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Elevation of Hippocampal Neurogenesis Induces a Temporally
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Throughout life neurons are continuously generated in the subgranular zone of the hippocampus. The subsequent integration of newly
generated neurons alters patterns of dentate gyrus input and output connectivity, potentially rendering memories already stored in those
circuits harder to access. Consistent with this prediction, we previously showed that increasing hippocampal neurogenesis after training
induces forgetting of hippocampus-dependent memories, including contextual fear memory. However, the brain regions supporting
contextual fear memories change with time, and this time-dependent memory reorganization might regulate the sensitivity of contextual
fear memories to fluctuations in hippocampal neurogenesis. By virally expressing the inhibitory designer receptor exclusively activated
by designer drugs, hM4Di, we first confirmed that chemogenetic inhibition of dorsal hippocampal neurons impairs retrieval of recent
(day-old) but not remote (month-old) contextual fear memories in male mice. We then contrasted the effects of increasing hippocampal
neurogenesis at recent versus remote time points after contextual fear conditioning in male and female mice. Increasing hippocampal
neurogenesis immediately following training reduced conditioned freezing when mice were replaced in the context 1 month later. In
contrast, when hippocampal neurogenesis was increased time points remote to training, conditioned freezing levels were unaltered when
mice were subsequently tested. These temporally graded forgetting effects were observed using both environmental and genetic interventions to
increase hippocampal neurogenesis. Our experiments identify memory age as a boundary condition for neurogenesis-mediated forgetting and
suggest that, as contextual fear memories mature, they become less sensitive to changes in hippocampal neurogenesis levels because they no
longer depend on the hippocampus for their expression.
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New neurons are generated in the hippocampus throughout life. As they integrate into the hippocampus, they remodel neural
circuitry, potentially making information stored in those circuits harder to access. Consistent with this, increasing hippocampal
neurogenesis after learning induces forgetting of the learnt information. The current study in mice asks whether these forgetting
effects depend on the age of the memory. We found that post-training increases in hippocampal neurogenesis only impacted
recently acquired, and not remotely acquired, hippocampal memories. These experiments identify memory age as a boundary
condition for neurogenesis-mediated forgetting, and suggest remote memories are less sensitive to changes in hippocampal
neurogenesis levels because they no longer depend critically on the hippocampus for their expression. /
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memory function in two ways (Frankland et al., 2013). First,
freshly integrated neurons provide new substrates for learning

Introduction
The continued integration of new neurons into hippocampal cir-

cuits throughout adulthood has been hypothesized to impact
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(e.g., by increasing capacity or allowing more efficient pattern
separation). This view is supported by studies showing that sup-
pression of hippocampal neurogenesis typically impairs new
memory formation (Shors et al., 2001; Saxe et al., 2006; Clelland
etal., 2009; Zhuo et al., 2016), whereas promotion of hippocam-
pal neurogenesis may improve memory acquisition (van Praag et
al., 1999a; Creer et al., 2010; Sahay et al., 2011; Stone et al., 2011).
Second, by modifying the pattern of dentate gyrus input and
output connections, the integration of new neurons alters hip-
pocampal circuits and therefore may render memories already
stored in these circuits harder to access at later time points. Using
genetic, pharmacological, and environmental interventions to
elevate neurogenesis, we provided support for this latter idea.
Increasing neurogenesis after memory formation in mice, guinea
pigs, and degus induced forgetting of hippocampus-dependent
memories (Akers et al., 2014; Epp et al., 2016; Ishikawa et al.,
2016; but for a possible exception in rats, see Kodali et al., 2016).

While the formation and initial expression of event memories
depend on the hippocampus, over time contextual fear memories
become less dependent upon the hippocampus for their expression
and more dependent on the cortex (Frankland and Bontempi,
2005). For example, when rats learn an association between a
context and shock, lesioning the hippocampus 1 d following
training induces loss of this contextual fear memory. However,
similar lesions at more remote time points have no effect (Kim
and Fanselow, 1992; Anagnostaras et al., 1999). This pattern of
temporally graded retrograde amnesia following hippocampal
damage predicts that, as contextual fear memories mature and
become successfully consolidated in the cortex, they should be-
come less vulnerable to neurogenesis-mediated forgetting. Here
we used chemogenetic methods to first establish that the dorsal
hippocampus plays a time-limited role in the expression of con-
textual fear memories in mice. Then we tested the impact of
experimentally elevating hippocampal neurogenesis on recently
versus remotely acquired contextual fear memories. Using both
naturalistic (exercise) and genetic (conditional deletion of p53
from neural progenitors) interventions to elevate neurogenesis,
we found that elevating neurogenesis weakened only recently,
and not remotely acquired, contextual fear memories.

Materials and Methods
Mice
All procedures were approved by the Animal Care and Use Committee at
the Hospital for Sick Children. In these experiments, we used two lines of
mice. First, in Experiments 1-5, we used wild-type (WT) derived from a
cross between 129S6 and C57BL/6N mice (Taconic Farms). Second, in
Experiment 6, we used mice in which conditional deletion of the
tumor suppressor gene p53 in nestin * cells increases hippocampal
neurogenesis (Akers et al., 2014). The latter mice were generated by
crossing nestin“"*FRT2" mice, which express a tamoxifen (TAM)-
inducible form of Cre-recombinase driven by a progenitor-specific (nes-
tin) promoter (line 5 from Imayoshi et al., 2008), with mice in which the
p53 gene is floxed by two loxP sites ( p53”) (Marino et al., 2000). Accord-
ingly, in male and female offspring from this cross, injection of TAM
leads to deletion of p53 only in nestin * cells and their progeny (inducible
knock-out of p53, or iKO-p53). Both lines were maintained on a
C57BL/6N background. Genotypes were determined by PCR analysis of
tail DNA samples, as previously described (Arruda-Carvalho et al., 2011;
Akersetal.,2014). TAM (Sigma-Aldrich) was dissolved in sunflower seed
oil containing 10% ethanol and injected (180 mg/kg, i.p.) into mice once
per day for 5 consecutive days.

Mice were bred in the animal facility at The Hospital for Sick Children
and maintained on a 12 h light/dark cycle (lights on at 0700 h). Mice were
group-housed (2-5 per cage) in transparent plastic cages (31 X 17 X 14
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cm) with free access to food and water unless otherwise specified. Behav-
ioral testing began when mice were 8—10 weeks of age.

Viral microinfusion

AAV8-CaMKIIla-hM4Di-mCitrine virus was obtained from UNC
Vector Core (Chapel Hill, NC). Control virus (AAV(DJ)-CMV-GFP)
was produced in house. Four weeks before behavior, WT mice were
microinfused bilaterally with either the hM4Di or control viral vectors
(1.5 ul per side, 0.1 wl/min infusion rate) in the CA1 (—1.9 mm antero-
posterior, =1.3 mm mediolateral, —1.5 mm dorsoventral) from bregma
according to Paxinos and Franklin (2012).

Dru,

Cloz‘gpine—N -oxide (CNO, kindly provided by Dr. Bryan Roth, University
of North Carolina) was dissolved in DMSO and administered at a dose of
5 mg/kg for intraperitoneal injections. The Vehicle (Veh) control groups
received the equivalent amount of DMSO solution dissolved in 0.9%
saline. Mice received CNO or Veh injection 30 min before fear memory
retrieval tests.

Contextual fear conditioning

Contextual fear conditioning occurred in test chambers (31 cm X 24
cm X 21 cm; Med Associates) with shock-grid floors (bars 3.2 mm in
diameter spaced 7.9 mm apart). The front, top, and back of the chamber
were clear acrylic and the two sides were modular aluminum. During
training, mice were placed in the chambers, and 3 foot shocks (0.5 mA, 2 s
duration, 1 min apart) were delivered after 2 min. Mice were removed 1
min after the last shock. During testing, mice were placed in the chambers
for 5 min. For the experiment involving the iKO-p53 mice, shock inten-
sity was 0.7 mA, and mice were tested for 3 min (rather than 5 min).
Behavior was recorded by overhead cameras. Freezing (i.e., absence of
movement except for breathing) was measured using an automated scor-
ing system (Actimetrics).

Running

Mice in running groups were given voluntary access to a running wheel
(Med Associates ENV-044) placed in their home cage. Mice in sedentary
groups were housed conventionally. Using identical apparatus and pro-
cedures, we previously showed that mice run an average of 4.7 = 0.53 km
per day in these conditions (Akers et al., 2014), similar to previous studies
(van Praag et al., 1999b).

Specific experimental procedures

Experiment 1. A2 X 2 X 2 design was used in this experiment with virus
(control vs hM4Di), delay (immediate vs delay), and drug (Veh vs CNO)
as between-subject variables. Male mice were randomly assigned to
groups, and fear conditioned and then tested either 1 or 28 d later. Thirty
minutes before testing, mice were treated with Veh (control virus, 1 d
test, n = 8; hM4Di virus, 1 d test, n = 7; control virus, 28 d test, n = 7;
hM4Di virus, 28 d test, n = 8) or CNO (control virus, 1 d test, n = 8;
hM4Di virus, 1 d test, n = 12; control virus, 28 d test, n = 8; hM4Di virus,
28 d test, n = 12).

Experiment 2. Male and female mice were fear conditioned and then
tested 28 d later. During this retention delay, mice had home cage access
to a running wheel (male, n = 8; female, n = 11) or were housed con-
ventionally (male, n = 8; female, n = 8).

Experiment 3. Female mice were fear conditioned and then tested 28 d
later. During this retention delay, mice had home cage access to a run-
ning wheel for 0 (n = 8),7 (n = 12), 14 (n = 8), or 28 (n = 12) d, starting
immediately after training.

Experiments 4—6. In Experiment 4, female mice were fear conditioned
and then tested either 28 or 56 d later. For the groups tested 28 d later,
mice had home cage access to a running wheel from days 1-14 fol-
lowing training (n = 12) or were housed conventionally (n = 12). For
the groups tested 56 d later, mice had home cage access to a running
wheel from days 2942 following training (n = 10) or were housed
conventionally (n = 12).

In Experiment 5, female mice were fear conditioned and then tested
28 d later. Approximately half the mice had home cage access to a run-
ning wheel from days 1-14 following training (n = 8) or were housed
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Chemogenetic inhibition of dorsal hippocampus impairs expression of recent, but not remote, contextual fear memory. a, Representative images showing hM4Di expression in a WT

mouse that was microinfused with AAV8-CaMKIl-hM4Di-mCitrine virus in the CA1. b, Mice were trained in contextual fear conditioning and tested 1 or 28 d after training. Thirty minutes before
testing, mice received an intraperitoneal injection of CNO or Veh. ¢, Compared with Veh treatment, CNO treatment before the 1d test resulted in lower freezing only in the group that received hM4Di
virusinfusion (hM4Di), but not in the group that received control virus (GFP). In contrast, CNO treatment before the 28 d test had no effect on fear memory expression, in both the hM4Di and GFP virus
groups. d, Representative images showing c-Fos ™, hM4Di-mCitrine ™, and c-Fos ™ /hM4Di-mCitrine * neurons. e, Compared with Veh-treated mice, CNO-treated mice showed reduced colocal-
ization of c-Fos and hM4Di-mCitrine following fear conditioning testing. **p << 0.01; ***p < 0.001.

conventionally (n = 7). The remaining mice had home cage access to a
running wheel from days 15-28 (n = 11) or were housed conventionally
(n=12).

In Experiment 6, male and female mice were fear conditioned and then
tested 42 d later. Mice had home cage access to a running wheel on days
1-28 (immediate group; n = 16) or 15-42 d (delay group; n = 16)
following training, or were housed conventionally throughout the reten-
tion delay (sedentary group; n = 16).

Experiment 7. Mice were fear conditioned and then tested either 28 or
56 d later. For the groups tested 28 d later, WT (n = 11) and iKO-p53
(n = 13) mice were treated with TAM starting immediately following
training. For the groups tested 56 d later, WT (n = 8) and iKO-p53 (n =
7) mice were treated with TAM starting 29 d following training.

Immunohistochemistry

Mice were perfused transcardially with PBS followed by 4% PFA. Brains
were postfixed in PFA and transferred to 30% sucrose. Coronal sections
(50 wm) were cut along the entire anterior—posterior extent of the CA1 or
DG using a cryostat. For doublecortin (DCX) labeling, sections were
incubated with primary (goat anti-DCX, 1:600, Santa Cruz Biotechnol-
ogy) and secondary (donkey anti-goat, 1:300, Invitrogen) antibodies.
DAPI (1:1000, Sigma-Aldrich) was used as a counterstain. For c-Fos
labeling, sections were incubated with primary (rabbit anti-c-Fos,
1:1000, Santa Cruz Biotechnology) and secondary (goat anti-rabbit,
1:500, Thermo Fisher Scientific) antibodies. Images were obtained using
a confocal laser scanning microscope (LSM 710; Carl Zeiss).

Analyses

Data were analyzed using ANOVA or two-tailed ¢ tests. Planned compar-
isons or post hoc (Bonferroni) tests were used where appropriate. Statis-
tical significance was set at p < 0.05.

Results

Chemogenetic inhibition of dorsal hippocampus impairs
expression of recent, but not remote, contextual fear memory
We first tested whether the activity of dorsal hippocampal neu-
rons is required for the expression of day-old versus month-old
contextual fear memories. To do this, mice received microinfu-
sions of an AAV virus expressing the inhibitory designer receptor
exclusively activated by designer drugs, hM4Di or GFP into the
CAL of the dorsal hippocampus (Fig. 1a). They were subsequently
fear conditioned and then tested either 1 or 28 d later. Thirty min-
utes before this test, mice received an intraperitoneal injection of
CNO or Veh (Fig. 1b). CNO treatment appeared to selectively
reduce freezing levels in hM4Di-infected mice at the 1 d retention
delay (Fig. 1c). An ANOVA with virus (control vs hM4Di), delay
(immediate vs delay), and drug (Veh vs CNO) as between-subject
variables was conducted on the data. There was a significant
three-way interaction (F(, 5,y = 4.71, p = 0.034). To analyze the
source of the significant three-way interaction, we used planned
comparisons, which focused on CNO versus Veh effects in
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Post-training voluntary exercise induces forgetting of contextual fear memories in male and female mice. @, WT male and female mice were trained in contextual fear conditioning and

given home cage access to running wheel for 28 d. Contextual fear memory was assessed 28 d after training. b, Running increased the number of DCX * cellsin both female and male mice, compared
with sedentary controls. ¢, Representative images showing increased number of DCX ™ cells in DG, in female and male mice. Scale bar, 50 m. d, Running decreased the level of freezing in both
female and male mice, compared with sedentary controls (female, n = 11; male, n = 8). ***p << 0.001.

hM4Di- and GFP-infected mice at recent and remote time points.
These comparisons indicated that CNO treatment reduced freez-
ing levels only in mice expressing hM4Di in CAl, and tested 1 d
following training (¢(,,, = 3.06, p = 0.007). Immunohistological
analyses confirmed that CNO treatment reduced activation of
hM4Di-infected neurons (Fig. 1d,e; CNO, n = 6; Veh, n = 8;
t1a) = 451, p = 0.007).

Post-training voluntary exercise induces forgetting of
contextual fear memories in male and female mice

In our previous study, we showed that post-training exercise
increases hippocampal neurogenesis and induces forgetting of
contextual fear memories (Akers et al., 2014). We first sought to
replicate this finding, and by testing both male and female mice,
additionally evaluate whether there were any sex differences in
the degree of exercise-induced forgetting. Accordingly, male and
female mice were trained in contextual fear conditioning and
then given home cage access to an exercise wheel for 28 d or
housed conventionally. All mice were tested 28 d after condi-
tioning (Fig. 2a). Post-training exercise was associated with an
increase in the number of cells expressing the immature neuronal
marker, DCX ™, in the subgranular zone of the hippocampus in
both male and female mice (n = 4 for all groups; Factorial Exer-
cise X Sex ANOVA, Exercise: F(; 1, = 67.85, p < 0.0001; Sex:
F, 1) = 1.65, p = 0.22; Exercise X Sexinteraction: F(, j,) = 1.47,
p = 0.25) (Fig. 2b,c). As we previously observed (Akers et al.,
2014), levels of conditioned freezing were reduced in mice that
ran after training (female: sedentary n = 8, running n = 11; male:

sedentary n = 8, running n = 8; Factorial Exercise X Sex ANOVA,
Exercise: F(, 5,) = 49.49, p < 0.0001). Furthermore, the degree of
forgetting did not differ between male and female mice (Sex:
F, 3,y = 0.33, p = 0.57; Exercise X Sexinteraction: F(, 3,, = 0.78,
p = 0.38) (Fig. 2d).

Post-training voluntary exercise induces forgetting of
contextual fear memories in a dose-dependent manner

We next evaluated how much post-training exercise is required to
induce forgetting. To do this, different groups of female mice were
trained in contextual fear conditioning and then given home cage
access to an exercise wheel for 0, 7, 14, or 28 d. All mice were tested
28 d after conditioning (Fig. 3a). Exercise duration influenced
hippocampal neurogenesis, with longer duration exercise associ-
ated with higher numbers of immature (DCX ) neurons in the
dentate gyrus (Fig. 3b) (0d:n=4;7dn=4;14dn=>5;28dn =
4; F(5 15 = 21.86, p < 0.0001). Post hoc analyses indicated that
there were greater numbers of DCX " cells in the 14 and 28 d
groups compared with the 0 d group (p = 0.002, and p < 0.0001,
respectively). Exercise duration also influenced levels of condi-
tioned fear (0d:n=8;7dn=12;14dn=28;28dn = 12; F; 39, =
6.12, p = 0.002), with mice exercising for 14 or 28 d exhibiting
reduced levels of conditioned fear compared with sedentary con-
trols (p = 0.01, and p = 0.003, respectively) (Fig. 3¢). These data
suggest that 14 d of exercise is sufficient to induce forgetting.
Furthermore, the absence of forgetting in the mice that exercised
for 7 d following conditioning excludes the possibility that expo-
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running wheel for 0,7, 14, or 28 d. Contextual fear memory was assessed 28 d after training. b, Running increased the number of DCX ™ cells in a dose-dependent manner. ¢, Running decreased the

levels of freezing in a dose-dependent manner. **p << 0.01; ***p << 0.001.

sure to a novel object (running wheel) following learning induces
forgetting, as we have previously shown (Akers et al., 2014).

Voluntary exercise induces a temporally graded pattern

of forgetting

Expression of contextual fear memories initially depends on the
hippocampus. However, expression of these memories becomes
less dependent on the hippocampus and more dependent on
cortical structures at more remote time points (Frankland et al.,
2013). Therefore, artificial elevation of hippocampal neurogen-
esis should impact recently acquired contextual fear memories to
a greater degree than remotely acquired contextual fear memo-
ries. To test whether remote contextual fear memories are rela-
tively invulnerable to increases in hippocampal neurogenesis,
different groups of mice were trained in contextual fear condi-
tioning. Following conditioning, mice had running wheel access
for 14 d in their home cage starting either immediately following
training or after a 28 d delay. Fourteen days following removal of
the running wheel, mice were placed back in the conditioning
context and freezing was assessed (Fig. 4a). Mice that exercised
immediately following training (n = 12) exhibited lower levels of
conditioned freezing compared with sedentary control mice (n =
12). In contrast, in the delay condition, runner (n = 10) and
sedentary (n = 12) mice exhibited equivalent levels of condi-
tioned freezing (Fig. 4b). The time-dependent effects of exercise
on forgetting were supported by an ANOVA with Time (imme-
diate vs delay) and Exercise (sedentary vs running) as between-
subject variables. There was a main effect of Exercise (F, 4, =
11.96, p = 0.001) and Time X Exercise interaction (F, 4,) = 5.55,
p = 0.023). Post hoc tests indicated that runner mice froze more

than sedentary mice in the immediate, but not delay, condition
(p = 0.003). There was no main effect of Time (F(, 4,y = 1.44,
p=0.23).

In the above experiment, freezing levels in sedentary mice
were lower at the 56 d retention delay versus 28 d retention delay.
Therefore, it is possible that a floor effect masks the effects of
increasing hippocampal neurogenesis in the delay group. To ad-
dress this potential confound, we conducted two additional ex-
periments in which we used a shorter, fixed retention delay and
varied the timing of exercise. In the first experiment, we used a
28 d retention delay between training and testing. Mice then were
given home cage access to a running wheel for 14 d starting either
immediately following training or after a 14 d delay (Fig. 4c).
Only exercise immediately following training-induced forgetting
(Factorial Time X Exercise ANOVA, Time: F(, 5,y = 3.62, p =
0.07; Exercise: F(, 5,y = 17.61, p = 0.0002; Time X Exercise in-
teraction: F, 5,y = 4.45, p = 0.042), with runner mice (n = 8)
freezing less than sedentary mice (n = 7) in the immediate (p =
0.0017), but not delay (sedentary: n = 12; running: n = 11),
condition (p = 0.63) (Fig. 4d). Comparison of the runner groups
indicated that mice in the immediate condition froze less than
those in the delay condition (p = 0.042).

In the second experiment, we used a 42 d retention delay
between training and testing. Mice then were given home cage
access to a running wheel for 28 d starting either immediately
following training or after a 14 d delay (Fig. 4e). Only exercise
immediately following training-induced forgetting (one-way
ANOVA, Time: F, 45y = 11.33, p = 0.0001), with runner mice
(n = 16) freezing less than sedentary mice (n = 16) in the imme-
diate (p < 0.0001), but not delay (n = 16), condition (p = 0.57)
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Figure4. Voluntary exercise induces a temporally graded pattern of forgetting. a, Mice were trained in contextual fear conditioning and given access to running wheel from day 1-14 (immediate
condition) or day 29 —42 (delay condition). Contextual fear memory was assessed 14 d following the end of running wheel period (i.e., on day 28 or 56 for the immediate and delay conditions,
respectively). b, Running reduced the level of freezing in the immediate, but not delay, condition. ¢, Mice were trained in contextual fear conditioning, and given access to running wheel from day
1-14 (immediate condition) or day 14 —28 (delay condition). Contextual fear memory was assessed 28 d after training. d, Running reduced the levels of freezing in the immediate, but not the delay,
condition. e, Mice were trained in contextual fear conditioning and given access to running wheel from day 1-28 (immediate) or day 15— 42 (delay). Contextual fear memory was assessed 42 d after
training. f, Running reduced the levels of freezing in the immediate, but not delay, condition. *p << 0.05; **p << 0.01; ***p << 0.001; ****p < 0.0001.

(Fig. 4f). Comparison of the runner groups indicated that mice in
the immediate condition froze less than those in the delay condition
(p = 0.0058). These two experiments indicate that temporally
graded forgetting effects are observed regardless of whether condi-
tioned freezing levels decline, or are stable, across the retention delay.

Conditional deletion of p53 from neural progenitor cells leads
to forgetting of recent, but not remote, contextual fear
memories

We next tested whether nonrunning interventions that increase
neurogenesis might similarly induce a temporally graded pattern

of forgetting of established memories. To do this, we crossed mice
that express a TAM-inducible Cre-recombinase in nestin * cells
(nestin “"***2) with mice in which the tumor suppressor gene p53
is flanked by two loxP sites (p53”). In adult offspring from this
cross, TAM treatment induces deletion of p53 in nestin * cells,
which results in increased neurogenesis (iKO-p53) (Akers et al.,
2014). iIKO-p53 and littermate control mice were trained in con-
textual fear conditioning. Then either immediately following
training or after a 28 d delay, mice were treated with TAM. Twenty-eight
days following TAM treatment, contextual fear memory was as-
sessed (Fig. 5a). As we observed previously (Akers et al., 2014),
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conditional deletion of p53 increased hippocampal neurogenesis
(t;y =5.12,p = 0.0014) (Fig. 5b,c). Moreover, similar to exercise,
conditional deletion of p53 (n = 13) immediately following train-
ing induced forgetting of contextual fear memory, compared
with controls (n = 11). In contrast, in the delay condition, iKO-
P53 (n = 7) and control mice (n = 8) exhibited equivalent levels
of conditioned freezing (Fig. 5d). These time-dependent effects of
p53 deletion on forgetting were supported by an ANOVA with
Time (immediate vs delay) and Genotype (iKO-p53 vs control) as
between-subject variables. There were main effects of Time
(F3) = 5.75, p = 0.022), Genotype (F(, 55, = 4.89, p = 0.034),
and a Time X Genotype interaction (F(, 55, = 5.33, p = 0.027).
Post hoc tests indicated that control mice froze more than iKO-
P53 mice in the immediate (p = 0.0017), but not delay (p >
0.99), condition. Together with published data showing that pre-
venting exercise-induced increases in hippocampal neurogenesis
prevents forgetting (Akers etal., 2014; Epp etal., 2016), these data
support the conclusion that these effects are mediated by a
neurogenesis-dependent mechanism. Furthermore, they provide
additional evidence that the forgetting effects depend on memory
age.

Discussion

In this paper, we present two main findings. First, by virally ex-
pressing the inhibitory designer receptor exclusively activated by
designer drugs, hM4Di in the dorsal hippocampus, we confirmed
that suppressing activity of dorsal hippocampal neurons impairs
expression of recent but not remote contextual fear memories.
Second, using two independent interventions to manipulate hip-
pocampal neurogenesis levels, we found that post-training in-
creases in hippocampal neurogenesis induce forgetting of recent
but not remote contextual fear memories. This pattern of results
suggests that older contextual fear memories are invulnerable to
fluctuations in hippocampal neurogenesis levels because they no

longer depend upon the hippocampus for their expression. In
doing so, they identify a boundary condition for neurogenesis-
mediated forgetting of memories that depend upon the hippocam-
pus during acquisition.

We previously found that increasing hippocampal neurogen-
esis after training weakens established hippocampus-dependent
memories (Akers et al., 2014; Epp et al., 2016; Ishikawa et al.,
2016), consistent with a number of theoretical predictions (Not-
tebohm, 1985; Barnea and Nottebohm, 1994; Deisseroth et al.,
2004; Weisz and Argibay, 2012; Frankland et al., 2013; see also
Rakic, 1985). In these studies, forgetting was observed regardless
of whether environmental, pharmacological, or genetic interven-
tions were used to manipulate hippocampal neurogenesis levels.
Moreover, post-training increases in hippocampal neurogenesis-
induced forgetting in both aversively motivated (e.g., contextual
fear conditioning, inhibitory avoidance, water maze, Barnes maze)
and appetitively motivated (e.g., odor-context paired associates)
hippocampus-dependent tasks (Akers et al., 2014; Epp et al., 2016;
Ishikawa et al., 2016). Finally, increasing hippocampal neurogen-
esis using these methods induced forgetting in three rodent spe-
cies (mice, guinea pigs, and degus) (Akers et al., 2014; but for
possible exception in rats, see Kodali et al., 2016). Here we addi-
tionally show that these forgetting effects are not sex-dependent.
Post-training increases in hippocampal neurogenesis-induced
equivalent forgetting in male and female mice.

Although neurogenesis-regulated forgetting of established
hippocampus-dependent memories appears to generalize across
awide range of experimental conditions, boundary conditions do
exist. For example, post-training increases in hippocampal neu-
rogenesis do not affect hippocampus-independent memories. In-
creasing hippocampal neurogenesis following conditioned taste
aversion training did not alter subsequent aversion (Akers et al.,
2014). We also previously found that memory strength modu-
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lated vulnerability to exercise-induced increases in hippocampal
neurogenesis. When mice were conditioned using 8 (instead of 3)
foot shocks, post-training exercise was less effective in inducing
forgetting (Akers etal., 2014). The current study identifies memory
age as another boundary condition. Artificially elevating hippocam-
pal neurogenesis, either through voluntary exercise or genetic
intervention, only weakened recently acquired (but not remote-
acquired) contextual fear memories.

This time-dependent change in sensitivity is most likely re-
lated to a systems consolidation process (Frankland and Bon-
tempi, 2005). In the current study, we showed that inhibition of
neural activity in the dorsal hippocampus impairs retrieval of
recent, but not remote, contextual fear memories. The absence
of effects of CNO treatment in mice expressing the control (rather
than hM4Di) vector indicates that the behavioral effects are un-
likely to be due to off-target effects of CNO. This chemogenetic
experiment adds to a number of other studies showing that hip-
pocampal disruption preferentially affects recent versus remote
contextual fear memories. Our finding that increasing hippocampal
neurogenesis, genetically or via voluntary exercise, also preferen-
tially affects recent versus remote contextual fear memories adds
to this pattern of temporally graded effects. It appears that a
variety of interventions that permanently destroy (e.g., lesions)
(Kim and Fanselow, 1992; Anagnostaras et al., 1999; Debiec et al.,
2002; Restivo et al., 2009; Winocur et al., 2009; but see Sutherland
and Lehmann, 2011; Ocampo etal., 2017), temporarily inactivate
(Experiment 1) (Kitamura et al., 2009; Wiltgen et al., 2010;
Goshen et al., 2011; Varela et al., 2016), or simply promote re-
modeling of hippocampal circuits (e.g., artificially elevating neu-
rogenesis; Experiments 4—7) preferentially impact recently (but
not remotely) acquired information.

It is this neurogenesis-mediated remodeling of hippocampal
circuits that we have hypothesized as the cause of forgetting
(Frankland et al., 2013; Akers et al., 2014; Richards and Frank-
land, 2017). As new neurons integrate into hippocampal circuits,
they compete with existing granule cells for input and output
connections. Because, at least to some extent, successful memory
recall likely involves recapitulation of the spatiotemporal pat-
terns of activity that occurred at the time of encoding (e.g., Rich-
ards and Frankland, 2013; Josselyn et al., 2015; Tonegawa et al.,
2015), the addition of new synaptic connections and elimination
of existing connections progressively reduces the likelihood of
those patterns being successfully reactivated (given the same neu-
ral input or retrieval cue). According to this model, the likelihood
of pattern completion failure should depend on levels of post-
training hippocampal neurogenesis. Here we found this to be the
case. Changes in levels of post-training hippocampal neurogen-
esis depended upon the duration of voluntary exercise, and sig-
nificant forgetting was observed only with =14 d of exercise.

Models of systems consolidation have typically proposed that
some form of clearance mechanism of memory traces from the
hippocampus. For instance, McClelland et al. (1995) proposed
that hippocampal traces are gradually degraded as those memo-
ries are integrated into the cortex. Hippocampal neurogenesis
represents one biologically plausible mechanism for this clear-
ance (i.e., D;) (McClelland et al., 1995), and such a clearance
process has been hypothesized to be necessary for generalization
and cognitive flexibility (Richards and Frankland, 2017). Because
the hippocampus is thought to encode all experiences, but not all
memories are ultimately retained, it seems likely that memory
fate then depends on the outcome of a competition between pro-
consolidation processes (e.g., reactivation leading to successful
cortical consolidation) versus clearance processes (e.g., synaptic
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remodeling as a consequence of hippocampal remodeling). Ac-
cording to this model, frequently reactivated memory traces sur-
vive because they can outstrip neurogenesis-mediated decay and
be successfully consolidated in the cortex (and, in doing so, become
insensitive to interventions that promote remodeling of hip-
pocampal circuits). In contrast, infrequently reactivated traces
eventually succumb to neurogenesis-mediated clearance and be-
come inaccessible.
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