following
a repeat trial) represents a transition from a well-established set (a long
distance from the point of origin in Fig. 2A) to a new set, which involves
a greater representational distance compared with a second-order switch
(two switch trials in a row), which represents a transition between two
weakly established sets (each of which lies closer to the point of origin).
Thus, we predicted that representational similarities would be greater for
consecutive repeat trials than repeat trials preceded by a switch trial
(FR–FR/HR–HR � FS–FR/HS–HR), and greater for consecutive switch
trials than for switch trials preceded by a repetition trial (FS–HS/HS–
FS � FR–HS/HR–FS).

Hypothesis 3 was that the cross-trial (dis)similarity of neural patterns
should be predictive of behavior, based on the assumptions that high
neural pattern similarity over consecutive trials should be beneficial for
repeat-trial performance but detrimental for switch-trial performance.
Specifically, greater representational similarity between consecutive tri-
als in repeat trials would indicate a better retention of the previous-trial
task set, which should be associated with faster behavioral responses than
in repeat trials where the cross-trial pattern similarity was low. Con-
versely, greater neural pattern similarities between consecutive trials in
switch trials would indicate stronger interference from the previous trial
or a failure to reconfigure the new task set, which should be associated
with slower behavioral responses than in switch trials where the cross-
trial pattern similarity was low. Therefore, we computed the correlation
between the consecutive trial similarities (r-to-z-transformed correlation
coefficients) and RTs of the corresponding trials. We predicted that
the consecutive trial similarities and trial-by-trial RTs would be posi-
tively correlated in switch trials and negatively correlated in repeat trials.
Only correct trials were employed in these analyses.

Using RSA to track task-set transformation. Hypothesis 4 concerned the
predicted overall pattern of neural representational similarities over all
trial types (Fig. 2A), and Hypothesis 5 relates to how this pattern should
be dynamically transformed when moving from the time of cue presen-
tation to the time of task-set implementation in the target period. To test
these predictions, we conducted an additional set of RSAs assessing the
relative pattern similarity of the four possible trial types (FR, FS, HR, and
HS) for cue and target events, respectively. We computed the voxel re-
sponse pattern in the target phase in the same way as it was done for the
cue phase (see MVPA). Then, the � values for the cue and target phases
were subjected to pattern-similarity analysis. We first labeled trials as
belonging to the four trial types at the individual-subject level, and then
the neural activation patterns for the cue stimuli of each voxel (using
searchlights) were averaged across trials for each type of trial, respec-
tively. For the four averaged activation patterns, pairwise correlations
were calculated, resulting in six correlation coefficients for each voxel.
The six correlation coefficients were submitted for r-to-z transformation.
We then took the mean of the ROIs to get an “averaged ROI.” Thus, there
are six pattern dissimilarities (1 – pattern similarity) for each subject.
Every two of the six pattern dissimilarities were paired and subjected to
second-level paired-sample t tests (C6

2), resulting in 15 paired-sample t
tests for the averaged ROI. The above procedures were also done for the
voxel response of the target phase, also producing 15 paired-sample t
tests for the target phase. To avoid possible false-positive results, multiple-
comparison correction was applied by maintaining FDR at �0.05 (Ben-
jamini and Hochberg, 1995; Benjamini and Yekutieli, 2001).

To validate whether the pattern dissimilarities change with time, these
similarities were averaged across ROIs for the cue and target phase, re-
sulting in six dissimilarities for the cue and target phase respectively.
Then, these mean pattern dissimilarities were submitted to paired-
sample t tests (cue vs target phase).

Results
Behavioral results
The repeated-measures ANOVAs for RTs and accuracy rates re-
vealed that switch trials were slower (F(1,43) � 84.8, p � 1 �
10	11, 
p

2 � 0.76) and less accurate (F(1,43) � 19.7, p � 1 � 10	5,
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p
2 � 0.35) than repeat trials, which confirmed the classical

switch-cost effect. The main effects of CTI for RTs (F(1,43) � 64.9,
p � 3.9 � 10	10, 
p

2 � 0.53) and accuracy rates (F(1,43) � 12.7,
p � 0.001, 
p

2 � 0.22) were also significant. Post hoc comparisons
revealed that RTs decreased with increasing CTI, with slower RT
at a 500 ms CTI than at 1500 ms (t(43) � 6.6, p � 6.2 � 10	8, d �
0.46, corrected) and at 2500 ms (t(43) � 8.1, p � 1.2 � 10	9, d �
0.7, corrected). The same was true for the comparison between
the 1500 and 2500 ms CTIs (t(43) � 4.4, p � 7.8 � 10	5, d � 0.26,
corrected). Likewise, the CTIs of 1500 ms (t(43) � 4.7, p � 6.9 �
10	5, d � 0.35, corrected) and of 2500 ms (t(43) � 3.6, p � 0.001,
d � 0.34, corrected) produced more accurate responses than that
of 500 ms. The difference of accuracy rates between 1500 and
2500 ms CTIs was not significant (t(43) � 0.1, p � 0.9, d � 0.008,
corrected). Moreover, the interaction between trial type and CTI
was significant for both RTs (F(1,43) � 4.7, p � 0.036, 
p

2 � 0.14)
and accuracy rates (F(1,43) � 4.3, p � 0.04, 
p

2 � 0.06), as switch
costs decreased with increasing CTI (Fig. 1B), thus replicating a
classic finding of the task-switching literature. Finally, to deter-
mine to what degree task switching was affected by practice, we
contrasted performance between the first and the second half of
trials. There was no effect of practice on accuracy (t(43) � 	0.8,
p � 0.4). Moreover, while mean RTs got faster over time (t(43) �
3.5, p � 0.001, d � 0.31), this was equally the case for repeat (t(43) �
3, p � 0.004, d � 0.28) and switch trials (t(43) � 3.3, p � 0.002,
d � 0.32), such that practice had no influence on switch costs
(t(43) � 0.6, p � 0.5). In sum, task practice did not appear to
significantly alter the factors underlying switch costs.

Decoding neural task-set representations with MVPA
We used searchlight MVPA to identify brain regions that en-
coded the face and house task-set representations. We found that
task set could be decoded at above-chance levels from the bilat-
eral frontal (left inferior frontal junction, right inferior frontal
gyrus) parietal [left precuneus and inferior parietal lobule, right
superior parietal lobule (SPL)], and occipitotemporal cortex [bi-
lateral middle temporal gyrus (MTG), bilateral fusiform gyrus,
and bilateral cuneus], as well as the pre-SMA (Fig. 3). The T
scores, cluster sizes, and MNI coordinates are listed in Table 1.
These data broadly replicate data from previous studies (Woolgar
et al., 2011; Waskom et al., 2014; Wisniewski et al., 2015) and

served as task-sensitive ROIs for testing
our main hypotheses on dynamic neural
representations of task sets.

Neural task-set representations are
more distinct in repeat trials than in
switch trials
To test Hypothesis 1, namely, that task-set
representations on switch trials should be
more labile/less stable than on repeat tri-
als, we contrasted the hyperplane distance
and classification accuracy between switch
and repeat trials (see Materials and Meth-
ods). We predicted that the hyperplane
distance for switch trials would be shorter
than that for the repeat trials, and that
there would be more incorrect classifica-
tions in switch trials compared with re-
peat trials. Paired-sample t tests revealed
that the distance to the hyperplane was
longer in the repeat trials compared with
switch trials for all 12 ROIs (Fig. 4A; all

t’s � 0, p’s � 0.05, d’s � 0.48; Table 2). Moreover, the same was
true for task classification accuracy, which was universally greater
for repeat trials than for switch trials (Fig. 4B; all t’s � 0, p’s �
0.01, d’s � 0.48; Table 3). Decoding of task sets was significantly
above chance (p’s � 0.05, one-sample t tests) for all 12 ROIs for
repeat trials, and for 8 of 12 ROIs for switch trials (excluding the
left MTG, right SPL, left SMA, and right MTG). Thus, our first
hypothesis was confirmed: in line with the idea that the higher
error rate on switch trials compared with repeat trials reflects a
less well-established task set, multivoxel patterns in task-sensitive
brain regions were more predictive of the currently relevant task
set in repeat trials than in switch trials.

Representational similarity over consecutive trials
predicts behavior
To test Hypothesis 2, that task-set representations over consecu-
tive trials should be more similar for repeat trials than for switch
trials, we computed the mean neural pattern similarity of consec-
utive trials for switch and repeat trials, respectively. These corre-
lation values were then submitted to group-level paired-sample t
test for each ROI. We found that compared with switch trials, the
pattern similarity of consecutive trials was greater in repeat trials
for all 12 task-sensitive ROIs (all t’s � 0, p’s � 0.005, d’s � 0.26;
Fig. 5; Table 4). These results confirm the fundamental assump-
tion that neural task-set representations remain stable (similar)
in repeat trials but are altered in switch trials.

To supply an additional test of our model, we also derived
predictions for second-order trial sequences, namely that repre-
sentational similarity of task sets for consecutive (second-order)
repeat trials should be greater than for first-order repeat trials
that were preceded by a task switch (FR–FR/HR–HR � FS–FR/
HS–HR), as the active task set should become more ingrained
over successive repetitions; and that representational similarity of
the task set for consecutive (second-order) switch trials should be
greater than that for first-order switch trials preceded by a task-
repeat trial (FS–HS/HS–FS � FR–HS/HR–FS), as the former in-
volve a distance from a well-established set to a new set, whereas
the latter involves the relatively shorter distance between two
weakly established sets. Contrasting representational similarities
(averaged across the ROIs) between these trial types confirmed
these predictions: representational similarity was greater for

Figure 3. Brain regions encoding task-set representations. Three-dimensional surface rendering of brain regions from which
whole-brain searchlight MVPA could decode the currently relevant task set at above-chance accuracy (corrected for multiple
comparisons). The t scores, voxel numbers, and MNI coordinates are listed in Table 1. FG, Fusiform gyrus; IFJ, inferior frontal
junction; IFG, right inferior frontal gyrus; IPL, inferior parietal lobule.
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second-order repeat trials than for first-order repeat trials (t �
9.3, p � 8 � 10	12, d � 1.7, corrected), and for second-order
compared with first-order switch trials (t � 20, p � 1 � 10	16,
d � 4.7, corrected).

To test Hypothesis 3, that the (dis)similarity of task-set repre-
sentation over consecutive trials should be predictive of behavior,
the associations between the neural pattern similarities of consec-
utive trials and trial-by-trial RTs were calculated for switch and
repeat trials, respectively (see Materials and Methods). We pre-
dicted that greater cross-trial representational similarity in repeat
trials should indicate a better retention of the previous-trial task
set, and thus be associated with faster responses, whereas, con-
versely, greater similarity in switch trials would indicate stronger
interference from the previous set or a failure to reconfigure the
new task set, and thus be associated with slower responses. Re-
sults indicate that the pattern similarities of consecutive trials and
trial-by-trial RTs were indeed positively
correlated in switch trials for all 12 ROIs
(all t’s � 0, p’s � 0.005, d’s � 0.44, cor-
rected for multiple comparisons; Table 5),
while they were negatively correlated in
repeat trials for three of the ROIs (left cu-
neus, t � 	2.48, p � 0.037, d � 	0.37;
right cuneus, t � 	2.45, p � 0.037, d �
	0.37; right fusiform gyrus, t � 	2.56, p �
0.037, d � 	0.39, corrected), and dis-
played a marginally significant negative
correlation in another two ROIs (left pre-
cuneus, t � 	2.18, p � 0.057, d � 	0.32;
left inferior frontal junction, t � 	2.03,
p � 0.058, d � 	0.31; other t’s � 0, p’s �
0.05, 0 � d’s � 	0.27, corrected; Table 6).
Together, Hypothesis 3 was supported by
the data, thus confirming the fundamen-
tal assumption that trial-by-trial behav-
ioral flexibility is directly related to the
fidelity of concomitant neural coding of
task-set representations.

Finally, as with the behavioral data, we
probed whether the similarities between
neural task-set representations were af-
fected by task practice. In line with the
behavioral findings of unchanging switch
costs, comparing the neural pattern simi-
larities between the first and second half of
the experiment did not yield any differ-
ences (p’s � 0.1).

Neural pattern similarity tracks between-trial and
within-trial dynamics of task switching
In Figure 2A, we translated the basic notion that task-set inertia
and reconfiguration processes lead to more distinct/stable task-
set representations under repeat than under switch conditions
into representational (dis)similarities, or distances between the
four possible first-order task transitions (FR, FS, HR, HS) in
representational space. Specifically (see Generating predictions for
neural representations), Hypothesis 4 stated that during the cue
phase, representational dissimilarities should follow the follow-
ing pattern: (HS–FS, HR–HS, FR–FS) � (FS–HR, FR–HS) �
(FR–HR). However, as the switch or repeat process progresses
when moving from the cue to the target processing phase, we
expect the pattern dissimilarities of FS–HS, FR–HS, and FS–HR

to increase and pattern dissimilarities of FR–FS and HR–HS to
decrease (Hypothesis 5).

Pattern dissimilarities among the four types of trials were an-
alyzed and compared with each other to test our model predic-
tions. We analyze and display these similarities as averaged across
ROIs for the sake of conciseness, but the patterns held for indi-
vidual ROIs, too. In line with the predictions, results for the cue
phase showed that the pattern dissimilarities of FS–HS, HR–HS,
and FR–FS were lowest, those between FR and HR were the high-
est, and pattern dissimilarities between FR and HS (as well as
between FS and HR) fell between these extremes (Fig. 2B). This
pattern of results was supported by inferential statistics: the pat-
tern dissimilarities of FS–HS, HR–HS, and FR–FS were signifi-
cantly lower than that of FR–HS and FS–HR, and FR–HR (p’s �
0.005, d’s � 	0.9, corrected), and the pattern dissimilarities of

Figure 4. Task-set classification as a function of task-repeat versus task-switch trials. A, Mean distance to the hyperplane
(� mean SE) as a function of trial type (task repeat vs switch) is displayed for each ROI. See Table 2 for specific t and p values.
B, Mean task-set classification accuracy as a function of trial type (task repeat vs switch) is displayed for each ROI. See Table 3 for
specific t and p values. FG, Fusiform gyrus; IFG, right inferior frontal gyrus; IFJ, inferior frontal junction; L, left; R, right.
*p � .05, **p � 0.01, ***p � 0.001.

Table 1. Brain regions showing above-chance accuracy for classifying the currently
active task set

Regions Voxels (n) T

Effect
size
(d)

MNI coordinates

x y z

Left precuneus 116 4.79 0.72 	6 	51 33
Left MTG 143 3.33 0.50 	47 	48 15
Right cuneus 46 4.94 0.74 18 	72 39
Left fusiform gyrus 73 4.53 0.68 	35 	42 	13
Right SPL 65 4.86 0.73 22 	55 57
Left inferior parietal lobule 38 4.14 0.62 	30 	57 42
Right inferior frontal gyrus 107 5.37 0.81 48 21 27
Left inferior frontal junction 127 5.54 0.83 	45 8 27
Left pre-SMA 54 3.91 0.59 	3 15 57
Right fusiform gyrus 59 4.23 0.64 43 	47 	11
Right superior/middle temporal gyrus 60 4.67 0.70 48 	39 6
Left cuneus 114 7.97 1.20 	15 	78 36

Corrected at p � 0.05.
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FR–HS and FS–HR were significantly lower than that of FR–HR
(both p’s � 0.01, d’s � 	0.5, corrected). Thus, the data provided
strong support for the set of representational similarity predic-
tions grouped under Hypothesis 4.

To test Hypothesis 5, that these representational dissimilari-
ties should dynamically change when moving from the time of
cue presentation to the time of task-set implementation in the
target period, we compared cue-related versus target-related dissim-
ilarities for the different trial pairs. Paired-sample t tests revealed that
pattern dissimilarity of FR–FS (t(43) �	2.53, p � 0.031, d � 	0.44,
corrected) and HR–HS (t(43) � 	2.96, p � 0.015, d � 	0.44,
corrected) conditions decreased, whereas pattern dissimilarity of
FS–HS (t(43) � 3.22, p � 0.015, d � 0.54, corrected) as well as
FS–HR (t(43) � 2.32, p � 0.038, d � 0.36, corrected) conditions
increased from cue to target phase. The pattern dissimilarity of
FR–HS also displayed a trend-level increase (t(43) � 1.93, p �
0.073, d � 0.33, corrected). These results confirm Hypothesis 5,
showing that during switching, the neural task-set representation
moves in representational space, away from representing the
previous-trial set (due to task-set inertia) and toward represent-
ing the reconfigured, newly relevant set.

Control analyses
Representational similarity
It is noteworthy that the pattern dissimilarities (1 – pattern sim-
ilarity) we observed were all �1 (Fig. 2B), indicating that the
neural patterns were negatively correlated. While this is intui-
tively plausible for the condition pairs where distinct task sets are
being correlated, it is surprising that representational patterns for

the same task sets that only differ by their task-repeat versus
task-switch trial status (i.e., HR–HS and FR–FS) should also be
slightly negatively correlated. To ensure that these results are
truly attributable to representational differences between repeat
and switch trials, we calculated the pattern similarities between
pairs of trials within each trial type (i.e., FR, FS, HR, and HS) and
then averaged these pattern-similarity values across trial pairs.
Here, pattern correlations should be expected to be positive. In
line with expectations, the within-trial-type similarities were in
fact all highly positive (FR, t � 38.8, p � 1 � 10	16, d � 5.9; FS,
t � 37.9, p � 1 � 10	16, d � 5.7; HR, t � 49.3, p � 1 � 10	16, d �
7.4; HS, t � 41.4, p � 1 � 10	16, d � 6.2). By contrast, when we
applied the same analysis to trial types that either involved a
different task set or a different trial transition (e.g., face repeat vs
face switch), the correlations were all negative (HR–HS: t � 	6.9,
p � 2.2 � 10	8, d � 	1; FR–HR: t � 	19.1, p � 1 � 10	16, d �
	2.9; FS–HR: t � 	14.3, p � 1 � 10	16, d � 	2.2; FR–HS: t �
	12.1, p � 3.6 � 10	15, d � 	1.8; FS–HS: t � 	9.2, p � 1.6 �
10	11, d � 	1.4; FR–FS: t � 	2.5, p � 0.02, d � 	3.7),
though—importantly—the pattern of these dissimilarities again
conformed to the predictions of our model: (HS–FS, HR–HS,
FR–FS) � (FS–HR, FR–HS) � (FR–HR).

Given the results of these control analyses, we conclude that
the counterintuitive findings of negative correlations between FR
and FS trial types and between HR and HS trial types are genuine.
The fact that we observe negative correlation values for identical
task sets as a function of whether these sets were repeated or just
switched to likely reflects a substantial influence of task-set iner-
tia: it appears that on switch trials, the prior set still impacts the
task representation to such a degree that it renders the switch-
trial task-set representation quite unlike the repeat-trial task-set
representation. This idea is supported by the fact that the degree
of negative correlation becomes smaller for these trial types when
moving from the cue to the target phase (Fig. 2B, HR–HS, FR–
FS). Moreover, it is possible that dissimilarity between these trial
types is further enhanced by differences in the cognitive processes
active during repeat trials (where an ongoing set needs to be
maintained) and switch trials (where a prior set needs to be sup-
pressed and a new set established). Future studies addressing this
issue in designs involving �2 task types would be highly desir-
able.

Temporal proximity
Due to the sluggish nature of the BOLD response, consecutive
task events closely spaced in time will produce BOLD responses
with temporal overlap, which can lead to misattribution of acti-
vation between the events due to a “bleed-over” of the response
evoked by the first event into the epoch of the second event. Given
that the main analyses in the present paper focus on successive
trial events, we took the following measures to rule out the pos-
sibility that our results could be driven by this kind of bleed-over.
First, the design presented the four different trial types in random
order, and included randomly jittered intertrial and cue-to-target
intervals, both of which facilitate the statistical separation of
activation evoked by the different events (Wager and Nichols,
2003). Second, each trial was modeled with a separate regressor,
thus imposing orthogonalization of parameter estimates be-
tween trials (including consecutive ones). However, the re-
sults reported above were all derived from design matrices that
either exclusively modeled the cue events (testing Hypotheses
1– 4) or the target events (in testing Hypothesis 5). To ensure
that these results are not based on misattributing cue-related
variance to target-related variance, and vice versa, we reran all of

Table 2. Paired-sample t test comparing ROI-based distance to the hyperplane
between repeat and switch trials (repeat > switch)

ROI T P-corrected Effect size (d)

Left precuneus 3.54 1.30 � 10 	3 0.61
Left MTG 4.34 1.84 � 10 	4 0.70
Right cuneus 4.80 1.84 � 10 	4 0.88
Left fusiform gyrus 4.33 1.84 � 10 	4 0.66
Right SPL 4.08 2.87 � 10 	4 0.68
Left inferior parietal lobule 3.04 4.44 � 10 	3 0.50
Right inferior frontal gyrus 3.31 2.25 � 10 	3 0.49
Left inferior frontal junction 4.27 1.84 � 10 	4 0.72
Left pre-SMA 4.35 1.84 � 10 	4 0.77
Right fusiform gyrus 4.31 1.84 � 10 	4 0.69
Right superior/middle temporal gyrus 4.61 1.84 � 10 	4 0.81
Left cuneus 2.66 1.10 � 10 	2 0.56

Corrected for multiple comparisons.

Table 3. Paired-sample t test comparing ROI-based classification accuracy between
repeat and switch trials (repeat > switch)

ROI T P-corrected Effect size (d)

Left precuneus 3.56 1.11 � 10 	3 0.62
Left MTG 4.59 1.09 � 10 	4 0.76
Right cuneus 4.57 1.09 � 10 	4 0.84
Left fusiform gyrus 5.25 5.35 � 10 	5 0.83
Right SPL 4.70 1.09 � 10 	4 0.74
Left inferior parietal lobule 2.94 5.71 � 10 	3 0.49
Right inferior frontal gyrus 3.94 4.39 � 10 	4 0.62
Left inferior frontal junction 3.85 5.19 � 10 	4 0.65
Left pre-SMA 4.54 1.09 � 10 	4 0.80
Right fusiform gyrus 4.06 3.52 � 10 	4 0.71
Right superior/middle temporal gyrus 4.48 1.10 � 10 	4 0.87
Left cuneus 2.79 7.78 � 10 	3 0.63

Corrected for multiple comparisons.
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the analyses, but now defining the target onsets as additional regres-
sors when computing the � images of the cue phase, and adding the
cue onsets as regressors when computing the � images of the target
phase.

We found that all the main results reported above were pre-
served under these new models. First, the 12 ROIs displayed
above-chance classification accuracy in distinguishing the two

task sets (all t’s � 0, p’s � 0.05, d’s � 0.34, with FDR correction).
Second, the distance to hyperplane and the classification accuracy
were greater for repeat trials than switch trials (all t’s � 0, p’s �
0.05, d’s � 0.34, corrected). Third, the pattern similarities of
consecutive trials were also greater in repeat trials than in switch
trials (all t’s � 0, p’s � 1 � 10	7, d’s � 0.6, corrected). Moreover,
representational similarity was greater for second-order repeat
trials than for first-order repeat trials (t(43) � 9.1, p � 1.6 �
10	11, d � 1.6, corrected), and also greater for second-order
switch trials than for first-order switch trials (t(43) � 20, p � 1 �
10	16, d � 4.4, corrected). Fourth, greater consecutive trial
similarity was beneficial for repeat-trial performance (t’s �0,
p’s � 0.05 in several ROIs, corrected), but detrimental for
switch-trial performance (all t’s � 0, p’s � 0.05, d’s � 0.53,
corrected). Finally, the RSA pattern corresponding to our
model predictions for the cue and target phases was also pre-
served (data not shown). Thus, the current results are unlikely
to be related to misattribution of BOLD responses between
trials or between cue and target events. In addition to these
control analysis results, it should also be noted that the
pattern-similarity results themselves speak against the possi-
bility that cue-driven and target-driven BOLD responses are
confounded, as some pattern similarities increased while oth-
ers decreased from cue to target phases.

Figure 5. Mean neural pattern similarity across consecutive trials. Bars display the neural pattern correlations (� mean SE) between consecutive trials as a function of whether they were repeat
or switch trials for each ROI. See Table 4 for specific t and p values quantifying these pattern dissimilarities with group-level paired-sample t tests. **p � 0.01, ***p � 0.001. FG, Fusiform gyrus; IPL,
inferior parietal lobule; IFG, right inferior frontal gyrus; IFJ, inferior frontal junction; L, left; R, right.

Table 4. Paired-sample t test comparing ROI-based adjacent-trial pattern
similarities between repeat and switch trials (repeat > switch)

ROI T P-corrected Effect size (d)

Left precuneus 3.10 1.71 � 10 	3 0.32
Left MTG 4.19 1.63 � 10 	4 0.37
Right cuneus 3.16 1.56 � 10 	3 0.27
Left fusiform gyrus 3.82 3.67 � 10 	4 0.40
Right SPL 3.47 7.90 � 10 	4 0.31
Left inferior parietal lobule 4.66 4.52 � 10 	5 0.41
Right inferior frontal gyrus 5.01 2.98 � 10 	5 0.42
Left inferior frontal junction 4.79 4.04 � 10 	5 0.43
Left pre-SMA 3.43 7.98 � 10 	4 0.27
Right fusiform gyrus 7.18 4.19 � 10 	8 0.61
Right superior/middle temporal gyrus 3.96 2.77 � 10 	4 0.32
Left cuneus 3.76 3.82 � 10 	4 0.30

Corrected for multiple comparisons.

Table 5. Group level one-sample t test on the ROI-based correlation between
adjacent trial similarities of the switch trials and trial-by-trial RTs

ROI T P-corrected Effect size (d)

Left precuneus 4.56 1.05 � 10 	4 0.32
Left MTG 3.55 5.76 � 10 	4 0.37
Right cuneus 4.01 2.04 � 10 	4 0.27
Left fusiform gyrus 4.12 1.72 � 10 	4 0.40
Right SPL 3.81 2.94 � 10 	4 0.31
Left inferior parietal lobule 3.17 1.52 � 10 	3 0.41
Right inferior frontal gyrus 4.34 1.09 � 10 	4 0.42
Left inferior frontal junction 5.00 6.14 � 10 	5 0.43
Left pre-SMA 2.98 2.39 � 10 	3 0.27
Right fusiform gyrus 4.32 1.09 � 10 	4 0.61
Right superior/middle temporal gyrus 4.49 1.05 � 10 	4 0.32
Left cuneus 3.90 2.51 � 10 	4 0.30

Corrected for multiple comparisons.

Table 6. Group level one-sample t test on the ROI-based correlation between
consecutive trial similarities of the repeat trials and trial-by-trial RTs

ROI T P-corrected Effect size (d)

Left precuneus 	2.181 0.057 	0.322
Left MTG 	1.731 0.088 	0.261
Right cuneus 	2.452 0.037 	0.370
Left fusiform gyrus 	1.426 0.097 	0.215
Right SPL 	1.568 0.093 	0.236
Left inferior parietal lobule 	1.667 0.088 	0.251
Right inferior frontal gyrus 	1.503 0.093 	0.227
Left inferior frontal junction 	2.031 0.058 	0.306
Left pre-SMA 	0.955 0.172 	0.144
Right fusiform gyrus 	2.556 0.037 	0.385
Right superior/middle temporal gyrus 	1.137 0.143 	0.171
Left cuneus 	2.480 0.037 	0.374

Corrected for multiple comparisons.
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Finally, another factor that might affect processing during
switch trials is that a repeated target stimulus could reactivate the
previous-trial task set that had just been applied to that stimulus.
In the present study, however, this would be an extremely rare
occurrence, as each target was shown only twice within each run
of 128 randomly ordered trials, and task-set reactivation through
target repetition is therefore highly unlikely to be a significant
contributor to the present findings.

Task versus stimulus representations
In another set of control analyses, we sought to confirm that our
results do in fact selectively reflect the neural representation of
task sets, independent of neural sensitivities to specific physical
stimulus features (male or female face; one-story or two-story
house). While the current task design renders the task and switch
factors independent of particular stimulus features, it is neverthe-
less possible that the brain regions we identified as supporting
task-set coding may also have preferential responses to different
stimulus features. Moreover, demonstrating that the results we

report above are completely independent
of repetitions or changes of stimulus fea-
tures over consecutive trials would pro-
vide strong additional evidence against the
possibility that these results are driven by
sluggish BOLD responses being misattrib-
uted across trials.

To ensure that our results reflect task-
set rather than stimulus representations,
we first submitted the stimulus features to
an MVPA analysis. Here, male versus fe-
male faces and one-story versus two-story
buildings were used as training and testing
labels. Since the stimulus was not deter-
mined until the presentation of the target,
we employed the � values of the target
phase in this MVPA analysis. The other
procedures were identical to the task-set
analysis. Results showed that the stimulus
features could be decoded from clusters
that peaked in visual and motor regions
(Fig. 6), but had partial overlap with some
of task-sensitive ROIs (including in cu-
neus, right SPL, and pre-SMA). Next, we
tested whether any of the RSA results we
observed for task-set processing in the 12
task-sensitive ROIs could be replicated
at the level of stimulus features. To ensure
the orthogonality between stimulus fea-
tures and task sets in these analyses, we
excluded trials where the repetition or
switching of task sets and stimulus types
were confounded. The other procedures
were identical to the pattern-similarity
analyses at the task level. The pattern-
similarity effects over consecutive trials
was not found in the stimulus repeat/
switch analysis; that is, pattern similarities
of consecutive trials for repeated stimulus
features were no greater than for switched
stimulus features in the 12 ROIs (all p’s �
0.1). Moreover, the classification accuracy
and distance to the hyperplane were no
greater for stimulus feature repeat trials
compared with switch trials in the 12 ROIs

(all p’s � 0.1). Finally, the trials were also grouped into four types
according to the stimulus feature repetitions (male–repeat, male–
switch, female–repeat, female–switch, as well as one-story–
repeat, one-story–switch, two-story–repeat, two-story–switch).
The pattern similarities between these trial types were calculated
and contrasted in reference to the predictions and findings re-
ported in Figure 2. The results did not replicate the pattern of
representational dissimilarities found in the task-set analysis (all
p’s � 0.1).

Finally, it should be noted that by using a 1:1 cue-to-task
mapping, the current task design is in principle open to the argu-
ment that the multivoxel patterns that allowed us to distinguish
face-task trials from house-task trials may not actually reflect the
currently active task set (face task/house task) or the meaning of
the cues (face task/house task), but rather that they reflect the
mere physical features of the cues (circle/square). While this is a
logical possibility, this scenario appears to be unlikely for most of
our ROIs, in particular the frontoparietal regions of prime inter-

Figure 6. Brain regions encoding stimulus feature representations. A, 3D surface rendering of brain regions from which whole-
brain searchlight MVPA could decode whether the face feature of a current stimulus was male or female at above-chance accuracy
(corrected for multiple comparisons). B, 3D surface rendering of brain regions from which whole-brain searchlight MVPA could
decode whether the house feature of a current stimulus was a one-story or a two-story house at above-chance accuracy (corrected
for multiple comparisons).
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est. First, the frontoparietal cortex is not known to be inherently
sensitive to low-level visual shapes like squares and circles, so it is
unlikely that we would be able to decode these perceptual char-
acteristics from these regions unless the cues were processed as
signifying their respective associated task sets. Second, much
prior work has shown instead that the frontoparietal cortex is
involved in representing task sets (Woolgar et al., 2011, Waskom
et al., 2014), even when those are explicitly dissociated from per-
ceptual cue feature encoding (Etzel et al., 2016). Third, much
prior literature has shown that low-level shape features of the
kind we employed as cues are instead encoded in the visual cor-
tex, most prominently the lateral occipital complex (for review,
see Grill-Spector and Malach, 2004). It therefore seems unlikely
that our results, especially those regarding neural representations
in the frontoparietal cortex, would reflect the decoding of low-
level visual features rather than of task-set information. However,
the possibility that distinct visual cue features may contribute to
our results cannot be ruled out.

In sum, our control analyses strongly suggest that the results
we obtained in testing Hypotheses 1–5 all pertained selectively to
the encoding of task-set representations, which were unlikely to
be confounded by sensitivities to specific stimulus categories or
physical cue features (though the latter cannot be logically ex-
cluded). Moreover, the results are unlikely to be contaminated by
bleed-over of BOLD responses across trial phases and trials.

Discussion
Cognitive flexibility lies at the core of the extraordinary human
ability to adapt. Many univariate neuroimaging studies of task
switching have previously attributed the process of updating
task-set representations to frontal and parietal cortices, and a
small number of recent fMRI studies employing MVPA have
shown that the currently relevant task set can in fact be decoded
from activity patterns in these regions (Woolgar et al., 2011; Was-
kom et al., 2014; Wisniewski et al., 2015). Prior studies have not
probed whether these (or other) brain regions can be shown to
support the dynamic transformation of task sets from trial to
trial, however. In the present study, we therefore used RSA
to examine a set of fundamental assumptions about neural task-
set representations in relation to the switching process. We found
that frontoparietal and visual stimulus processing regions that
harbored information about the currently relevant set (Fig. 3)
displayed the following characteristics: (1) the representation of
task sets on switch trials was weaker than on repeat trials (Fig. 5);
(2) the neural pattern dissimilarity across consecutive trials was
greater for switch trials than for repeat trials (Fig. 4); (3) the
degree of this pattern dissimilarity predicted behavior (Tables 3,
4); (4) the overall neural pattern of representational dissimilari-
ties between different trial types (FR, FS, HR, HS) followed pre-
dictions derived from the simple assumption that repeating sets
results in stronger neural task representations than switching sets
(Fig. 2); and (5) when moving from cue to target phase within a
trial, the pattern dissimilarities tracked the transformation from
representations corresponding to the previously relevant set to
the currently relevant set. Overall, these results provide neural
support for the longstanding assumptions of an effortful (and
imperfect) task-set reconfiguration process (Rogers and Monsell,
1995) that is hampered by task-set inertia (Allport et al., 1994),
and they demonstrate that frontoparietal and stimulus process-
ing regions provide the neural substrates of “dynamic adaptive
coding” (Duncan, 2013; Stokes et al., 2013), flexibly representing
changing task sets in a trial-by-trial fashion.

The results of our MVPA identification of brain regions in-
volved in encoding the currently relevant task set closely replicate
previous findings (Woolgar et al., 2011; Waskom et al., 2014;
Garner and Dux, 2015; Wisniewski et al., 2015; Etzel et al., 2016)
and thus confirm that a frontoparietal network, in collaboration
with (here: visual) stimulus processing regions, supports task-set
representations (Fig. 3). Moreover, in a novel test of the stability
of these representations, we also documented that neural task-set
encoding is more labile/less stable on switch trials than on repeat
trials (Fig. 5). This finding is perfectly congruent with much be-
havioral literature that has documented time and again that
performance is more error prone on switch trials than on repeat
trials (for review, see Monsell, 2003; Kiesel et al., 2010; Vandieren-
donck et al., 2010). However, another recent study has come to the
opposite conclusion, namely, that frontoparietal task-set represen-
tations are unaffected by switch processes (Loose et al., 2017). A
probable reason for these divergent findings is that, unlike the cur-
rent design, the task of Loose and colleagues did not require
subjects to switch between different cognitive tasks but only be-
tween varying stimulus–response mappings. While there is some
evidence to suggest that at least the frontal component of the
frontoparietal network encodes task goals rather than stimulus–
response mappings (Muhle-Karbe et al., 2014), a future MVPA
study that independently varies switches in task goal versus
response mapping should test directly whether switching differ-
entially affects these two types of representations in the frontopa-
rietal cortex.

At first glance, the present results may also seem at odds with
previous MVPA studies reporting that increased perceptual dif-
ficulty (Woolgar et al., 2011) and increased demand for cognitive
control (Waskom et al., 2014) are associated with higher decod-
ing accuracy compared with less demanding conditions. How-
ever, these results are only superficially incongruous, and can
easily be accounted for by key differences in the nature of the task
protocols and analyses. First, Woolgar and colleagues (2011) ma-
nipulated the perceptual difficulty in identifying a task-relevant
stimulus feature (stimulus position) in a block-wise fashion and
found that representation of that stimulus feature in the fronto-
parietal cortex was enhanced under greater perceptual difficulty.
By contrast, the strength of task-rule representations was not
actually affected by this manipulation, and the authors did not
contrast task-set decoding success as a function of repeat versus
switch trials (Woolgar et al., 2011). Thus, the present results are
not in conflict with these prior findings. Second, Waskom and
colleagues (2014) employed a protocol where a task cue, followed
by a long (6.5 s) cue-target interval, indicated which task to per-
form in a subsequent miniblock of three consecutive trials.
Within these miniblocks, the authors found that task-rule classi-
fication accuracy decreased over repeated trials (Waskom et al.,
2014). While this finding differs from the present demonstration
of stronger task-set encoding on task-repetition trials, the partic-
ulars of the Waskom et al. (2014) design provide a straightfor-
ward explanation for this divergence: unlike in our task, task
switches in that study could occur only on a predictable subset of
trials. Given that subjects knew that only the end of a miniblock
could be followed by a task switch, and were then granted a 6.5 s
cued preparation period for the subsequent task, it is plausible
that task-set implementation would be stronger at the beginning
of the new miniblock and then move to a less controlled, “auto-
pilot” setting for the predictable subsequent task-repeat trials
(Waskom et al., 2014). By contrast, the current results show that
when task switches are unpredictable and preparation time is
brief, frontoparietal task-set encoding is weaker on switch trials
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than on repeat trials, in line with classic behavioral findings of
poorer accuracy on switch trials.

To test our main hypotheses, we pursued a novel application
of RSA to assessing the neural pattern dissimilarities between
consecutive trials as a function of whether the task set was re-
peated or switched. Our findings support the fundamental as-
sumption that task-coding regions track the currently relevant set
from trial to trial, such that task-set repetitions are associated
with a shorter distance (or dissimilarity) in neural representa-
tional space than task-set switches. Moreover, we showed that
this neural measure of (dis)similarity of cognitive representations
from one trial to the next predicts behavior: in line with the
assumption that greater similarity should be beneficial for repeat
trials but detrimental for switch trials, RTs were positively corre-
lated with the degree of cross-trial representational similarity for
task-switch trials and negatively for task-repeat trials. To our
knowledge this is the first demonstration of a direct link between
dynamic neural task-set recoding across trials and behavior, a
finding that clearly supports the notion that the fidelity of neural
task-set representations determines one’s ability to implement
task rules to guide response selection. Moreover, this set of results
also offers a novel neurobehavioral demonstration of the oft-
hypothesized stability–flexibility trade-off (Goschke, 2000; Co-
hen et al., 2007), the notion that a strong encoding of an ongoing
task set (i.e., cognitive stability) to ensure accurate performance
comes at the cost of a diminished ease at changing sets, and vice
versa, that a more labile task set is more error-prone but also
more easily updated (i.e., promoting cognitive flexibility).

We next tested a set of RSA predictions on the relative dis-
tances between the different trial types produced by our experi-
mental design (Fig. 2). The simple assumption that repeating sets
results in stronger neural task representations than switching sets
predicted that FR and HR trials would exhibit the most dissimilar
representations and FS and HS trials the least dissimilar ones,
with the distances between FS and HR conditions and between
FR and HS conditions falling between these extremes. This sim-
ilarity pattern in representational space was clearly confirmed by
our results (Fig. 2). Moreover, we also employed RSA to test
predictions about how representational distances should dynam-
ically change when moving from cue to target processing. We
found that compared with cue distances, the dissimilarity be-
tween FS and HS increased, while the dissimilarity between FR
and FS (as well as between HR and HS) decreased during target
processing. Similarly, the dissimilarity between FR and HS (as
well as between FS and HR) increased for the target relative to the
cue period. All of these results are perfectly in line with the fun-
damental assumption that during switching, the frontoparietal
cortex moves from representing the previous-trial set (due to
task-set inertia) to being reconfigured to represent the newly rel-
evant set.

In conclusion, we combined a cued task-switching protocol
with fMRI and harnessed RSA to facilitate a novel assessment of
trial-by-trial changes in neural task-set representations. Task-
sensitive frontoparietal and visual stimulus processing regions
were found to display weaker task-set representation on switch
trials than on repeat trials, and greater neural pattern dissimilar-
ity across consecutive trials for switch trials than for repeat trials,
which was predictive of behavior. The overall pattern of repre-
sentational dissimilarities followed the assumption that repeating
sets results in stronger neural task representations than switching
sets, and when moving from cue to target phase within a trial, the
pattern dissimilarities tracked task-set transformation. These re-
sults provide strong support for the involvement of frontoparie-

tal and stimulus processing regions in dynamic adaptive coding
of task sets from trial to trial.
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