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Neurobiology of Disease

Synaptopathy in the Aging Cochlea: Characterizing Early-
Neural Deficits in Auditory Temporal Envelope Processing

Aravindakshan Parthasarathy and Sharon G. Kujawa
Department of Otolaryngology and Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
02114

Aging listeners, even in the absence of overt hearing loss measured as changes in hearing thresholds, often experience impairments
processing temporally complex sounds such as speech in noise. Recent evidence has shown that normal aging is accompanied by a
progressive loss of synapses between inner hair cells and auditory nerve fibers. The role of this cochlear synaptopathy in degraded
temporal processing with age is not yet understood. Here, we used population envelope following responses, along with other hair cell-
and neural-based measures from an age-graded series of male and female CBA/Ca]J mice to study changes in encoding stimulus envelopes.
By comparing responses obtained before and after the application of the neurotoxin ouabain to the inner ear, we demonstrate that we can
study changes in temporal processing on either side of the cochlear synapse. Results show that deficits in neural coding with age emerge
at the earliest neural stages of auditory processing and are correlated with the degree of cochlear synaptopathy. These changes are seen
before losses in neural thresholds and particularly affect the suprathreshold processing of sound. Responses obtained from more central
sources show smaller differences with age, suggesting compensatory gain. These results show that progressive cochlear synaptopathy is
accompanied by deficits in temporal coding at the earliest neural generators and contribute to the suprathreshold sound processing

deficits observed with age.
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ignificance Statement

adapted to detect cochlear synaptopathy in the clinical setting.

Aging listeners often experience difficulty hearing and understanding speech in noisy conditions. The results described here
suggest that age-related loss of cochlear synapses may be a significant contributor to those performance declines. We observed
aberrant neural coding of sounds in the early auditory pathway, which was accompanied by and correlated with an age-progressive
loss of synapses between the inner hair cells and the auditory nerve. Deficits first appeared before changes in hearing thresholds
and were largest at higher sound levels relevant to real world communication. The noninvasive tests described here may be

~

J

Introduction

Hearing thresholds change gradually with age and, by 70 years,
many individuals (~63%) will have audibility losses significant
enough to interfere with communication and quality of life (Lin
etal, 2011). Aging listeners also commonly experience difficulty
understanding speech in adverse listening conditions and exhibit
degraded temporal resolution (Dubno et al.,, 1984; Gordon-

Received Nov. 13, 2017; revised June 27, 2018; accepted June 28, 2018.

Author contributions: A.P. and S.G.K. designed research; A.P. performed research; A.P. analyzed data; A.P. and
S.G.K. wrote the paper.

This work was supported by the Department of Defense (Grant W81XWH-15-1-0103 to S.G.K.). We thank Eve
Smith for technical support.

The authors declare no competing financial interests.

Correspondence should be addressed to Dr. Sharon G. Kujawa, Massachusetts Eye and Ear Infirmary, Harvard
Medical School, 243 Charles St., Boston, MA 02114. E-mail: Sharon_Kujawa@meei.harvard.edu.

DOI:10.1523/JNEUR0SCI.3240-17.2018
Copyright © 2018 the authors  0270-6474/18/387108-12$15.00/0

Salant and Fitzgibbons, 2001). These difficulties do not always
scale with threshold loss; even when matched for good audiomet-
ric thresholds, older listeners show performance declines on such
tasks relative to younger listeners (Frisina and Frisina, 1997;
Pichora-Fuller and Souza, 2003). With the lack of threshold evi-
dence for peripheral involvement, these deficits have suggested
central underpinnings, from decreased inhibition affecting tem-
poral coding in subcortical and cortical regions (Caspary et al.,
2008; Walton, 2010) to changes in higher-order executive func-
tions (Pichora-Fuller et al., 1995; Henry et al., 2017).

Our recent work in mouse models of aging reveals what may
be a major contributor to these functional declines. We have
described a cochlear synaptopathy that progressively interrupts
inner hair cell (IHC) to afferent fiber communications with age
initially in ears without and ultimately with hair cell loss and
threshold elevation (Sergeyenko et al., 2013). This synaptic loss
does not alter presynaptic, outer hair cell (OHC)-based responses
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such as distortion product otoacoustic emissions (DPOAE), but
produces proportional decreases in suprathreshold neural re-
sponses such as wave 1 of the auditory brainstem response (ABR),
reflecting afferent outflow from the cochlea. Several lines of evi-
dence have suggested that auditory neurons with low spontane-
ous rates of firing are primary targets of both aging (Schmiedt et
al., 1996) and noise (Furman et al., 2013; for review, see Liberman
and Kujawa, 2017). These low-spontaneous-rate neurons are im-
portant for encoding the temporal properties of signals, espe-
cially in noise (Costalupes et al., 1984), but have high thresholds
of response so the resultant hearing loss can be “hidden” in the
normal threshold audiogram (Schaette and McAlpine, 2011;
Kujawa and Liberman, 2015).

Although this age-related cochlear synaptopathy has now been
well documented (Sergeyenko et al., 2013; Fernandez et al., 2015),
what is yet not fully understood is how this loss of synapses contrib-
utes to the degraded temporal resolution seen with age and how
cochlear synaptopathy may interact with higher-order changes seen
in the central auditory pathway. Envelope-following responses
(EFRs) can be used to bridge this gap in understanding. EFRs are
far-field steady-state potentials evoked by neural synchronization to
the amplitude envelopes of spectrotemporally complex stimuli.
Prior work has suggested that EFRs can be dominated by cortical
(Herdman et al., 2002a,b; Kuwada et al., 2002) and subcortical (Pic-
ton et al., 2003; Parthasarathy and Bartlett, 2012) sources, including
the auditory nerve (Shaheen et al., 2015), depending on the specific
stimulus parameters used to elicit the response. EFRs can be re-
corded from surface electrodes and thus offer an approach to study-
ing auditory deficits in human clinical populations (Clinard and
Tremblay, 2013; Presacco et al., 2015; Bidelman et al., 2017) and in
animal models, in which the underlying histopathology can be stud-
ied directly (Zhong et al., 2014; Shaheen et al., 2015).

In the current study, we recorded DPOAEs, ABRs, and EFRs
from an age-graded series of CBA/CaJ mice to study conse-
quences of age-related synaptopathy to early neural coding. We
demonstrate that we can elicit EFRs from hair cell and the early
neural generators of the auditory pathway to assess the integrity
of temporal processing on both sides of the cochlear synapse and
observe the emergence of age-related deficits at the earliest stages
of auditory processing. We deduce the contributions of afferent
synapse loss to these changes by comparing these responses with
histological evidence for cochlear synaptopathy. We offer a
method that compares the responses of hair cell versus neural
components of the EFR to further describe the deficits in suprath-
reshold sound coding occurring with this age-related cochlear
synaptopathy and provide evidence for its interaction with more
central nuclei in the auditory pathway.

Materials and Methods

Experimental animals and acoustic environment. CBA/CaJ mice (n = 58;
42 male, 16 female, 16—128 weeks of age) were used in this experiment.
All animals were born and raised in our animal care facility from breeders
obtained from The Jackson Laboratory. The typical lifespan of these mice
under laboratory conditions is between 24 and 29 months or 104-129
weeks (Flurkey et al., 2007); >60% survive in our facility >132 weeks.
Use of CBA/Ca] mice enables comparison with the existing literature in
the characterization of age-related and noise induced synaptopathy in
the cochlea (Kujawa and Liberman, 2009; Sergeyenko et al., 2013; Fer-
nandez et al., 2015; Valero et al., 2017; for review, see Kujawa and Liber-
man, 2015). Envelope-coding properties that are of interest in this study
are less reliant on the hearing range of the animals compared with fre-
quency or fine structure coding.

The acoustic environment in the animal care facility has been charac-
terized by noise-level data logging and analysis over 6—24 h periods, as
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described previously (Sergeyenko et al., 2013; Liberman et al., 2014) and
receives ongoing, periodic monitoring to ensure maintenance of a lower-
noise environment. Briefly, signals detected by a small electret micro-
phone placed in an empty mouse cage in an active rack are digitized and
averaged for weekday and weekend facility conditions. On the basis of
such measurements, we find that sound levels are greatest between 1 and
4 kHz, typically ranging between 45 and 50 dB SPL, with sound levels
from 5.6 to 45 kHz ranging between 35 and 40 dB SPL. A-weighted noise
levels between 10 Hz and 20 kHz are between 50 and 60 dB SPL >95% of
the time and >80 dB SPL <1% of the time. All animal procedures were
approved by the Institutional Animal Care and Use Committee of the
Massachusetts Eye and Ear Infirmary and are consistent with National
Institutes of Health guidelines.

Physiological testing. All tests were conducted in an acoustically and
electrically shielded and heated chamber, using a National Instruments
PXI-based system and 24-bit input/output boards controlled with cus-
tom LabVIEW software. The custom acoustic system comprised two
miniature dynamic earphones as sound sources (CDMG15008-03A;
CUI) and an electret condenser microphone (FG-23329-PO7; Knowles)
coupled to a probe tube to measure sound pressure near the eardrum.

Mice were anesthetized with ketamine (100 mg/kg, i.p.) and xylazine
(10 mg/kg, i.p.). A small incision was made in the cartilaginous portion of
the external ear canal to allow visual confirmation of the condition of the
external and middle ears and optimal placement of the acoustic system.
Animals with evidence of middle ear pathology or obstructive cerumen were
rarely encountered; when detected, such animals were excluded from the
study. Body temperature was monitored by rectal thermometer and main-
tained at 37°C during testing by heating the air in the experimental chamber.
Additional boosters of anesthesia (30-50% of the initial dose) were given as
needed to maintain a stable anesthetic state throughout the experiment.
Visual observation of the animal’s state was maintained throughout the ex-
periment using an infrared camera in the booth.

DPOAEs, ABRs, and EFRs were recorded for all animals. DPOAEs
were recorded in response to two primary tones, f1 and 2, with 2 fre-
quencies log spaced from 5.6 to 45.2 kHz, £2/f1 = 1.2, and L2 = L1-10
dB, both incremented together in 5 dB steps. At each frequency-level
combination, the DPOAE amplitudes at 2f1-f2 were captured from ear
canal pressure measurements and, after spectral and waveform averag-
ing, analyzed offline as response—growth functions. Iso-DPOAE con-
tours were interpolated from the growth functions and used to determine
the 2 level required to elicit a DPOAE of —5 dB SPL at each frequency,
which was defined as threshold.

ABRs and EFRs were recorded using subdermal needle electrodes at
the vertex and the ipsilateral mastoid, with the ground electrode at the
base of the tail. ABRs were elicited to tone bursts (0.5 ms rise/fall, 5 ms
duration, 33 repetitions/s, alternating polarity) at the same frequencies as
f2 of the DPOAEs and varying sound levels between 10 and 90 dB SPL.
Responses were amplified (X 10,000; Grass Instruments P511 amplifier)
and filtered (0.3—3 kHz and a 60 Hz line filter). Trials in which the overall
ABR response amplitude exceeded 15 wV were rejected as noise; 512
artifact-free trials of each polarity were averaged to compute the ABR
waveform. Averaged ABR waveforms were then imported into custom
programs in which individual positive and negative peaks were identi-
fied. ABR thresholds were calculated as the minimum sound level that
produced a noticeable wave 1 upon visual inspection. ABR peak-to-peak
amplitudes were calculated as the difference between the positive peak
and the following negative peak. EFRs were elicited to sinusoidally am-
plitude modulated (sAM) tones (5 ms rise/fall, 200 ms duration, 3.1
repetitions/s, alternating polarity) at two carrier frequencies (12.14 and
30.49 kHz, denoted hereafter as 12 and 30 kHz for simplicity) and varying
sound levels between 10 and 90 dB SPL. Other properties of the sSAM
tones that were varied including amplitude modulation (AM) rate and
AM depth are specified in the relevant sections of Results. Responses
were amplified (X 10,000; Grass Instruments P511 amplifier) and filtered
(0.1-10 kHz and a 60 Hz line filter). Trials in which the response ampli-
tude exceeded 200 wV were rejected; 250 artifact-free trials of each po-
larity were averaged to compute the EFR waveform. Fast Fourier
transforms (FFTs) were performed on the averaged time—domain wave-
forms starting 10 ms after stimulus onset to exclude ABRs and ending at
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stimulus offset using custom-written programs in MATLAB (The
MathWorks). The maximum amplitude of the FFT peak at 1 of 3 fre-
quency bins (3 Hz each) around the modulation frequency gave the peak
FFT amplitude. This FFT amplitude at the modulation frequency of the
AM frequency is reported as the EFR amplitude. The noise floor was
calculated as the average of 5 frequency bins (3 Hz each) above and below
the central three bins. A response was deemed as significantly above noise
if the FFT amplitude was at least 6 dB above the noise floor.

Histological preparation and assessment. After testing, anesthetized
mice were transcardially perfused with 4% paraformaldehyde in 0.1 m
phosphate buffer, followed by an intralabyrinthine perfusion through
the round and oval windows of both cochleas. The cochleas were addi-
tionally postfixed in 4% paraformaldehyde for 1 h, decalcified in 0.12 M
EDTA for 2 d, microdissected into half turns, and immunostained with
antibodies to C-terminal binding protein 2 (mouse anti-CtBP2; BD Bio-
sciences, at 1:200), glutamate receptor 2 (mouse anti-GluA2; Millipore,
at 1:2000), and myosin-VIIa (rabbit anti-myosin-VIla, Proteus Biosci-
ences, at 1:200) and secondary antibodies coupled to Alexa Fluor in the
red, green, and gray channels.

Immunostained cochlear pieces were measured and a cochlear fre-
quency map was computed (Miiller et al., 2005) to associate structures to
relevant frequency regions using a custom plug-in to Image]. Confocal
z-stacks of the 11.3, 22, 32, 45, and 64 kHz areas were collected using a
Leica TCS SP5 microscope. Two adjacent stacks were obtained (78 wm of
cochlear length per stack) at each target frequency spanning the cuticular
plate to the synaptic pole of ~10 hair cells (in 0.25 wm z-steps). Images
were collected in a 1024 X 512 raster using a high-resolution, oil-
immersion objective (63X, numerical aperture 1.3), and digital zoom
(3.17X). Images were loaded into an image-processing software plat-
form (Amira; VISAGE Imaging), where IHCs were quantified based on
their Myosin VIla-stained cell bodies and CtBP2-stained nuclei. Presyn-
aptic ribbons and postsynaptic glutamate receptor patches were counted
using 3D representations of each confocal z-stack. Juxtaposed ribbons
and receptor puncta constitute a synapse and these synaptic associations
were determined using custom software that calculated and displayed the
x—y projection of the voxel space within 1 wm of each ribbon’s center
(Liberman et al., 2011). OHCs were counted based on the myosin VIla
staining of their cell bodies within the same imaging region and the mean
number of cells per row of OHCs was used as a measure of OHC counts.

Round window application of ouabain. In one experimental series,
ouabain, applied locally, was used to obtain a unilateral cochlear neurop-
athy (Yuan et al., 2014) in animals aged 1622 weeks. After anesthetiza-
tion, the pinna was reflected rostrally and a retroauricular incision was
made. The underlying muscles were separated by blunt dissection to
expose the middle compartment of the bulla and a small opening was
made to expose the round window. Ouabain (10 mm in PBS, pH 7.4) or
a control solution (vehicle alone) was applied to the round window
membrane every 10 min and then wicked off and exchanged for a fresh
solution for four total applications. DPOAEs, ABRs, and EFRs as de-
scribed above were measured after the surgery but before application of
the treatment for the “pre” condition and after treatment for the “post”
condition.

Experimental design and statistical analyses. The study was cross-
sectional and N-way ANOVA was performed to analyze group differ-
ences using preset and custom-written scripts in MATLAB. Data were log
transformed if necessary to produce a normal distribution. Main effects
of each of the factors and their interactions were calculated. Post hoc
comparisons were performed in MATLAB (multcompare) and corrected
for multiple testing using the Bonferroni method. Correlations between
measures are indicated by Pearson’s linear correlation and p-values com-
puted using a Student’s  distribution for a transformation of the corre-
lation. Significant differences were reported with a 95% confidence
interval and error bars in figures indicate SEM.

Results

Progressive age-related cochlear synaptopathy occurs before
loss of hair cells and hearing thresholds

The synapses between the IHCs and the auditory nerve (Fig. 1A)
are the most vulnerable elements of normal auditory aging
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Figure 1. Progressive age-related cochlear synaptopathy occurs before hair cell loss. 4,
Schematic cross-section showing three of the ~20 auditory nerve fibers (ANFs) making synap-
tic contact with an IHC. Presynaptic ribbons and postsynaptic receptor patches are also schema-
tized. The x—y—z axis shows the viewing angle for the confocal x—y projections shown for
example IHCs in (B), where immunostaining reveals the juxtaposition of presynaptic ribbons
(red) and postsynaptic receptor patches (green). C, Mean == SEM percentage survival of co-
chlear synapses (green line), IHCs (gray solid line), and OHCs (gray dashed line) relative to
16-week-old animals at two cochlear locations and five age groups: 16 weeks (n = 9), 32 weeks
(n=11), 64 weeks (n = 14), 108 weeks (n = 9), and 128 weeks (n = 8). Ages of individual
animals were within 5% of each target age.

(Sergeyenko et al., 2013). Immunostaining for presynaptic rib-
bons and postsynaptic glutamate receptor patches (Fig. 1B, red
and green, respectively) shows a progressive loss of these synapses
occurring throughout the lifespan (Fig. 1C, shown for two repre-
sentative frequencies in green). This synaptopathy occurs before
any losses in OHCs or IHCs (Fig. 1C, dashed and solid gray lines,
respectively).

This synaptopathy also begins before changes in OHC func-
tion measured as changes in DPOAE thresholds and amplitudes,
which are only minimally affected until later in the lifespan.
DPOAE threshold losses are <25 dB until 108 weeks of age (Fig.
2A, shown for two representative frequencies). DPOAE amplitudes
show minimal differences with age up to and including 64 weeks
(p> 0.1 for all comparisons above 50 dB SPL at 12 kHz and 30 kHz),
with significant decreases in amplitudes due to age apparent only
=108 weeks (Fig. 2B, Table 1). The decreases in thresholds at later
ages are accompanied by a loss of OHCs (Fig. 1C, gray dashed lines)
and the DPOAE thresholds are significantly correlated with the
number of remaining OHCs (Fig. 2C, 12 kHz: r = —0.69, p = 5.1 X
107,30 kHz: r = —0.56 p = 0.0001).

ABR thresholds, like DPOAE thresholds, show late elevations
(Fig. 2D), whereas ABR amplitudes steadily decline with age (Fig.
2E). Significant main effects of age, sound level, and their interaction
(Table 2) were present for ABR amplitudes and post hoc comparisons
revealed a significant decrease in wave 1 amplitudes with age at all
sound levels above 50 dB SPL (p < 0.005 for all comparisons). The
ABR wave 1 amplitudes at a fixed suprathreshold sound level of 30
dB sensation level (SL) are significantly correlated with the number
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Synaptopathy is reflected in neural ABR wave Tamplitudes. A-C, Preneural, OHC-based DPOAE measures. 4, Mean = SEM change in DPOAE thresholds relative to 16-week-old animals

attwo cochlear locations. B, DPOAE growth functions for the different age groups. €, Scatterplots showing the correlation between DPOAE thresholds and mean number of OHCs per row perimaging
region of interest for all animals tested. D—F, Neural, ABR-based measures. D, Mean == SEM change in ABR wave 1 thresholds relative to 16-week-old animals at two cochlear locations. E, ABR wave
1 growth functions for the different age groups. F, Scatterplots showing the correlation between ABR wave 1amplitudes at 30 dB SL and mean number of cochlear synapses for all animals tested.
Age ranges and group sizes in all panels similar to Figure 1. The oldest age group (128 weeks) in F had fewer animals that had responses at 30 dB SL due to elevated hearing thresholds.

Table 1. Two-way ANOVA of DPOAE amplitudes

Table 2. Two-way ANOVA of ABR wave 1 amplitudes

Source Sum Sq df Mean Sq F Prob>F Source Sum Sq df Mean Sq F Prob>F

12 kHz 12 kHz
Age 274 4 0.68 147.01 18X10°% Age 035 2 0.17 357.09 6210
Level 26.72 12 223 478.6 31107 Level 0.45 8 0.06 115.83 36x10 "
Age*level 1.51 48 0.031 6.75 2110 Age*level 0.1 43 0.002 4.98 83X 1072
Error 2.78 598 0.005 Error 0.26 530 0.0005
Total 35.111 662 Total 4.55 590

30 kHz 30 kHz
Age 49 4 1.22 261.8 75X 1010 Age 0.15 2 0.07 137.29 33x 104
Level 14.22 12 1.18 2543 11X10 %% Level 0.16 6 0.03 51.73 1.9%10 %
Age*level 1.52 48 0.031 6.81 9810 * Age*level 0.12 40 0.003 5.53 23% 1072
Error 279 598 0.005 Error 0.26 498 0.0005
Total 243 662 Total 233 555

Test of main effects of age and sound level, as well as their interaction, on DPOAE amplitudes at two cochlear
frequencies using two-way ANOVAs. Sum Sq, The sum of squares due to each source of variability; df, degrees of
freedom associated with each source; mean Sq, mean squares for each source; F, F-statistic; Prob>F, p-value
associated with each source.

of cochlear synapses remaining (Fig. 2F, 12 kHz: r = 0.83,p = 8.4 X
10 "%, 30kHz: r = 0.71,p = 3.5 X 10 ~7). Therefore, suprathreshold
ABR wave 1 amplitudes are a good physiological indicator for age-
related cochlear synaptopathy.

Shown are results of test of main effects of age and sound level, as well as their interaction, on ABR wave 1
amplitudes at two cochlear frequencies using two-way ANOVAs.

Sum Sq, The sum of squares due to each source of variability; df, degrees of freedom associated with each source;
mean Sq, mean squares for each source; £, F-statistic; Prob>F, p-value associated with each source.

Preneural and early neural temporal processing can be
differentiated using EFRs

The modulation frequency used to evoke EFRs can be varied to
yield responses dominated by different generators along the au-
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Figure 3. Ouabain differentiates early neural and hair cell-based responses. Shown are

mean == SEM ABR wave 1 thresholds (4) and amplitudes at 30 kHz (B) measured before and
after the application of 10 mm ouabain (n = 5) or saline (n = 3) to the round window of the
cochlea. Group sizes apply to all panels. C, D, Mean == SEM DPOAE thresholds and amplitudes at
30 kHz, respectively, for the two groups before and after treatment.

ditory pathway. To isolate responses originating from the earliest
neural generators, we measured EFRs before and after the appli-
cation of ouabain at the round window of the cochlea. Ouabain is
a neurotoxin that selectively targets Na */K ™ ATPase in a dose-
dependent manner. When applied to the round window of the
cochlea, it can inactivate auditory nerve responses without signif-
icant effects on hair cell function (Lang et al., 2011; Yuan et al.,
2014).

An acute 45 min application of ouabain resulted in increased
ABR wave 1 thresholds, with significant main effects of treatment
(F3.60) = 23.75,p = 2.9 X 10 '), frequency (F(5 69, = 7.92,p =
8.8 X 10 °), and their interaction (F;5 49, = 2.68, p = 0.0036).
Post hoc analysis corrected for multiple comparisons showed that
ouabain application increased neural ABR wave 1 thresholds
(Fig. 3A) and decreased ABR amplitudes (Fig. 3B) in the fre-
quency regions of the cochlea near the round window site of drug
application compared with saline-treated animals (p < 0.0001
for all tested frequencies >25 kHz and for all tested levels >60 dB
SPL at 30 kHz). In contrast, hair cell-based DPOAE thresholds
(Fig. 3C) and amplitudes (Fig. 3D) were largely unaffected by
ouabain. Pairwise post hoc comparisons revealed no difference in
DPOAE thresholds at all tested frequencies and amplitudes at 30
kHz due to ouabain treatment (p > 0.1 in all cases).

Next, we tested the effects of ouabain on EFRs obtained to
modulation frequencies between 768 and 4096 Hz. Example fre-
quency domain traces show clear responses to both 1024 and
4096 Hz AM frequencies that were well above the noise floor (Fig.
4 A, B). Further, the application of neurotoxic ouabain decreased
EFR response amplitudes at 1024 Hz AM, but not at 4096 Hz AM.
The application of saline did not affect response amplitudes at
either modulation frequency (Fig. 4B,C). Repeated-measures
ANOVA on log-transformed data for EFRs at 1024 Hz AM re-
vealed a significant effect of treatment for ouabain (F, , 44y =
77.41, p = 0.0009), but not saline (F, ¢ o5y = 0.45, p = 0.57). For
EFRs at 4096 Hz, there were no significant effects of treatment for
either ouabain (F(; 475y = 2.01, p = 0.25) or saline (F(; 35 =
10.67, p = 0.08). We assessed the percentage change in EFR am-
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plitudes with treatment for all modulation frequencies tested be-
tween 768 and 4096 Hz using a two-way ANOVA with treatment
and modulation frequency as factors. For EFR amplitudes,
ouabain application resulted in significant main effects of treat-
ment alone (F, ,;) = 15.7, p = 0.0007). Pairwise post hoc tests
corrected for multiple comparisons using the Bonferroni method
revealed a significant decrease in EFR amplitudes for modulation
frequencies in the 700-1000 Hz range (768 Hz: p = 0.004, 1024
Hz: p = 8.4 X 10-4), suggesting primarily neural sources for
these responses (Fig. 4C). This is consistent with a previous
study that used analyses of group delays to show that EFRs
elicited by ~1000 Hz AM are generated primarily from the
auditory nerve and are sensitive to noise-induced cochlear
neuropathy (Shaheen et al., 2015). However, the application
of ouabain did not affect the amplitudes of EFRs to AM fre-
quencies in the 3000—4000 Hz range (Fig. 4C, p > 0.6 in both
cases). Further, comparison of EFRs elicited to 4096 Hz AM at
the mastoid versus the round window in five animals showed a
substantial increase in amplitude when recorded at the round
window, as large as three orders of magnitude (Fig. 4D). This
confirmed that these EFRs at ~4000 Hz AM represent physi-
ological responses, the amplitudes of which are largely driven
by the spatial proximity to the generators.

Pure tone phase locking by the auditory nerve falls off steeply
beyond 1000-2000 Hz and is insignificant at ~4000 Hz (John-
son, 1980; Palmer and Russell, 1986; Weiss and Rose, 1988b;
Temchin and Ruggero, 2010; Versteegh et al., 2011). The upper
limit of auditory nerve phase locking to the AM envelope is even
steeper, with a cutoff of ~1000 Hz (Palmer, 1982; Joris and Yin,
1992; Dreyer and Delgutte, 2006). Therefore, EFRs observed in
this study to stimuli >2000 Hz AM seem unlikely to originate
from the auditory nerve. Information regarding phase locking to
the AM envelope by hair cells is not available. However, the upper
limit of pure tone phase locking by the hair cells is higher than
that of the auditory nerve (reaching up to 10,000 Hz for OHCs
and ~4000 Hz for IHCs, depending on species) and is shaped
strongly by the membrane time constant of the cell, which be-
haves as a low-pass filter (Weiss et al., 1974; Russell and Sellick,
1978; Holton and Weiss, 1983, for review, see Fettiplace, 2017).
This can be seen when phase locking is measured directly from
the hair cells (Russell and Sellick, 1978, 1983; Palmer and Russell,
1986; Weiss and Rose, 1988a) or at the level of the round window
(Forgues et al., 2014; Batrel et al., 2017). These observations,
together with the results seen here, suggest possible preneural
sources such as hair cell receptor potentials for these EFRs at 4000
Hz AM and early neural sources such as the auditory nerve for
EFRs at 1000 Hz AM. Therefore, by obtaining EFRs to AM fre-
quencies in the 1000—4000 Hz range, the integrity of temporal
processing can be assessed on both sides of the cochlear synapse
and contributions from the earliest neural generators can be iso-
lated and separated from other putative generators.

Temporal envelope processing deficits with age appear at the
earliest neural generators

We hypothesized that the loss of cochlear synapses with age could
lead to a decrease in the precision of neural coding, which would
be evident at the earliest stages of the auditory pathway and scale
with the degree of synaptopathy. To test this, we recorded EFRs to
sAM tones with modulation frequencies in the 1000—4000 Hz
range for two cochlear regions (12 and 30 kHz) in our age-graded
series. EFRs from early neural sources (~1000 Hz AM) show a
progressive decline with age (Fig. 5A,B, p < 0.005 for all com-
parisons except between 16 weeks and 32 weeks at 12 kHz).
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domain measurements such as the sum-
mating potential (SP) and wave 1 of the
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Figure4. Ouabain differentiates EFRs generated from early neural- and hair cell-based sources. A, Grand-averaged magnitude

spectra for the EFRs at 1024 and 4096 Hz AM before and after treatment with ouabain or saline. Black triangles indicate location of
AMfrequency. B, Individual EFR amplitudes at 1024 and 4096 Hz AM before and after treatment with ouabain or saline. C, Mean =
SEM percentage decrease in EFR amplitudes elicited by AM frequencies between 768 and 4096 Hz. D, Comparison of EFRs at 4096
Hz AM recorded using mastoid electrodes and round window electrodes in five animals. Inset shows the grand-averaged magni-
tude spectrum (bold) with individual spectra shown behind. All EFRs elicited from the 30 kHz cochlear region at 80 dB SPL.

Therefore, in addition to the reduced wave 1 amplitudes seen
with age (Fig. 2E), the reduction in cochlear afferent outflow also
degrades the representation of temporal envelopes and these def-
icits present themselves at the earliest neural gene-
rators, putatively the auditory nerve. However, EFRs at ~4000
Hz, evoked putatively from hair cell generators as informed by
the previous experiment (Fig. 4), showed minimal changes in
amplitude with age. Responses at both ~1000 Hz AM and ~4000
Hz AM in most age groups are significantly above the noise floor,
as seen from the grand-averaged FFTs (Fig. 5A,B, inset), and
decreases in amplitudes for EFRs at ~4000 Hz AM are evident
only when hair cell losses occur (p > 0.1 for all post hoc compar-
isons except with groups 64 weeks and older at 12 kHz and with
the 128 week group at 30 kHz, where p < 0.0001).

To study the relative changes in neural-based versus hair cell-
based responses and to relate these to the degree of synapse loss,
we calculated a ratio between the ~1000 Hz AM EFR and the
~4000 Hz AM EFR at 80 dB SPL for each animal. We defined the
ratio as the absolute value of log,,(EFR 4 11,)/108,0(EFR 4006 11,)
and plotted the result at two cochlear frequencies, as shown in
Figure 5, C and D. A high EFR ratio would indicate that the
responses from the auditory nerve are large compared with those
from the hair cells and a low EFR ratio would indicate the reverse.
The EFR ratio decreased with age and this was significantly cor-
related with the number of cochlear synapses versus age (12 kHz:
r=0.54, p = 0.0001; 30 kHz: r = 0.73, p = 1.6 X 10 ®). There-
fore, the temporal processing deficits seen at the early neural
stages are directly correlated with the loss of cochlear synapses
with age. This EFR ratio may serve as an alternative metric to time

ABR because measuring the SP and the
wave 1 in the time domain response re-
quires peak picking by visual inspection,
which can be challenging, especially in the
aged animals in which ABR waveform
morphology can be degraded. However,
EFRs are comparatively easier to quan-
tify in such ears because the response
is analyzed in the frequency domain,
where the energy at modulation fre-

Hair cell quency can be compared with the sur-
rounding noise floor and objectively
T4 feung | calculated.
2 Window |
g2 © Cochlear synaptopathy is associated
- i with a decreased dynamic range of
2% = v neural coding
:::::::Z:?f:f::j Based on studies of human electrophysi-
S15 i ology and computational modeling, co-
310 chlear synaptopathy is believed to affect
205 © suprathreshold temporal processing by
£ i degrading the representation of sounds in
0 q}gﬂ/ 2 : the early auditory pathway (Bharadwaj et

al., 2014, 2015; Parthasarathy et al., 2016).
To directly probe the consequences of
age-related cochlear synaptopathy on
early neural coding, we recorded ampli-
tude versus level responses for EFRs elic-
ited to ~1000 Hz AM frequency at two
cochlear regions.

EFR growth functions showed a pro-
gressive decline with age (Fig. 6 A, B), sug-
gesting that neural declines in temporal processing occur
throughout the lifespan and are exacerbated with older age. Sig-
nificant main effects of age, sound level, and their interaction was
present for both frequencies (Table 3). Although the EFR growth
function showed minimal changes in overall slope or shape, the
decrease in amplitudes suggested a decreased dynamic range
available for encoding stimulus level with age. EFR amplitudes
measured at equal levels relative to individual thresholds contin-
ued to exhibit these age-related declines (Fig. 6C,D, Table 4).
Therefore, this decrease in the fidelity of coding at suprath-
reshold sound levels persists even when adjustments are made
to address individual differences in hearing thresholds due to
sensory hearing loss. EFRs measured at equal SLs 30 dB above
threshold are also significantly correlated with number of co-
chlear synapses (Fig. 6 E, F; 12 kHz: r = 0.66, p = 1 X 10 ~>; 30
kHz: r = 0.68, p = 9.2 X 10~7), suggesting that these neural
declines in suprathreshold temporal processing occur with
age-related cochlear synaptopathy.

Suprathreshold sound processing in real world listening con-
ditions often requires the neural encoding of stimuli with de-
graded envelope cues (Rosen, 1992; Shannon et al., 1995). We
recorded EFRs in response to AM tones with decreasing modu-
lation depth in two cochlear regions at sound levels 30 dB above
the threshold of each animal to probe suprathreshold temporal
processing deficits due to degraded envelope cues at equal SLs.
EFR amplitudes showed a progressive decline as a function of
both age and modulation depth (Fig. 7, Table 5). Similar to level
coding, the representations of envelope depth are also similar in
the overall shape and slope of the depth function with age. How-
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ever, the overall decrease in amplitudes suggests a reduced dy-
namic range of coding for modulation depth with age, occurring
with cochlear synaptopathy.

Central auditory pathway may introduce compensatory gain
adjustments due to degraded peripheral responses

Increasing evidence suggests that, when faced with various forms
of injury to the auditory periphery, the higher regions of auditory
processing beginning from the midbrain may exhibit compensa-
tory plasticity and increase their relative activity in response to
the degraded peripheral input (Chambers et al., 2016a,b; Herr-
mann et al., 2017; Parthasarathy et al., 2018). This increased cen-
tral gain may improve simple detection abilities, but it comes at
the cost of reduced neural precision in encoding temporally
modulated stimuli (Rabang et al., 2012; Overton and Recanzone,
2016). To investigate age-related changes in temporal processing
along the auditory pathway, EFRs were obtained to a range of
modulation frequencies from 16 to 4096 Hz AM in octave steps
(with the exception of 64 Hz AM due to the presence of the 60 Hz
line filter) at two cochlear regions. Significant main effects of age,
modulation frequency, and their interaction were present for
both frequencies (Table 6). As seen previously in Figure 4, EFRs
in the 2000—4000 Hz AM range dominated by hair cell generators
do not show significant changes with age until 128 weeks when
hair cell losses occur, whereas EFRs in the ~1000 Hz AM from

early neural sources show a progressive decline throughout the
lifespan (Fig. 8 A, B). These declines persist for EFRs to sAM stim-
uli in the 200—500 Hz AM range, with generators thought to be
primarily in the brainstem and midbrain (Kiren et al., 1994; Ku-
wada et al., 2002; Parthasarathy and Bartlett, 2012). However,
EFRs to slower AM rates of <100 Hz, which are dominated by
cortical sources (Herdman et al., 2002a,b; Picton et al., 2003),
show minimal changes with age (Fig. 8 A, B). The amplitude ratio
of ABR wave 5 to wave 1 also shows a steady increase with age
(Fig. 8 A, B, inset). This ratio increase arises because the ampli-
tude of wave 5 generated in the central auditory pathway (Levand
Sohmer, 1972; Buchwald and Huang, 1975; Hashimoto et al.,
1981) remained relatively unchanged, whereas wave 1 amplitude
decreased. These results suggest that aging may result in compen-
satory plasticity, leading to an increased gain in neural responses
from the central auditory pathway in response to a degraded
peripheral input due to cochlear synaptopathy.

Discussion

Hair cells have long been considered to be among the most vul-
nerable cochlear elements to aging. However, recent work shows
that loss of synapses between IHCs and auditory nerve fibers
begins before the hair cells themselves (Sergeyenko et al., 2013)
and this age-related cochlear synaptopathy can be exacerbated by
prior noise exposure (Fernandez et al., 2015). Age-related co-
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Table 3. Two-way ANOVA of EFR amplitudes at 1024 Hz AM

Table 4. Two-way ANOVA of EFR amplitudes relative to threshold at 1024 Hz AM

Source Sum Sq df Mean Sq F Prob>F Source Sum Sq df Mean Sq F Prob>F

12 kHz 12 kHz
Age 149.5 4 37.38 283.43 1810716 Age 8.8 4 22 24.94 21x107
Level 257.55 8 32.19 244.09 15%10 ™0 Level (SL) 31.49 3 10.5 1189 26X 10 %
Age*level 37.12 32 1.16 8.8 3.1x10°% Age*level 217 12 0.18 2.05 23Xx10 %
Error 53.84 409 0.13 Error 15.71 178 0.08
Total 500.76 453 Total 58.7 197

30 kHz 30 kHz
Age 173.57 4 434 184.55 49x10°%° Age 3.6 4 091 14.19 46x1071°
Level 246.63 8 30.82 131.12 12X107'%7 Level (SL) 40.04 3 13.34 208.12 85X 10
Age*level 26.95 32 0.84 3.58 1. X10 7% Age*level 267 12 0.22 347 1310 %
Error 95.7 407 0.24 Error 11.35 177 0.06
Total 558.7 451 Total 60.23 196

Shown are results of test of main effects of age and sound level, as well as their interaction, on EFR amplitudes
elicited to 1024 Hz AM frequency at two cochlear frequencies using two-way ANOVAS.

Sum Sq, The sum of squares due to each source of variability; df, degrees of freedom associated with each source;
mean Sq, mean squares for each source; £, F-statistic; Prob>F, p-value associated with each source.

chlear synaptopathy is thought to initially affect auditory nerve
fibers with low spontaneous rates and high thresholds (Schmiedt
etal., 1996). Because a diffuse loss of these high-threshold fibers
will not adversely affect hearing detection thresholds, the audio-
gram is insensitive to its presence and the phenomenon has been
termed “hidden” hearing loss (Schaette and McAlpine, 2011). In
an independent set of aging ears, this study also demonstrates this
progressive loss of cochlear synapses with age (Fig. 1C) that oc-

Shown are results of test of the main effects of age and sound level relative to threshold (sensation level), as well as
their interaction, on EFR amplitudes elicited to 1024 Hz AM frequency at two cochlear frequencies using two-way
ANOVAs.

Sum Sq, The sum of squares due to each source of variability; df, degrees of freedom associated with each source;
mean Sq, mean squares for each source; , F-statistic; ProbF, p-value associated with each source.

curs before sensory hearing loss evidenced by changes in cochlear
thresholds (Fig. 2A,D), loss of OHC function measured using
DPOAE:s (Fig. 2 A, B), or the loss of the hair cells themselves (Fig.
1C). However, physiological evidence for this synaptopathy is
found in the amplitude of the wave 1 of the ABR (Fig. 2E), which
reflects the summed activity of auditory nerve fibers, although
the amplitude may not be limited to contributions from low-
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Table 5. Two-way ANOVA of EFR amplitudes with varying AM depths

Source Sum Sq df Mean Sq F Prob>F

12 kHz
Age 49 4 1.21 1132 3 x10°%
Depth 93.65 5 18.73 174.65 2810 %
Age*depth 1.086 20 0.054 0.51 96x 10"
Error 19.95 186 0.11
Total 122.40 215

30 kHz
Age 14.65 4 3.66 3438 59%x10 %
Depth 105.54 5 20.51 192.51 13X10°%
Age*depth 231 20 0.12 1.08 37X 107"
Error 17.90 168 0.11
Total 143.40 197

Shown are results of test of main effects of age and depth of AM, as well as their interaction, on EFR amplitudes
elicited to 1024 Hz AM frequency at two cochlear frequencies using two-way ANOVAs.

Sum Sq, The sum of squares due to each source of variability; df, degrees of freedom associated with each source;
mean Sq, mean squares for each source; , F-statistic; Prob>F, p-value associated with each source.

Table 6. Two-way ANOVA of EFR amplitudes with varying AM frequencies

Source Sum Sq df Mean Sq F Prob>F

12 kHz
Age 36.4 4 9.1 5027  3.6Xx10°%
AM frequency 336.05 7 48 26515 16x107'2
Age*AM frequency 14.62 28 0.52 288 44x107%
Error 52.87 292 0.18
Total 4816 331

30 kHz
Age 19.25 4 4.81 3842  85x10°%
AM frequency 262.5 7 315 299.3 11X 1078
Age*AM frequency 10.12 28 0.36 289 44x107%
Error 36.23 290 0.12
Total 34755 329

Shown are results of test of main effects of age and frequency of AM, as well as their interaction, on EFR amplitudes
at two cochlear frequencies using two-way ANOVAs.

Sum Sq, The sum of squares due to each source of variability; df, degrees of freedom associated with each source;
mean Sq, mean squares for each source; F, F-statistic; Prob™F, p-value associated with each source.
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spontaneous-rate neurons alone (Bourien et al., 2014). The wave
1 amplitude, at an equal suprathreshold sound level that accounts
for differences in hearing thresholds, is strongly correlated with
the number of surviving cochlear synapses (Fig. 2F).

Changes in hearing function with age can reflect damage to
peripheral sensory and neural elements, as well as changes occur-
ring along the central auditory pathways. Changes in the central
auditory pathway such as decreased inhibition are well docu-
mented (for review, see Caspary et al., 2008), whereas assessment
of peripheral changes has largely been restricted to studying
changes to the cochlear hair cells and the threshold elevations that
typically accompany their damage or loss. However, partial
deafferentation caused by cochlear synaptopathy may cause ad-
ditional deficits in early neural coding due to stochastic under-
sampling of sounds by the auditory nerve (Lopez-Poveda and
Barrios, 2013; Lopez-Poveda, 2014). Aging and noise exposure
may be especially affected by this stochastic undersampling
(Marmel et al., 2015) because the low-spontaneous-rate neurons
first targeted with aging (Schmiedt et al., 1996) show a greater
preference for synchronized firing to AM sounds at moderate to
high levels (Joris and Yin, 1992). EFRs are a noninvasive assay to
measure these temporal processing deficits and provide comple-
mentary information to the ABRs, which are dominated by onset
responses (Parthasarathy et al., 2014; Bidelman, 2015). A previ-
ous study found that EFRs were sensitive to noise-induced syn-
aptopathy (Shaheen et al., 2015). However, the synaptopathy
induced with noise exposure is immediately dramatic compared
with the gradual decrease in synapses compared across six age-
graded groups. Looking at age alone in this study, coefficients for
the correlations between the synapses and either ABRs or EFRs
are comparable at 30 kHz (0.71 for ABRs, 0.68 for EFRs) and
ABRs have a higher correlation coefficient at 12 kHz (0.66 for
EFRs vs 0.83 for ABRs; Figs. 2F, 6E,F). A comparison of effect
sizes (Hedge’s g Hentschke and Stiittgen, 2011) between 16-
week-old animals and all other age groups revealed that both
ABRs and EFRs typically had effect sizes >0.8, which is consid-
ered a “large effect,” with EFRs outperforming ABRs at 30 kHz
and ABRs outperforming EFRs at 12 kHz (data not shown). In
this study, we used the round window application of ouabain to
preferentially affect neural responses (Yuan et al., 2014). By mea-
suring EFRs before and after the application of ouabain, we iden-
tified modulation rates that differentiated early neural from hair
cell sources (Fig. 4A—C). Early neural sources dominated AM
ranges at ~1000 Hz, which is close to the peak phase-locking
capacity of the auditory nerve (Palmer and Evans, 1982; Joris and
Yin, 1992). This is also consistent with a previous study using
ouabain application and phase coherence analysis to determine
that EFRs to AM frequencies at 800—1000 Hz were dominated by
responses from the auditory nerve in mice (Shaheen et al., 2015).
However, the spatial resolution offered by the EFRs cannot dif-
ferentiate between responses from the auditory nerve or the pri-
mary cochlear nucleus neurons, which have similar temporal
properties (Joris et al., 2004). Therefore, we extended these ob-
servations by obtaining EFRs to faster modulation rates of up to
4096 Hz. EFRs elicited to these fast AM rates were well above
noise floor (Fig. 4 A, B), were not affected by ouabain (Fig. 4B, C),
increased in amplitude when recorded at the round window (Fig.
4D), and decreased in amplitude only in the oldest age groups
when hair cell loss was present (Fig. 5A, B), strongly suggesting
that these EFRs had hair cell generators with likely contributions
from both OHCs and IHCs. Therefore, by manipulating stimulus
parameters, we were able to study temporal envelope coding
from hair cells and the auditory nerve. Whereas differences with
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age were minimal for hair cell-based EFRs until the onset of hair
cell loss, an age-progressive loss of EFR amplitudes was observed
for the early neural sources (Fig. 5A,B). This change in EFR
amplitudes, when quantified as the EFR ratio relative to hair cell
derived responses, is strongly correlated with the degree of syn-
aptopathy (Fig. 5C,D), suggesting that the loss of synapses is ac-
companied by a reduction in temporal processing at the level of
the auditory nerve.

Precise temporal coding of sound at the level of the early au-
ditory pathways is necessary to represent both the temporal fine
structure (TFS) corresponding to the carrier frequency of the
cochlear filter as well as the slower temporal envelope of that
carrier. Envelope cues are predominantly used for speech com-
prehension (Shannon et al., 1995) and auditory scene analysis
(Ding and Simon, 2012), whereas TFS is important to represent
fine-timing information for lower frequencies and for binaural
processing. It is also thought to be crucial in listening conditions
in which the presence of multiple speakers adversely affects en-
velope cues (Lorenzi et al., 2006; Ding et al., 2014; Moore, 2016).
Aged listeners with normal hearing thresholds often report sig-
nificant difficulty understanding speech in degraded listening
conditions such as the presence of noise or reverberation (He et
al., 1998; Ruggles et al., 2011). In these cases, normal detection
thresholds can be poor indicators of suprathreshold auditory
performance because even a 10—20% survival of IHCs still yields
near normal audiometric thresholds (Lobarinas et al., 2013) as
long as OHCs are functionally intact. Rather, these declines in
performance may be due to a poorer fidelity of coding timing
information in the auditory pathway. In this study, EFRs re-
corded at equal SLs still showed a significant decline in response
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amplitudes at suprathreshold sound levels
(Fig. 6C,D). These suprathreshold declines
were strongly correlated with the degree of
synaptopathy with age (Fig. 6 E,F). In ad-
dition, real world listening conditions
with competing maskers often degrade
the quality of the temporal envelope, re-
ducing the depth of modulations. De-
creasing the modulation depth of the AM
while still presenting the stimuli at an
equal suprathreshold SL resulted in a fur-
ther decrease in EFR amplitudes (Fig. 7).
This suggests that age-related cochlear
synaptopathy decreases the fidelity of
temporal processing and reduces the
overall dynamic range of coding at su-
prathreshold sound levels.

Neural processing of sounds in the
central auditory pathway relies on a com-
I plex interplay of excitatory and inhibitory
communications between various audi-
tory nuclei. Peripheral deafferentation
due to aging, though more gradual than
acute acoustic trauma, may also result in
compensatory plasticity to maintain ho-
meostatic balance (Kotak et al., 2005;
Resnik and Polley, 2017) due to a decrease
in inhibitory neurotransmitters such as
glycine and GABA (Caspary et al., 2008;
Rabang et al., 2012). This decrease in in-
hibition in neurons of central auditory
nuclei would make them less selective for
AM frequencies (Rabang et al., 2012),
thereby resulting in an increase in far-field responses. In this
study, EFRs elicited by stimuli that emphasize predominantly
cortical sources (Ross et al., 2003) show minimal changes with
age even when EFRs from peripheral sources are reduced (Fig. 8).
This is also accompanied by a relative increase in the activity of
the midbrain compared with the auditory nerve, as measured by
the ABR wave 5: wave 1 ratio (Fig. 8). These results suggest that
the reduced peripheral drive seen with age may be accompanied
by increases in central gain. An age-related increase in relative
neural activity has also been observed in the inferior colliculus
(Walton et al., 2002; Herrmann et al., 2017; Parthasarathy et al.,
2018) and the auditory cortex (Overton and Recanzone, 2016).
However, this increased activity typically comes at the cost of
reduced temporal precision (Trujillo and Razak, 2013; Cai and
Caspary, 2015; Overton and Recanzone, 2016) due to the altered
balance between excitation and inhibition. Whether the cortical
EFRs measured here show further degradations under more chal-
lenging listening conditions remains to be explored.
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