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Brain Transcriptome Databases: A User’s Guide
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Transcriptional programs instruct the generation and maintenance of diverse subtypes of neural cells, establishment of distinct
brain regions, formation and function of neural circuits, and ultimately behavior. Spatiotemporal and cell type-specific analyses of
the transcriptome, the sum total of all RNA transcripts in a cell or an organ, can provide insights into the role of genes in brain
development and function, and their potential contribution to disorders of the brain. In the previous decade, advances in sequenc-
ing technology and funding from the National Institutes of Health and private foundations for large-scale genomics projects have
led to a growing collection of brain transcriptome databases. These valuable resources provide rich and high-quality datasets with
spatiotemporal, cell type-specific, and single-cell precision. Most importantly, many of these databases are publicly available via
user-friendly web interface, making the information accessible to individual scientists without the need for advanced computa-
tional expertise. Here, we highlight key publicly available brain transcriptome databases, summarize the tissue sources and
methods used to generate the data, and discuss their utility for neuroscience research.
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Introduction
The exquisite control of spatiotemporal gene expression enables
the specification of diverse neural cell types, the development of
distinct brain regions, the wiring and function of neural circuits,
and ultimately controls behavior. For decades, individual genes
have been studied using lower-throughput methods, such as in
situ hybridization and RT-PCR, to query their expression levels
and spatiotemporal patterns. The advents of microarray technol-
ogy and RNA sequencing (RNA-seq) made possible genome-
wide, unbiased interrogation of the transcriptome, the sum total
of all RNA transcripts in a cell or an organ. Recent advances in
sequencing technology, cell isolation techniques, genetic access
to specific cell types, and data analysis have enabled transcrip-
tomic studies with increasingly greater precision and granularity,
giving new insights into gene expression in specific organs, cell
types, and single cells. For neuroscience, large-scale transcrip-
tomic data hold tremendous potential to inform molecular and
cellular brain studies, the neural substrates and biomarkers of
brain disorders, the validity of in vitro and in vivo models, and
potential therapeutic strategies for neurological and psychiatric
disease.

Recognizing the importance of gene expression data for basic
and translational research, the National Institutes of Health

and private foundations, notably the Allen Institute for Brain
Science, have prioritized funding for large-scale, often collab-
orative efforts to catalog and analyze the transcriptomes of
cells and tissues in humans, nonhuman primates, and model
organisms. Importantly, data sharing of the resulting tran-
scriptome datasets has become common. Journal publishers
and funders have put in place policies for deposition of tran-
scriptome data into open repositories such as Gene Expression
Omnibus and Sequence Read Archive (SRA) to drive further
analyses by other groups and enable across group compari-
sons. Importantly, many datasets are housed in user-friendly
databases, where individual scientists without advanced data
analysis expertise can query and access the data via web inter-
face. These databases have tremendous additional value. They
condense what could otherwise be an overwhelming amount
of data into a format that is easily accessible to the research
community and thus can propel basic and translational re-
search in individual laboratories.

In this review, we highlight publicly available brain tran-
scriptome databases that can be accessed without specialized
computational expertise (Table 1), focusing on where to ac-
cess the data, what types of data are available, how they may be
used for research, and what the considerations are for the use
of these resources. We organize these databases based on the
type of transcriptome analysis: spatiotemporal, cell type-
specific, single-cell, and integrative.

Highlighted databases
Spatiotemporal analysis
The brain is functionally organized into regions, which are
distinguished by distinct compositions of molecularly defined
cell types and region-dependent patterns of long- and short-
range connectivities. These anatomical, circuit, and functional
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differences are reflected in the transcriptome. Several tran-
scriptomic studies have therefore sought to capture region-
specific differences in gene expression profiles, leveraging a
variety of dissection techniques ranging from manual macro-
dissection to laser microdissection. Furthermore, the brain
undergoes protracted periods of development, refinement,
and maturation, spanning the early fetal periods to adoles-
cence. The brain can also undergo aging and degeneration,
especially in humans. To capture the temporal transcriptomic
differences in the brain, several transcriptomic studies have
analyzed brain samples from distinct stages of development
and aging.

In one of the largest human brain transcriptome studies to
date, Kang et al. (2011) analyzed 16 human brain regions (11
neocortical areas, cerebellar cortex, mediodorsal nucleus of the
thalamus, striatum, amygdala, and hippocampus) from 57 post-
mortem human brains. The tissue samples were collected from
early fetal development (5.7 weeks after conception) through ag-
ing (82 years), essentially covering the entire human lifespan,
making this a comprehensive database of the spatiotemporal
transcriptome of the human brain. This dataset was generated
from 1340 individual tissue samples collected by macrodissection
and incorporated data from an earlier study from the same group
(Johnson et al., 2009). Using Affymetrix exon microarrays, the
transcriptome data interrogated exon usage and thus enabled
isoform differences to be inferred. This work showed that the
majority of brain-expressed genes are spatiotemporally regulated
and that the transcriptome is organized into coexpression net-
works. Notably, these data showed that the vast majority (90%) of
genes expressed in the brain were spatiotemporally regulated and
that the prenatal brain transcriptome is highly dynamic. The
transcriptome data and the developmental trajectories of genes
and pathways are publicly available in a user-friendly format
from HB Atlas at http://hbatlas.org/, where individual genes can
be queried for their spatiotemporal patterns. Of note is that all
samples from this study were also analyzed using RNA-seq. The

RNA-seq data are available from the BrainSpan Consortium
website http://www.brainspan.org/rnaseq/search/index.html,
where the reads per kilobase transcript per million mapped
reads (RPKMs) of individual genes in each sample can be
queried and the RNA-seq and microarray data can be down-
loaded for further analysis.

The human brain has undergone molecular, connectional,
and structural changes during recent evolution. To capture
human-specific patterns of spatiotemporal gene expression in the
brain, Sousa et al. (2017) recently analyzed by RNA-seq the tran-
scriptome of 16 adult brain regions in chimpanzee and rhesus
macaque for direct comparison with orthologous regions of the
adult human brain (Kang et al., 2011). Although the majority of
genes showed conserved spatiotemporal patterns, substantial
species differences were found: approximately one-fourth of
protein-coding genes were differentially expressed between at
least two species in one or more brain regions. The data from this
study can be accessed through SRA.

In a more focused study, Colantuoni et al. (2011) analyzed
temporal-specific changes in one important region for human
brain function and disease: the dorsolateral prefrontal cortex
(BA46/9). Focusing on one region, this study was able to analyze
a very large number of human brain samples (269 in total) span-
ning gestational week 14 in fetal development to aging (�80
years) using two-color custom-spotted arrays. Interestingly, this
study identified gene expression dynamics occurring during fetal
development that were reversed in early postnatal development
and that these reversals were mirrored late in life during aging
and neurodegeneration. The data can be queried to access the
developmental trajectory of individual genes through Brain-
Cloud at http://braincloud.jhmi.edu/plots/.

Beyond macroscopic regionalization, the brain is also func-
tionally organized by subregional compartmentalization. To cap-
ture with high spatial resolution the subregional transcriptomes
of the human brain, Hawrylycz et al. (2012) used both macrodis-
section and laser microdissection (LMD) to profile �900 neuro-

Table 1. Highlighted brain transcriptome databases a

Analysis Web Interface Reference Species Age Sample Method Isoform Accession

Spatiotemporal http://hbatlas.org Johnson et al., 2009 Human Lifespan Multi, macrodissection Microarray � GSE13344

Kang et al., 2011 GSE25219

http://hbatlas.org/mouseNCXtranscriptome Fertuzinhos et al., 2014 Mouse Postnatal Ctx layer, microdissection RNA-seq � SRP031888

http://www.blueprintnhpatlas.org Bakken et al., 2016 Macaque Lifespan Multi, macrodissection, and LMD Microarray � At database

Spatial http://human.brain-map.org Hawrylycz et al., 2012 Human Adult Multi, macrodissection, and LMD Microarray � At database

http://genserv.anat.ox.ac.uk/layers Belgard et al., 2011 Mouse Adult Ctx layer, microdissection RNA-seq � GSE27243

http://rakiclab.med.yale.edu/transcriptome Ayoub et al., 2011 Mouse Embryonic Ctx embryonic layer, LMD RNA-seq � GSE30765

http://www.brainspan.org/lcm Miller et al., 2014 Human Midfetal Multi, LMD Microarray � At database

https://www.gtexportal.org GTEx Consortium, 2015 Human Adult Many tissues and cell lines RNA-seq � At database

Temporal http://braincloud.jhmi.edu Colantuoni et al., 2011 Human Lifespan Prefrontal Ctx, macrodissection Microarray � GSE30272

Cell type- specific http://brainrnaseq.org Zhang et al., 2014 Mouse Adult Ctx, genetic labeling, immunopanning RNA-seq � GSE52564

Zhang et al., 2016 Human Fetal/adult Ctx, Hp, immunopanning RNA-seq � GSE73721

http://genetics.wustl.edu/jdlab/csea-tool-2 Doyle et al., 2008 Mouse Adult Multi, genetic labeling, ribosome affinity purification Microarray � GSE13379

Xu et al., 2014

http://decon.fas.harvard.edu Molyneaux et al., 2015 Mouse Embryonic Ctx, transcription factor FACS RNA-seq � GSE63482

http://hipposeq.janelia.org Cembrowski et al., 2016 Mouse Adult Hp, genetic labeling, manual selection RNA-seq � GSE74985

http://neuroseq.janelia.org Sugino et al., 2017 Mouse Adult Multi, genetic labeling, manual selection RNA-seq � GSE79238

Single-cell http://linnarssonlab.org/cortex Zeisel et al., 2015 Mouse Adult Ctx, Fluidigm RNA-seq � GSE60361

http://genebrowser.unige.ch/science2016 Telley et al., 2016 Mouse Embryonic Ctx, ventricle dye, FACS, Fluidigm RNA-seq � NA

https://portals.broadinstitute.org/single_cell Shekhar et al., 2016 Mouse Adult Retina, genetic labeling, Drop-seq RNA-seq � GSE81905

https://portals.broadinstitute.org/single_cell Habib et al., 2016 Mouse Adult Hp, single nuclei, FACS, sNuc-seq RNA-seq � GSE84371

https://bit.ly/cortexSingleCell Nowakowski et al., 2017 Human Fetal Ctx, ganglionic eminence, Fluidigm RNA-seq � PRJNA295469

http://gbmseq.org Darmanis et al., 2017 Human Adult Ctx tumor, immunopanning, FACS RNA-seq � GSE84465

Integrative https://www.encodeproject.org ENCODE Project Consortium, 2012 Many Many Many tissues and cell lines Multiomics � Many

http://celltypes.brain-map.org Tasic et al., 2016 Mouse Adult Ctx, genetic labeling, FACS RNA-seq � GSE71585

aCtx, Cortex; Hp, hippocampus; multi, multiple brain regions. Isoform column indicates availability of isoform information via web interface.
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anatomically precise subdivisions from two high-quality human
brains using Agilent 8 � 60K custom-design arrays. With this
high-resolution dataset, one of the most anatomically compre-
hensive to date, it was shown that the spatial topography of the
neocortex is reflected in its transcriptomic topography; phys-
ically closer regions have more similar gene expression pat-
terns. The data from this study can be queried and visualized
through the Allen Brain Map portal http://human.brain-map.org/.

In addition to areas, the neocortex is also organized into hor-
izontal layers (layers 1– 6) composed of distinct subsets of neu-
rons exhibiting layer-dependent connections and patterns of
gene expression. To capture these differences, several groups
have performed microdissection of cortical layers for transcrip-
tome analysis. In an early transcriptomic study targeting neocor-
tical layers, J. G. Chen et al. (2005) microdissected upper layers
(L2–L4) and deep layers (L5 and L6) from early postnatal mice
(P7) for microarray analysis. This work provided the pioneering
data supporting a number of gene-specific functional studies
(Britanova et al., 2008; Kwan et al., 2008; Han et al., 2011; Shim et
al., 2012). In a more comprehensive study of the mature mouse
brain, Belgard et al. (2011) microdissected cortical layers 1–3, 4,
upper 5, lower 5, 6, and 6b from adult (P56) mouse brain slices
and performed RNA-seq on the Illumina GA IIx platform. This
high-precision study led to the identification of 5835 protein-
encoding genes and 66 noncoding RNAs as differentially ex-
pressed between cortical layers. The RNA-seq data are available in
a user-friendly format from http://genserv.anat.ox.ac.uk/layers,
where the fragments per kilobase transcript per million mapped
reads (FPKMs) of individual genes and their layer-specific en-
richment probabilities are provided.

In a more recent study, Fertuzinhos et al. (2014) leveraged a
genetically encoded layer-specific fluorescent reporter mouse
line (Dcdc2a-Gfp, GENSAT) (Gong et al., 2003) to perform pre-
cise fluorescence-guided microdissection of infragranular layers,
granular layer, and supragranular layers. Cortical layer gene ex-
pression was analyzed at postnatal day (P) P4, P6, P8, P10, P14,
and P180 (adult), covering key periods of synaptogenesis and
neural circuit refinement in mouse cortical development. By us-
ing RNA-seq on the Illumina Hi-Seq platform, this group iden-
tified spatiotemporally regulated splicing events, as well as
potential microRNA (miRNA)-mRNA interactions during cir-
cuit development in the mouse cortex. Coding mRNA and
miRNA data are available for query through http://hbatlas.org/
mouseNCXtranscriptome/. In a recent study, He et al. (2017)
analyzed the layer-dependent transcriptomes of human, chim-
panzee, and rhesus macaque prefrontal cortex, using horizontal
sections grouped into bins. The high-resolution, multispecies
study revealed a number of genes with human-specific layer pat-
terns that are driven by neuronal and non-neuronal expression.
The data can be downloaded through SRA.

During brain development, anatomical regionalization is dy-
namic. For example, distinct from the neocortical layer organiza-
tion of the postnatal brain, the fetal neocortex is characterized by
developmental layers that are only transiently present during pre-
natal periods. These include the germinal layers (ventricular zone
and subventricular zone), which contain the proliferative neural
stem cells, and the cortical plate, which contains postmigration
neurons. To capture the transcriptomic differences in these
developmental cortical layers, Ayoub et al. (2011) leveraged
LMD to finely dissect the ventricular zone, subventricular
zone/intermediate zone, and cortical plate from embryonic
(E14.5) mouse cortex and performed RNA-seq on Illumina
GA IIx. This work identified a number of zone-specific transcrip-

tional programs. The layer-specific RPKMs can be queried at
http://rakiclab.med.yale.edu/transcriptome/index.aspx.

In a more recent study, Miller et al. (2014) very comprehen-
sively profiled layer-dependent transcriptomes in the human fe-
tal cortex, which contains cytoarchitecturally distinct layers and
sublayers not present in the mouse. Using LMD, 9 fetal layers
were delineated in mid-fetal human brain samples from �25
areas of the developing neocortex and profiled on custom 64K
Agilent microarrays. With high layer and area resolution, this
study revealed molecular gradients present in the germinal and
postmitotic zones and patterned expression in genes associated
with human brain disorders or evolution. The data are available
for individual gene query and correlated gene search from
BrainSpan at http://www.brainspan.org/lcm/search/index.html, where
a supporting fetal human brain anatomical atlas is also available.

Human tissue samples are precious, and even the most exten-
sive brain collections have gaps in coverage of specific brain re-
gions or developmental stages. Bakken et al. (2016), therefore,
undertook a highly precise spatiotemporal study extensively
covering prenatal and postnatal development of the macaque
monkey cortex. This work analyzed LMD samples of cortical
layers from multiple brain regions at 10 stages of development
(embryonic days 40 – 48 months postnatal) using Affymetrix
Rhesus Macaque GeneChip microarrays. This comprehensive,
high-resolution spatiotemporal study of the macaque brain re-
vealed rapid prenatal expression changes in progenitors and
neurons, disease-specific spatiotemporal enrichment of genes as-
sociated with human neurodevelopmental disorders, and evi-
dence of human-specific gene regulation. The data from this
study are available through the NIH Blueprint NHP Atlas at
http://www.blueprintnhpatlas.org.

In addition to expression data from within the brain, several
databases are available with transcriptomes from many organs
and systems. A key example is the Genotype-Tissue Expression
project (GTEx), which is a multisite consortium funded by the
National Institutes of Health to generate a large-scale dataset
linking genetic variation to gene expression in multiple tissues of
the human body, including several regions of the brain (GTEx
Consortium, 2015, 2017). Profiling �50 tissues across the body
from �600 donors, GTEx has generated a rich dataset of tissue-
specific transcriptomes, providing insights into exon usage, splic-
ing, and the tissue specificity of these events. Importantly, each
donor is genotyped for common single-nucleotide polymorphisms,
thus enabling expression quantitative trait loci (eQTL) studies.
eQTLs can reveal the contribution of an individual variant to
expression of local (cis-eQTLs) and distant (trans-eQTLs) genes
and, with wide sampling of many tissue types, whether such ef-
fects may be tissue-specific. These data are available to investiga-
tors through https://www.GTExportal.org, offering an intuitive
and rich resource to query individual genes and the eQTLs linked
to the expression of these genes.

In addition to transcriptome databases, spatial gene expres-
sion data can also be found in several databases housing large-
scale in situ hybridization datasets. Many of these resources
preceded the transcriptome era but remain important as they
provide single-cell gene expression data in a precise anatomical
context. Briefly, these in situ databases include the developing
mouse brain (http://developingmouse.brain-map.org/, http://
www.eurexpress.org/ee/), adult mouse brain (http://mouse.
brain-map.org/), and adult human brain (http://human. brain-
map.org/ish/search) (Lein et al., 2007; Diez-Roux et al., 2011;
Hawrylycz et al., 2011; Zeng et al., 2012).

Keil et al. • Brain Transcriptome Databases J. Neurosci., March 7, 2018 • 38(10):2399 –2412 • 2401



Cell type-specific analysis
The brain is a highly heterogeneous tissue composed of diverse
cell types characterized by distinct patterns of gene expression. In
transcriptome analyses of whole tissues, RNAs from all cell types
are analyzed en masse. Cell type-specific patterns of gene expres-
sion and regulation, therefore, would be diluted and may be
missed altogether. Several strategies have been used to physically
isolate particular cell types so that they can be more specifically
analyzed. In the 2000s, genetic access to specific cells in the brain
became possible with the availability of transgenic mice express-
ing a reporter gene (e.g., EGFP) in specific cell types by random
genomic integration or promoter-driven gene expression (Feng
et al., 2000; Gong et al., 2003). In a pioneering study, Sugino et al.
(2006) leveraged genetic access to specific cell types and FACS to
isolate glutamatergic and GABAergic neurons in the cortex, hip-
pocampus, amygdala, and thalamus. The resulting microarray
data revealed the transcriptomic profiles of 12 distinct adult neu-
ronal populations in the mouse brain.

With advances in recombineering and transgenesis, more pre-
cise genetic targeting of cell types became possible. The GENSAT
consortium, for example, was funded by National Institutes of
Health to generate BAC transgenic EGFP reporter mice targeting
specific cell types in the brain (Gong et al., 2003). Using this
targeting strategy, Doyle et al. (2008) and Heiman et al. (2008)
pioneered BACarray or bacTRAP, which enabled cell type-
specific mRNA purification by translating ribosome affinity pu-
rification (TRAP). By targeting the expression of an EGFP-tagged
ribosomal subunit (RPL10a) to specific cell types by BAC trans-
genesis, polysomal mRNAs from genetically defined cell popula-
tions can be isolated by affinity purification. The bacTRAP
project generated a large collection of bacTRAP lines for cell
type-specific transcriptomic analysis, at that time by microarrays.
Although a web interface for these data was not provided at the
time, Xu et al. (2014) generated a convenient webtool, Specific
Expression Analysis, at http://genetics.wustl.edu/jdlab/csea-
tool-2/ to query and visualize these data, which contain transcrip-
tomic data from 27 genetically targeted cell types in the brain.
This and a similar Cre-dependent strategy for genetic ribosomal
tagging (Sanz et al., 2009) are now being used in many fields of
biology. Other compartments of the cell can be targeted to facil-
itate cell purification. In a more recent study, Mo et al. (2015)
genetically targeted the expression of a nuclear tag using INTACT
(isolation of nuclei tagged in specific cell types) for combined
transcriptomic and epigenomic profiling in specific cell types in
the mouse brain (Mo et al., 2015). The integrated transcriptomic,
DNA methylation, and DNA accessibility (ATAC-seq) data for
excitatory pyramidal neurons, parvalbumin-expressing in-
terneurons, and VIP-expressing interneurons in the mouse cor-
tex can be accessed at http://neomorph.salk.edu/mm_intact/.

In addition to genetic targeting, which requires the generation
of transgenic or knock-in mice, cell surface markers can also be
used to purify specific cell types. In a comprehensive cell type-
specific analysis of the brain transcriptome, Cahoy et al. (2008)
and Zhang et al. (2014, 2016) used cell surface antigen immuno-
panning and FACS to isolate known major cell types in the adult
brain (neurons, astrocytes, oligodendrocytes, microglia, and en-
dothelial cells) from human and mouse. RNA-seq was performed
on the Illumina HiSeq and NextSeq platforms. This species- and
cell type-dependent analysis enabled, among other insights, the
identification of transcriptomic differences in mouse and human
astrocytes, as well as microglia (Bennett et al., 2016). The result-
ing RNA-seq data are available in a user-friendly format from the
Brain RNA-seq database at http://brainrnaseq.org/.

Neurons are distinguished by their connectivities. The projec-
tion neurons of the cerebral cortex, for example, can be broadly
classified into callosal, corticothalamic, corticotectal, and corti-
cospinal. In a pioneering study of connection-specific transcrip-
tomic analysis, Arlotta et al. (2005) combined retrograde axon
tracing and FACS to isolate corticospinal, callosal, and cortico-
tectal neurons for microarray analysis, which identified key genes
for follow-up functional studies (Arlotta et al., 2005; Molyneaux
et al., 2005; Lai et al., 2008). More recently, Molyneaux et al.
(2015) isolated callosal, subcerebral, and corticothalamic projec-
tion neurons by nuclear marker labeling and FACS using E15.5,
E16.5, E18.5, and P1 mouse neocortex. The RNA-seq data re-
vealed spatiotemporal usage of alternative promoters and exons
during fate specification, as well as numerous noncoding RNAs
with dynamic expression. These data are available for web query
from DeCoN at http://decon.fas.harvard.edu/. In another recent
study, Ekstrand et al. (2014) used retrograde adeno-associated
virus to tag ribosomes in long range projection neurons based on
their projection target. The technique was used to profile mid-
brain dopamine neurons projecting to the NAc.

The hippocampus is a well-studied brain region with impor-
tant subregional specializations. Cembrowski et al. (2016) ana-
lyzed with high precision all hippocampal excitatory neuronal
classes (dentate gyrus granule and mossy cells, and CA1, CA2,
CA3 pyramidal cells) by combining genetic targeting of cell types,
microdissection, and manual sorting. The high-resolution RNA-
seq data revealed the expression profiles of lesser-known cell classes
and unexpected spatial differences in expression across the dorsal-
ventral axis. The data are available as a public resource through Hip-
poSeq at http://hipposeq.janelia.org/.

A new database (NeuroSeq) that has recently become available
houses the transcriptomes of, to date, the most comprehensive col-
lection of genetically and anatomically identified neuronal classes
from many regions of the adult mouse brain (Sugino et al., 2017).
By combining genetic access, achieved through a large collection
of cell type-specific Cre driver lines, brain region-specific micro-
dissection, and manual selection of cell pools, Sugino et al. (2017)
performed deep RNA-seq on 181 molecularly and spatially pre-
cise cell types for NeuroSeq. Using a strategy that is distinct from
the single-cell sequencing techniques discussed below, NeuroSeq
can achieve significantly higher sequencing depth from geneti-
cally labeled and manually separated cell types. The resulting data
showed that homeobox transcription factors contain the highest
information content for distinguishing cell types and the lowest
noise. Therefore, a cell type classifier using a decision tree of gene
expression levels can be based on a small, informative set of tran-
scription factors. The comprehensive transcriptome dataset can
be queried and explored at http://neuroseq.janelia.org/ through
user-selected tracks in an interactive browser. In addition, a high-
resolution mouse brain atlas of Cre driver and reporter expression
is also available to explore the cell type and location specificity of
the transgenic mice used to build the transcriptomic data.

Single-cell analysis
With genetic access to specific cell types and advanced cell puri-
fication and microdissection techniques, the transcriptomes of
specific groups of brain cells can be assessed with high precision.
However, these techniques are unable to reveal the molecular
taxonomy of the brain at its fundamental unit, the cell. The brain
is a highly heterogeneous tissue composed of single cells, each
proposed to be characterized by a unique transcriptome. Cell-to-
cell transcriptomic heterogeneity is a fundamental property of
any multicellular system and is likely to be especially important
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for the assembly and function of neural circuits in the brain.
Recent advances in Next Generation Sequencing (NGS), single-
cell isolation, and molecular barcoding techniques have enabled
the generation and sequencing of cDNA libraries from a single
cell; thus, cell-to-cell heterogeneity at the level of the transcriptome
can be assessed. This technique, single-cell RNA-seq (scRNA-seq), is
emerging as a powerful tool to classify new cell populations, char-
acterize rare cell types, and track the longitudinal development of
cells at single-cell resolution. In the few years since technology
has enabled high-throughput scRNA-seq, several variations of
the technique have already been applied to the brain, including
adult human brain (Darmanis et al., 2015; Lake et al., 2016), fetal
human brain (Pollen et al., 2014; Johnson et al., 2015; S. J. Liu et
al., 2016), human brain organoids (Quadrato et al., 2017), adult
mouse dentate gyrus (Luo et al., 2015; Shin et al., 2015; Lacar et
al., 2016; Dulken et al., 2017), adult mouse striatum (Gokce et al.,
2016), adult mouse hypothalamus (Campbell et al., 2017), adult
mouse DRG (Li et al., 2016), and fetal mouse ganglionic emi-
nences (Y. J. Chen et al., 2017).

In one of the first studies to provide a database of brain single-
cell transcriptomes, Zeisel et al. (2015) analyzed 3005 single cells
from the adult mouse somatosensory cortex and hippocampal
CA1, using the Fluidigm C1 instrument to capture single cells
without selection and generate scRNA-seq libraries. Clustering of
single cells based on their transcriptomes revealed nine major
classes, which were identified by the expression of known marker
genes as pyramidal neurons, interneurons, oligodendrocytes, as-
trocytes, microglia, vascular endothelial cells, mural cells, and
ependymal cells. Further clustering revealed 47 molecularly
distinct subclasses (e.g., layer-specific pyramidal neurons) and
identified new molecularly defined subpopulations of layer 1 in-
terneurons and postmitotic oligodendrocytes, highlighting the
ability of scRNA-seq to characterize new or rare cell populations.
The single-cell transcriptome data can be interactively accessed at
http://linnarssonlab.org/cortex/.

In the developing brain, diverse subtypes of neurons are born
from neural progenitor cells. During the acquisition of neuronal
identity, the cell is thought to undergo rapid transcriptomic
changes as it transitions from proliferation to neuronal spec-
ification and differentiation. To capture these early waves of
transcriptomic changes, Telley et al. (2016) used a pulsed intra-
ventricular dye to label isochronic cohorts of apical progenitors,
basal progenitors, and neurons at early and later stages of differ-
entiation from the embryonic mouse cortex for scRNA-seq. La-
beled cells were isolated by FACS, and single cells were captured
using the Fluidigm C1 system. The resulting dataset of 272
single-cell transcriptomes revealed dynamic, neuron-specific
transcriptional waves that instruct the sequence of specifica-
tion and differentiation. This high temporal resolution
scRNA-seq dataset can be queried and visualized at http://
genebrowser.unige.ch/science2016/.

In a comprehensive new study, Nowakowski et al. (2017)
performed scRNA-seq of human fetal cortex and medial gan-
glionic eminence across key stages of prenatal neurogenesis
(from 6 to 37 weeks after conception) using the Fluidigm C1
instrument. Analysis and clustering of 4261 cells revealed
lineage-dependent trajectories of transcriptional regulators,
and that modest transcriptional differences in cortical radial
glial stem cells cascade into robust cell-type-dependent differ-
ences in neurons. The single-cell transcriptome data can be
queried and cell clustering can be visualized through a web
interface at http://bit.ly/cortexSingleCell.

With advances in microfluidics, several higher-throughput
single-cell isolation methods have become available. Shekhar et
al. (2016) used Drop-seq to profile the single-cell transcriptomes
of 25,000 mouse retinal bipolar cells. Drop-seq is a technique that
encapsulates, in a nanoliter volume droplet, a single cell together
with a barcoded bead, thus barcoding individual cells for highly
parallel scRNA analysis (Macosko et al., 2015). As proof of con-
cept for Drop-seq, Macosko et al. (2015) first analyzed the single-
cell transcriptomes of 44,808 mouse retinal cells. More recently,
Shekhar et al. (2016) focused on the bipolar cells, which comprise
only �7% of retinal cells in mice. The data led to a molecular classi-
fication with 15 bipolar cell types that corresponded to morphologic
classification, including all known cell types and two new cell types.
The resulting data can be accessed and visualized through the Broad
Single Cell Portal at https://portals.broadinstitute.org/single_cell.

A critical step in scRNA-seq is the isolation of intact single
cells from tissues. This can be particularly challenging for neu-
rons, which elaborate long processes that can increase the likeli-
hood of cell membrane rupture during dissociation. In addition,
typical scRNA-seq protocols require the use of fresh tissues be-
cause freezing disrupts the cell membrane, making the isolation
of intact single cells from frozen samples impractical. To address
these issues, techniques have been developed to isolate single
nuclei from fresh or frozen (archival) tissues for single-nucleus
RNA-Seq (sNuc-Seq), which applies scRNA-seq to single nuclei
isolated using fluorescence activated nuclear sorting (Lake et al.,
2016). Habib et al. (2016) recently extended on the sNuc-Seq
technique to develop Div-Seq, which combines sNuc-Seq with
pulse labeling of S-phase cells by deoxythymidine analog EdU to
profile single proliferating cells in the adult hippocampal neuro-
genic niche. Clustering analysis of 1402 single-nuclear transcrip-
tomes identified closely related cell types and enabled tracking of
transcriptional trajectories as cells mature from progenitors to
neurons. These data can be accessed and visualized through the
Single Cell Portal at https://portals.broadinstitute.org/single_
cell. The same group has also developed DroNc-seq, which
leverages the Drop-seq strategy to profile single nuclei at high
throughput, and applied the technique to archived human and
mouse tissues (Habib et al., 2017). This and other techniques have
now made possible the profiling of single cells from archival human
pathological tissues, including those from individuals with neuro-
logical and psychiatric disorders, which holds great potential to re-
veal mechanistic insights into brain disorders.

In addition to postmortem samples, human pathology tissues
can also be collected from surgical resections. Recently, Darmanis
et al. (2017) collected surgically excised glioblastoma tumors
for scRNA-seq. Data from 3589 cells from four patients
showed clustering of major cell types (neoplastic, vascular,
myeloid, neurons, oligodendrocytes, astrocytes) and revealed
that, despite significant heterogeneity, infiltrating glioblastoma
cells are characterized by a consistent transcriptomic signature,
thus providing insights into shared mechanisms of infiltration.
These data can be accessed and visualized through GBMseq at
http://gbmseq.org/.

In addition to the cerebral cortex, scRNA-seq databases with
data from other brain regions are available. Kee et al. (2017)
recently used scRNA-seq to analyze the progenitors of mesen-
cephalic dopamine neurons in embryonic mice by using FACS to
isolate single cells that were labeled and unlabeled by the Lmx1a-
EGFP transgene. The resulting data revealed closely related, but
distinct, transcriptomic profiles between mesencephalic dopa-
mine neurons and subthalamic nucleus neurons. The data can be
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visualized through http://rshiny.nbis.se/shiny-server-apps/shiny-
apps-scrnaseq/Kee_2016/.

Integrative analysis
Upstream of the transcriptome are exquisite gene regulatory
mechanisms that precisely control spatiotemporal gene expres-
sion, whereas downstream of the transcriptome is the execution
of essentially all aspects of cellular function. Integrative transcrip-
tomic databases facilitate the covisualization of transcriptomic
and other forms of genomic and cellular data, thus enabling users
to correlate gene expression with upstream regulatory processes
or downstream cellular phenotypes.

Essential to a full understanding of gene regulation is the func-
tional annotation of genomic regulatory elements. The multisite
Encyclopedia of DNA Elements (ENCODE) Consortium is an
international collaboration of research groups funded by the Na-
tional Institutes of Health to comprehensively map coding and
noncoding functional elements in the human, mouse, fly, and
worm genomes, including regulatory elements that act at the
DNA, RNA, and protein levels and the tissue- and cell type-
dependent contexts of their function (ENCODE Project Consor-
tium, 2012). To date, the multiphase ENCODE project has
generated large-scale datasets for nearly 9000 projects. The multiom-
ics data generated include transcriptome (e.g., polyA RNA-seq,
miRNA-seq), DNA methylation (e.g., WGBS, DNAme array), DNA
accessibility (e.g., DNase-seq, FAIRE-seq, ATAC-seq), chromatin
interaction (e.g., ChIA-PET, 5-C, Hi-C), RNA-binding protein in-
teraction (e.g., RIP-seq, CLIP-seq), and chromatin modification
(e.g., H3K27me3 ChIP, H3K4me3 ChIP) from a variety of cell lines
(e.g., ESCs, HeLa) and tissues (e.g., adult brain, fetal heart) at
different stages of differentiation or development. Importantly,
this comprehensive and highly informative dataset can be explored
in a user-friendly way through data tracks on the widely used UCSC
genome browser (https://genome.ucsc.edu/encode/). Users can
search for and select multiple data tracks of interest and simulta-
neously visualize the data on the well-annotated UCSC genome
browser together with existing UCSC tracks (e.g., conservation,
single-nucleotide polymorphisms, RepeatMasker). The ENCODE
project is ongoing and the updated availability of data can be
found at the project portal (https://www.encodeproject.org/).
Additionally, pertinent to brain research is the Psychiatric Ency-
clopedia of DNA Elements (PsychENCODE) consortium (Ak-
barian et al., 2015), a recently launched multisite project funded by
the National Institute of Mental Health that aims to comprehen-
sively catalog regulatory elements, epigenetic modifications, and
noncoding RNAs in�1000 phenotypically well-characterized, high-
quality healthy and disease-affected human brains. These collabor-
ative efforts are now underway and expected to generate large-scale
data that provide direct insights into the molecular pathology under-
pinning brain disorders, and how genetic variants contribute to
disease. These data are available at https://www.synapse.org//
#!Synapse:syn4921369/wiki/235539.

Downstream of the transcriptome is the regulation of nearly
all aspects of cellular phenotypes. In neurons, these phenotypes
include morphological and electrophysiological properties. The
Allen Brain Atlas Cell Types database is an ongoing survey of
electrophysiological, morphological, and transcriptomic data de-
rived from individual mouse and human brain cells. The current
data include a comprehensive analysis of single cells from one
mouse cortical region, primary visual cortex, by scRNA-seq. For
scRNA-seq, Tasic et al. (2016) captured molecularly distinct sin-
gle cells using established and new cell type-specific Cre and re-
porter transgenic mouse lines, which is a strategy distinct from

the unselected analysis of Zeisel et al. (2015). Based on single-cell
transcriptomic data, Tasic et al. (2016) identified 49 cell types,
including 23 GABAergic, 19 glutamatergic, and 7 non-neuronal
cell types. By applying unsupervised clustering to all cells, this
work characterized the specificity of genetic access to the identi-
fied cell types by transgenic Cre lines. Importantly, Tasic et al.
(2016) showed that some of these cell types are characterized by
distinguishing electrophysiological or axon projection proper-
ties, thus associating single-cell transcriptome signatures with
specific cellular phenotypes, and revealing a transcriptomic
cell type taxonomy that is supported by genetic, physiological,
morphological, and projectional evidence. Integrating these
data, the Allen Brain Atlas Cell Types database enables users to
browse the electrophysiological response data and recon-
structed neuronal morphologies of molecularly defined cell
types using the Cell Feature Search tool (http://celltypes.brain-
map.org/). The transcriptomic properties of the same molecu-
larly defined cell types can be accessed through the web or by
download (http://celltypes.brain-map.org/download).

The field is entering a new era of integrative analysis. Very
recently, Paul et al. (2017) combined scRNA-seq with anatomical
and electrophysiological data to specifically study subtypes of
GABAergic interneurons in the mouse neocortex. They found
that the synaptic connectivity patterns of GABAergic neuron
types are well delineated by transcriptional architecture into 6
categories. In addition, with improvements in library generation,
it is now possible to sequence the cDNA of a single cell derived
from aspiration. This the basis of Patch-seq, which enables anal-
ysis of electrophysiological characteristics and transcriptome in a
single cell, by using a patch-clamp protocol followed by aspira-
tion of the cytoplasm into the recording pipette for sequencing
library generation (Fuzik et al., 2016). In a very recent study, Lake
et al. (2018) combined single cell transcriptome and epigenome
analyses in �60,000 adult human brain cells, revealing regulatory
elements and transcriptional programs underlying distinct cell
types. With further technical improvements, integrative analysis
of cellular characteristics, epigenomes, and transcriptomes in sin-
gle cells is becoming an exciting possibility.

Considerations for use of data
The databases we highlight house high-quality data that can be a
tremendous resource to many fields of neuroscience. These data
are, however, not without caveats. Understanding the potential
limitations can enable database users to more appropriately and
effectively use these resources. Here we discuss key methodolo-
gies for transcriptome analysis, what can and cannot be mea-
sured, and biological and technical considerations for use of
transcriptome databases.

What does the transcriptome measure?
The transcriptome is broadly defined as the sum total of all RNA
transcripts in a cell or an organ. When it is measured, the tran-
scriptome represents a snapshot of transcript levels at the time of
analysis, which is the combined outcome of the transcriptional
activities that produce the RNAs and the post-transcriptional
processes that stabilize or degrade them. A number of newer
techniques have analyzed nascent RNA to distinguish transcrip-
tional from post-transcriptional activity (Core et al., 2008;
Paulsen et al., 2014). Interestingly, the correlation between nas-
cent and static RNA-seq can differ on a gene-by-gene basis,
suggesting gene-dependent differences in RNA stability or deg-
radation. The transcriptome can also provide insights into tran-
script isoforms. Alternative splicing is emerging as an important
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mechanism to generate protein diversity and sites for differential
post-transcriptional regulation. Exon microarrays and short-
read RNA-seq can provide insights into alternative exon usage.
Indeed, several of the highlighted databases provide transcript
isoform information (Zhang et al., 2014; GTEx Consortium,
2015; Sugino et al., 2017). It is important to note, however, that
short-read RNA-seq or microarrays based on short DNA probes
can inform the usage of an exon but cannot reliably measure the
upstream or downstream exons to which it is spliced. Direct
analysis of splice junctions throughout the transcript requires
multijunction-spanning reads, which is possible with longer read
sequencing technology. With emerging techniques in long-read
sequencing and direct RNA sequencing (e.g., nanopore) (Garalde
et al., 2018), such analyses are becoming a possibility. Transcrip-
tomic analyses can also be used to study species differences. These
comparisons can be challenging, especially for phylogenetically
distant species because of differences in genome annotation, tis-
sue processing, and analysis standardization. For the brain, the
high degree of regionalization presents an additional challenge in
defining orthologous regions between species. For more closely
related species (e.g., human, chimp, and rhesus macaque), ana-
tomical identification is feasible (Sousa et al., 2017). Although
challenging, these comparisons can provide important insights
into the molecular bases of brain evolution.

For many researchers, transcriptomic data are used to infer
protein expression, largely because of the relative ease and lower
cost of quantifying mRNA levels compared with their protein
products. Protein levels, however, are regulated through a
combination of transcriptional, post-transcriptional, and post-
translational mechanisms. Transcript and protein level correlation
has long been a subject of study and debate (Schwanhäusser et al.,
2011; Edfors et al., 2016; Y. Liu et al., 2016). A recent statistical anal-
ysis of mRNA and protein levels across human tissues found that, for
a given gene, protein levels across tissues are only poorly predicted by
mRNA levels (i.e., the protein-to-mRNA ratio for an individual gene
varies greatly between tissues), likely reflecting the effects of tissue-
dependent post-transcriptional regulation. However, and quite im-
portantly, for between-gene comparisons, protein levels are well
predicted by mRNA levels (e.g., highly abundant proteins tend
to be encoded by highly abundant mRNAs and vice versa).
This phenomenon, termed Simpson’s paradox, is discussed in
detail previously (Franks et al., 2017). Recently, Carlyle et al.
(2017) compared mRNA and protein levels from multiple hu-
man brain regions from the BrainSpan project. Their analysis
demonstrated a modest median correlation (r � 0.32) be-
tween mRNA and protein, providing support for use of the
transcriptome as an informative tool, while highlighting the
imperfect prediction of protein levels based on mRNA. Given
the potential for gene-specific differences in RNA-protein cor-
relation, it may be important, depending on the ultimate goal
of the user, to validate RNA or protein levels in additional
tissues or using orthogonal methods, which we further discuss
below in Validation.

RNA-seq versus microarray
Early studies of brain transcriptomes were performed using
microarray, a hybridization-based method for measuring gene
expression (Hitzemann et al., 2014). A microarray is a collec-
tion of DNA probes immobilized on a solid surface to which
fluorescently labeled target cDNA hybridize. Probe-target hy-
bridization is then quantified by measuring fluorescence to
determine the relative abundance of target cDNA, which is
identified by the coordinates of the probe spot. Microarrays

have been reliable and accurate and, with more advanced oli-
gonucleotide arrays targeting individual exons, have provided
biological insights at the level of transcript isoforms. In the
past several years, RNA-seq has emerged as the dominant
method for transcriptome profiling. RNA-seq is a sequencing-
based method that leverages the massively parallel throughput
of NGS to simultaneously quantify RNA species in an organ or
a cell, thus enabling unbiased profiling of the transcriptome
(Mortazavi et al., 2008). Briefly, RNA-seq starts with isolation
of the desired species of RNA, such as mRNA, by selection or
depletion methods. The RNA is then converted into cDNA by
reverse transcription, often after an RNA fragmentation step.
For NGS, an RNA-seq library, which contains the end sequences
compatible with sequencing-by-synthesis for a particular NGS
platform, is generated by attaching adapters to the cDNA via
ligation or PCR. Individual libraries from different RNA samples
can be uniquely barcoded so that they can be mixed and se-
quenced together to reduce cost. The transcriptome is then as-
sembled by assigning sequencing reads to particular features
(e.g., a specific gene), usually by alignment to the genome or the
transcriptome. Quantification can be achieved based on se-
quence read counts after normalization, which must take into
account transcript length and total library size.

Although the brain transcriptome data generated by microar-
ray remain valuable and reliable resources, analyses by RNA-seq
have several advantages. First, RNA-seq directly provides se-
quence reads and thus can detect splice variants and novel tran-
scripts without prior knowledge or probe selection bias. Second,
RNA-seq offers a much wider dynamic range, more accurately
quantifying high and low expressors. Third, the increased sensi-
tivity of RNA-seq enables analysis from a small amount of start-
ing material, including from single cells. RNA-seq analyses,
however, are not without limitations. We discuss some of these
considerations below.

Quantifying gene expression
A key goal of expression analysis is quantification of transcript
abundance. Essentially all transcriptome data represent relative,
not absolute, measurements that require the data to be normal-
ized. Microarrays provide analog results with values that are in-
herently arbitrary and normalized within the experiment, usually
using reference probes. RNA-seq produces shot-gun sequencing
reads that need to be processed and mapped. The choice of ref-
erence, mapping method, and quantification strategy can have a
significant impact on the result (Williams et al., 2017). Normal-
ization is generally implemented as a unit to account for varia-
tions in total read count, which can vary between samples, even
within an experimental batch. Normalization also needs to ac-
count for gene length, as longer transcripts are more likely to be
sequenced and would have a higher read count at a given expres-
sion level. Importantly, there are a number of conventions for
normalizing RNA-seq data, which lead the data to be reported in
different units between groups. These units include RPKMs, FP-
KMs, and transcripts per million (TPM). The most commonly
used unit is RPKM. Introduced by one of the first RNA-seq pa-
pers (Mortazavi et al., 2008), RPKM normalizes for total read
count and gene length but produces units that are not compara-
ble across samples due to inconsistencies in the final normalized
counts across samples. FPKM is calculated by an analogous
method for paired-end read sequencing libraries (Trapnell et al.,
2010). In contrast, TPM, which also normalizes for total read
count and gene length, quantifies transcript abundance by a
clever reordering of the terms so that the final values are all nor-
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malized equally, making it much more feasible to compare values
across samples (Li et al., 2010). Although TPM has not yet been
adopted widely, recent computational and statistical packages
have transitioned to using TPM as the unit of choice (Wagner et
al., 2012).

Technical factors
Transcriptome analysis is a technically challenging endeavor, and
many methodological factors can affect the accuracy and repro-
ducibility of the data. Postmortem interval, tissue quality, tissue
dissection, and RNA extraction methods can influence transcrip-
tome analysis. Notably, for analysis of human brain samples, an-
temortem and postmortem factors can skew results. Most of the
highlighted human transcriptome databases therefore report
postmortem interval, brain pH (a measure of tissue quality), and
RNA integrity numbers (a measure of RNA degradation) for each
specimen. Recently, it was shown that correcting for RNA quality
biases can significantly improve replication rates (Jaffe et al.,
2017).

For RNA-seq, library generation is a critical step and poten-
tial source of technical variability. Library generation requires
PCR amplification, which can be nonuniform and thus intro-
duce bias. Bias can also be introduced during polyA selection
or rRNA depletion, techniques that are commonly used to
enrich for mRNAs. In addition, library generation requires a
long, multistep protocol that can introduce batch-to-batch
variations that are well documented. These potential issues,
however, can be mitigated. For example, by using RNA stan-
dard spike-in (e.g., ERCC), batch-to-batch variations in li-
brary quality can be normalized. Recently, unique molecular
identifiers have been used to tag individual starting cDNAs
before amplification, thus reducing the impact of amplifica-
tion bias. These quality control techniques have already been
used in some of the databases and are expected to become
more widely adopted. In addition, computational tools can be
used to assess library quality based on batch effects, overam-
plification, strand directionality, signal-to-noise, and other
metrics (Islam et al., 2014; Patro et al., 2017; Pimentel et al.,
2017). However, computational pipelines themselves can dif-
fer in methodology (Baruzzo et al., 2017; Everaert et al., 2017)
and be an additional source of technical variability. Although
computational tools are rapidly improving, together, these
technical factors emphasize the importance of validation ex-
periments, which we discuss in Validation.

It is also important to note that transcriptomic analysis does
not measure all genes with equal accuracy. For RNA-seq, the
confidence of transcript quantification increases with the num-
ber of reads representing the transcript. Transcripts that are very
low in abundance can be difficult to quantify due to the limited
number of representative reads. Therefore, measurements, such
as fold change, can be skewed for low expressors. For example,
two genes that are measured at 0.01 FPKM and 0.05 FPKM,
respectively, are likely not indeed fivefold different due to uncer-
tainty in RNA-seq measurements and quantification. Computa-
tional algorithms do take this into account and can determine
statistical confidence for each gene. Nonetheless, this highlights
the need for validation experiments.

Single-cell transcriptomics represent an area of tremendous
promise. Investments into large, collaborative efforts, such as
the Human Cell Atlas (Regev et al., 2017), will continue to
accelerate the discovery and molecular definition of cell types
in the coming years. It should be noted, however, that current
scRNA-seq techniques lack sufficient depth for full analysis of

the transcriptome on a per-cell basis. As a single cell contains
only a very small amount of starting material, uneven loss of
RNA can lead to spurious gene drop-out, the absence of reads
representing an expressed gene, and affect quantitative analy-
sis (M. Chen and Zhou, 2017). In particular for scRNA-seq,
genes with short transcript length or low transcript abundance
are susceptible to drop-out and can be difficult to measure
accurately. As methodologies in single-cell capture, barcod-
ing, and library generation improve, deep analysis of single-
cell transcriptomes is expected to become feasible in the near
future.

Validation
Validation is essential to discovery science. For transcriptomic
data, biological and technical factors can contribute to accuracy
and reproducibility. Importantly, transcriptome analyses, by def-
inition, simultaneously probe all possible transcripts, each of
which has the potential to produce a statistically significant dis-
covery. With more transcripts being compared, the likelihood
that two groups will appear to differ on at least one transcript
increases due to random sampling error (Fang and Cui, 2011).
This phenomenon, termed multiple testing, can be accounted for
by calculating the false discovery rate (Robinson et al., 2010; Love
et al., 2014). Although multiple testing has been taken into ac-
count in many of the highlighted databases, the possibility of false
discovery underscores the importance of independent validation
of transcriptomic data. Depending on the specific needs of the
end user, validation experiments may be necessary to ascertain
transcript or protein levels in the tissues or cells of interest. At the
transcript level, quantitative RT-PCR or digital droplet RT-PCR
can provide highly accurate quantification, whereas in situ hy-
bridization can provide spatial information. At the protein level,
Western blotting, ELISA, and immunostaining can be used. For
some of the databases highlighted here, the data are derived from
tissues that are not readily accessible to many researchers, such as
fetal human and macaque tissue. In these cases, independent
validation may still be possible by using data from multiple data-
bases or sources, including other published studies.

Utility of brain transcriptomic databases
The collection of transcriptomic resources highlighted here has
tremendous potential to inform neuroscience research very
broadly. Here we briefly discuss how these data can be used to
propel studies of gene function and regulation as well as genetic
studies of human brain disorders, using several examples to illus-
trate the potential utility of transcriptome data.

Studies of gene function and regulatory mechanisms
A key pursuit in molecular neuroscience is to understand the
roles of individual genes in brain development and function.
The spatiotemporal and cell type specificity of gene expression
can provide important clues into potential function and in-
form the tissues and developmental time points most appro-
priate for experimental study. The transcriptomic databases
highlighted here represent valuable sources of curated, high-
quality data accessible without the need for specialized exper-
tise in informatics or data analysis, enabling individual
scientists to easily query the genes they study or those of potential
interest. These combined resources can rapidly provide candidate
gene expression profiles with spatiotemporal, cell type, and single-
cell specificity, giving a high-level overview that would otherwise be
too costly or time-consuming for individual laboratories to generate.
These data can be used to identify candidate genes for further study
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and support or refine working hypotheses by enabling a more unbi-
ased approach based on cell type specificity and developmental tra-
jectory of gene expression. In addition, clues into potential
mechanisms and gene–gene interactions may be gained by examin-
ing expression overlap or mutual exclusivity. Here we highlight the
potential utility of these transcriptomic resources with a small sam-
pling of the individual gene function studies they have enabled or
facilitated.

Even from very early studies, it became clear that transcrip-
tome data can provide candidate genes for functional studies and
help generate specific hypotheses. For example, some of the ear-
liest transcriptomic studies of mouse cortical layers led to the
identification of candidate transcription factors with layer- or cell
type-dependent expression (Arlotta et al., 2005; J. G. Chen et al.,
2005). Specific hypotheses informed by expression were formed
and tested, ultimately revealing genes encoding transcription fac-
tors, such as Bcl11b, Fezf2, and Sox5, as critical determinants of
cortical projection neuron identity and corticofugal axon path-
finding (Arlotta et al., 2005; J. G. Chen et al., 2005; Molyneaux et
al., 2005; Kwan et al., 2008; Lai et al., 2008).

Analysis of gene coexpression or mutual exclusion in a variety
of contexts can help inform potential regulatory mechanisms,
gene– gene interactions, or codependence. This endeavor, how-
ever, requires a large dataset. The HB Atlas (Kang et al., 2011),
which characterized a large collection of human brain tissue at
high spatial and temporal resolution, enabled more precise gene
coexpression studies. In one example illustrating the use of these
data, Shim et al. (2012) sought to identify the transcriptional
regulators of the Fezf2 E4 enhancer. Coexpression analysis be-
tween FEZF2 and members of the SOX transcription factor fam-
ily was undertaken, leading to the identification of SOX4 and
SOX11 as candidate regulators. Furthermore, the spatiotemporal
usage of these data is exemplified by Bae et al. (2014), who sought
to determine how a mutation upstream of GPR56 led to perisyl-
vian polymicrogyria, a disruption of gyri formation spatially re-
stricted to an area around the sylvian fissure. Because this
mutation specifically affected a particular region of the cortex,
Bae et al. (2014) used the HB Atlas data to assess candidate gene
expression in the ventrolateral prefrontal cortex and during fetal
development, which facilitated the identification of specific
members of the RFX transcription factor family.

The HB Atlas data (Kang et al., 2011) have also been used to
inform species-dependent studies. For example, Kwan et al.
(2012) used HB Atlas data to refine a list of candidate RNA-
binding proteins interacting with NOS1 mRNA in human fetal
cortex, an interaction that is absent from mouse brain. This led to
the identification of FMRP as a post-transcriptional regulator of
human NOS1 expression. In another study of species differences,
Ataman et al. (2016) used these data to investigate the function of
Osteocrin, which they identified as an activity-dependent se-
creted factor in human fetal brain cultures. In mouse, Osteocrin
is expressed selectively in skeletal muscle and bone. The HB Atlas
data, however, showed that Osteocrin is highly expressed in hu-
man cortex during critical periods for synapse development and
plasticity. Subsequent analyses identified species-dependent up-
stream elements that drive activity-dependent neural expression
of Osteocrin via the transcription factor MEF2.

In addition to the spatiotemporal data, cell type-specific
transcriptome data have also been shown to be tremendously
informative for functional studies. For example, Lui et al.
(2016) derived support for the hypothesis that progranulin
suppresses inappropriate microglial activation via regulation
of complements production from the Brain RNA-seq cell

type-specific database, which showed significant enrichment
of progranulin and multiple complement genes in microglia.
Further transcriptome analysis in progranulin-deficient mice
revealed disruption of complement cascade members and il-
luminated C1qa as a key player in microglial activation. The
Brain RNA-seq data were also used to inform the hypothesis
that microglia induce reactive (A1) astrocytes (Liddelow et al.,
2017). By showing that LPS activation of A1 requires TLR4
signaling expressed specifically by microglia, these data helped
move forward the experiments that ultimately showed reactive
astrocyte induction by activated microglia.

These examples of functional and mechanistic studies illus-
trate how spatiotemporal and cell type-specific transcriptome
data can be harnessed to interrogate molecular and cellular pro-
cesses. The impact of the myriad new resources, including the
single-cell transcriptome databases, will certainly become evident
over the next few years. Undoubtedly, these emerging resources
will facilitate new and innovative avenues to ask critical questions
about brain development and function.

Genetic studies of human brain disorders
In addition to the basic molecular and cellular mechanisms un-
derpinning normal brain function, a key effort of the field is to
gain a mechanistic understanding of brain disorders. With recent
advances in sequencing technologies, the number of genes and
loci carrying risk for disease, including many psychiatric and
neurodevelopmental disorders, are being identified at an acceler-
ating pace. How mutations in these genes contribute to brain
disorders, and the spatiotemporal and cell type specificity with
which they function, are incompletely understood. This knowl-
edge gap remains an obstacle on the path toward molecular med-
icine. Here, we highlight some examples of how transcriptomic
data can be leveraged to gain biological insights into human ge-
netic data, by providing clues into the molecular pathways and
cellular substrates underpinning disease etiology.

To illustrate the utility of transcriptomic data to inform hu-
man genetic studies, we highlight recent work from the field of
autism spectrum disorder (ASD). For decades, the genetics of
ASD have been a challenge for the field because of phenotypic and
genotypic heterogeneity. In the past few years, next generation
sequencing and analysis of hundreds of affected trio families have
led to the identification of scores of ASD risk genes with high
statistical confidence, in particular, genes carrying de novo loss-
of-function variants. From these studies, it has become clear that
no single locus accounts for �1% of ASD cases and the number of
contributing genes is likely to be in the hundreds (Iossifov et
al., 2012; Neale et al., 2012; O’Roak et al., 2012a, b; Sanders et al.,
2012; Talkowski et al., 2012; Jiang et al., 2013; De Rubeis et al.,
2014; Iossifov et al., 2014; L. Liu et al., 2014; Sanders et al., 2015).
Ironically, the genetic heterogeneity that had been a challenge for
the field can now be leveraged to provide clues into etiology: by
analyzing these genes as a group to identify convergent molecular
pathways and cellular processes. Importantly, understanding the
spatiotemporal convergence of ASD-related mutations will not
only inform the potential neural substrates of the disorder but
also enable the design of productive functional studies (State and
Šestan, 2012).

Several of the large transcriptome resources we highlight pro-
vide a sufficiently rich dataset for gene coexpression analyses,
which offer insights into potential relationships between genes by
assessing correlation across multiple samples, thus revealing nu-
ances that may not be apparent in binary analyses of differentially
expressed genes. Numerous studies have harnessed the power of

Keil et al. • Brain Transcriptome Databases J. Neurosci., March 7, 2018 • 38(10):2399 –2412 • 2407



network analysis, which identifies networks of genes that covary
across multiple samples (Langfelder and Horvath, 2008). This
allows for identification of “modules” of connected genes with
“hub” genes representing the most central and representative
members of the group. In pioneering studies, Willsey et al. (2013)
and Parikshak et al. (2013) applied network analysis to ASD-
associated genes to gain insights into pathogenesis. Willsey et al.
(2013) hypothesized that analysis of the normal expression pat-
terns of high confidence ASD genes can inform the brain region,
developmental timing, and cell type underpinning ASD patho-
genesis. Using the spatially rich and developmental stage-precise
mRNA expression data of the HB Atlas (Kang et al., 2011), they
used the nine genes with the strongest genetic evidence for asso-
ciation with ASD as seed genes to construct gene coexpression
networks. Further intersection with layer-specific expression
data (Fertuzinhos et al., 2014; Miller et al., 2014) led to the unbi-
ased identification of a key point of convergence in midfetal
deep-layer cortical projection neurons. Parikshak et al. (2013)
used a slightly different strategy, leveraging coexpression mod-
ules built from analysis of gene expression in ASD brains
(Voineagu et al., 2011) and using a longer list of ASD-associated
genes. By intersecting with coexpression modules generated by
Kang et al. (2011) and layer-specific transcriptome data from
adult macaque brain (Bernard et al., 2012), Parikshak et al.
(2013) similarly implicated the midfetal developing cortex, and
additionally identified upper-layer cortical neurons as a potential
site of pathogenesis. Together, these studies implicate midfetal
cortical development as an important nexus of convergence for
ASD etiology. Of note, a similar study of schizophrenia by Gul-
suner et al. (2013) using the same Kang et al. (2011) data, also
identified the fetal prefrontal cortex as a likely site of pathological
development for schizophrenia.

In a very recent study, Turner et al. (2017) used a different
strategy, investigating the expression of candidate ASD genes in
adult brain cell types. After identifying de novo SNVs and CNVs
in ASD simplex families, they analyzed the expression of these
genes using cell type-specific data generated in adult mice by
bacTRAP (Doyle et al., 2008; Heiman et al., 2008). They con-
cluded that potentially pathogenic de novo mutations are en-
riched for adult expression in striatal neurons, adding to the
literature of ASD pathogenicity in striatal circuitry and identify-
ing new mutations that may contribute to the disease (Turner et
al., 2017). Interestingly, beyond informing the roles of identified
candidate genes, transcriptomic data may be leveraged to esti-
mate the potential risk of genes not yet directly associated with
disease. This is based on the idea that genes covarying in expres-
sion level throughout the developmental trajectory are likely to
serve a shared purpose or may be regulated in a similar fashion.
For example, the DAWN algorithm, by modeling rare variations
and gene coexpression data from HB Atlas (Kang et al., 2011),
identified 127 genes that plausibly affect ASD risk, as well as a set
of likely ASD subnetworks (L. Liu et al., 2014).

The trio study design that has seen success in the past few years
has identified rare or private variants contributing a large effect to
disease. Although rare variants can inform mechanisms of disease
pathogenesis, emerging genetic data suggest that, for many neu-
ropsychiatric disorders, polygenic contributions of common
variants are responsible for the majority of disease risk (Cra-
ddock and Sklar, 2013; Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2014; Sanders et al., 2015),
and their study will be critical to therapeutic development
(Birnbaum and Weinberger, 2017). It remains to be seen
whether transcriptome databases will be useful in dissecting

the individually smaller contribution of common variations to
brain disorders. A few studies, however, have used these re-
sources to gain biological insights into genetic data. For exam-
ple, a landmark study identifying risk for schizophrenia at 108
commonly variant loci (Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2014) used bacTRAP data
(Doyle et al., 2008; Heiman et al., 2008) to interrogate the
expression patterns of genes near identified risk loci. This
showed an enrichment of disease loci near transcriptional start
sites of genes expressed in multiple neuronal lineages, but not
in glial populations.

In the future, critically important to a full understanding of
common genetic variation will be resources, such as the GTEx
database, which will uncover links between genetic variants and
expression changes. Furthermore, large-scale genomics and tran-
scriptomics of human brains from neurotypical and diseased do-
nors, such as the PsychENCODE project, are also expected to
reveal molecular insights into disease. As we enter a new era in
disease genomics, transcriptome data will become an increasingly
important resource for dissecting genetic risk, disease pathogen-
esis, and therapeutic strategies.
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al. (2017) The human cell atlas. Elife 6:e27041. CrossRef Medline

Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26:139 –140. CrossRef Medline

Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ,
Ercan-Sencicek AG, DiLullo NM, Parikshak NN, Stein JL, Walker MF,
Ober GT, Teran NA, Song Y, El-Fishawy P, Murtha RC, Choi M, Overton
JD, Bjornson RD, Carriero NJ, et al. (2012) De novo mutations revealed
by whole-exome sequencing are strongly associated with autism. Nature
485:237–241. CrossRef Medline

Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE,
Murtha MT, Bal VH, Bishop SL, Dong S, Goldberg AP, Jinlu C, Keaney JF
3rd, Klei L, Mandell JD, Moreno-De-Luca D, Poultney CS, Robinson EB,

Smith L, Solli-Nowlan T, et al. (2015) Insights into autism spectrum
disorder genomic architecture and biology from 71 risk loci. Neuron
87:1215–1233. CrossRef Medline

Sanz E, Yang L, Su T, Morris DR, McKnight GS, Amieux PS (2009) Cell-
type-specific isolation of ribosome-associated mRNA from complex tis-
sues. Proc Natl Acad Sci U S A 106:13939 –13944. CrossRef Medline

Schizophrenia Working Group of the Psychiatric Genomics Consortium
(2014) Biological insights from 108 schizophrenia-associated genetic
loci. Nature 511:421– 427. CrossRef Medline
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