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Deregulation of cellular proteostasis due to the failure of the ubiquitin proteasome system to dispose of misfolded aggregation-prone
proteins is a hallmark of various neurodegenerative diseases in humans. Microorganisms have evolved to survive massive protein
misfolding and aggregation triggered by heat shock using their protein-unfolding ATPases (unfoldases) from the Hsp100 family. Because
the Hsp100 chaperones are absent in homoeothermic mammals, we hypothesized that the vulnerability of mammalian neurons to
misfolded proteins could be mitigated by expressing a xenogeneic unfoldase. To test this idea, we expressed proteasome-activating
nucleotidase (PAN), a protein-unfolding ATPase from thermophilic Archaea, which is homologous to the 19S eukaryotic proteasome and
similar to the Hsp100 family chaperones in rod photoreceptors of mice. We found that PAN had no obvious effect in healthy rods;
however, it effectively counteracted protein-misfolding retinopathy in G�1 knock-out mice. We conclude that archaeal PAN can rescue a
protein-misfolding neurodegenerative disease, likely by recognizing misfolded mammalian proteins.
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Introduction
The folding algorithm for proteins is encoded in their primary
structure and executed during synthesis by the ribosome (Balchin
et al., 2016). This process is guided by small, negative free energy
changes that occur when the residues of the emerging polypep-
tide begin to interact with one another and with the media. Cer-
tain mutations resulting in amino acid substitutions may
significantly alter the folding algorithm to give rise to non-native

or misfolded proteins. The cytotoxicity of misfolded proteins is
not generally caused by their loss of function, but rather by their
propensity to form oligomers and aggregates that impede the
ubiquitin proteasome system (UPS), causing deregulation of cel-
lular proteostasis in the long term (Gidalevitz et al., 2006, 2009;
Kristiansen et al., 2007; Deriziotis et al., 2011; Guo et al., 2018;
Thibaudeau et al., 2018). In this capacity, misfolded proteins are
increasingly viewed as a common contributing factor for many
neurodegenerative diseases (Dantuma and Bott, 2014; Hipp et
al., 2014; Schmidt and Finley, 2014).

The ubiquitin proteasome, also called the 26S proteasome,
maintains cellular proteostasis (Glickman and Ciechanover,
2002; Collins and Goldberg, 2017). The 26S proteasome consists
of two subcomplexes: the 19S regulatory particle and the 20S
catalytic particle. In eukaryotes, the 19S recognizes ubiquitin-
tagged proteins and unfolds and injects them into the hollow-
barrel shaped 20S catalytic particle. The 20S core cleaves proteins
into peptides, which are then converted into amino acids and
recycled. Unfortunately, in some neurodegenerative diseases, the
activity of the 26S proteasome is impaired; recently, small toxic
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Significance Statement

This study demonstrates successful therapeutic application of an archaeal molecular chaperone in an animal model of neurode-
generative disease. Introducing the archaeal protein-unfolding ATPase proteasome-activating nucleotidase (PAN) into the retinal
photoreceptors of mice protected these neurons from the cytotoxic effect of misfolded proteins. We propose that xenogeneic
protein-unfolding chaperones could be equally effective against other types of neurodegenerative diseases of protein-misfolding
etiology.
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oligomers were even shown to directly inhibit the proteasome
(Thibaudeau et al., 2018). One approach to counteract neurode-
generative disease is to decrease the amount of aggregated mis-
folded protein that can impede the UPS. This approach was
effective in mouse models of Huntington’s (Vacher et al., 2005),
Alzheimer’s disease and Parkinson’s disease (Vashist et al., 2010),
where expression of a protein-unfolding ATPase, Hsp104, origi-
nally from yeast, slowed the progression of neurodegeneration by
reducing aggregate formation. To expand on this idea, we
expressed a protein-unfolding ATPase from Archaea, called
proteasome-activating nucleotidase (PAN), in a mouse model
that displays neurodegenerative retinopathy of protein misfold-
ing etiology.

Although archaeal PAN is homologous to the eukaryotic 19S
regulatory particle, some of its features are similar to the protein-
unfolding ATPases (unfoldases) of the Hsp100 family, Hsp104
and ClpB (Glover and Lindquist, 1998; Lee et al., 2003; Bösl et al.,
2006). The Hsp100s are believed to have evolved to ensure the
survival of poikilothermic unicellular organisms, which regularly
experienced massive protein misfolding caused by temperature
spikes. Because homoeothermic mammals do not usually expe-
rience temperature spikes and they have no known Hsp100s,
their neurons may be poorly adapted to cope with aberrant pro-
teins that are destabilized as a result of genetic mutations. Similar
to the Hsp100 family, PAN can unfold proteins without ubiquiti-
nation or binding to the 20S proteasome, allowing PAN to func-
tion independently of the 20S core and to recognize substrates
using a different identification system (Smith et al., 2006). For
example, PAN unfolds stable �-sheet-rich GFP when an unstruc-
tured 9-residue ssrA degradation tag from bacteria is placed on
GFP’s C terminus (Smith et al., 2005). Therefore, PAN likely
recognizes substrates by their exposed hydrophobic residues
rather than if they have been conjugated with ubiquitin. Archaea
do have ubiquitin-like proteins termed SAMPs that appear to
target proteins for degradation (Maupin-Furlow, 2014); how-
ever, PAN, similar to the Hsp100 chaperones, can directly recog-
nize misfolded proteins. This was shown in vitro, when PAN
prevented aggregation of model proteins by acting as a molecular
chaperone (Benaroudj and Goldberg, 2000). Based on PAN�s
features that are distinct from the proteasome but are common to
the protein-unfolding ATPases of the Hsp100 family, we hypoth-
esized that PAN could recognize and unfold aberrant proteins
that evade degradation by the UPS and that could potentially
impair the 26S proteasome in mammals.

Materials and Methods
Animal models. The coding sequence of PAN from Methanocaldococcus
jannaschii was codon optimized for mammalian expression and com-
mercially generated by GenScript. In addition, a Kozak sequence was
introduced to the 5� end and the sequences for a tandem FLAG-HA
epitope tag (GGGDYKDDDKVKLYPYDVPDYA) were added to the 3�
end, followed by two stop codons. The final transgene included a 4.4 kb
mouse rhodopsin promoter and a mouse protamine I polyadenylation
sequence (Lem et al., 1991). The transgene was verified by sequencing
and purified and injected into the pronuclei of zygotes from superovu-
lated FVB females at the West Virginia University (WVU) Transgenic
Animal Core Facility. Transgene integration was determined by PCR
genotyping of tail DNA using forward primer CTG ATG CAG CTG CTC
GCC GAA ATG and reverse primer ATC G TC CAT TGT GAC ATA ATC
GCG CAG T. The colonies were established by crossing transgenic
heterozygotes with wild-type partners of the 129-E background (Charles
River Laboratories). All transgenic heterozygotes were from one trans-
genic founder with confirmed PAN protein expression in the retina. G�1

knock-out mice used in this study (Kolesnikov et al., 2011) were back-

crossed into the 129-E background. All experiments involving mice were
performed according to procedures approved by the Animal Care and
Use Committee of WVU.

Tissue culture. HEK 293 cells were maintained in DMEM: nutrient
mixture F-12 (DMEM/F-12 from ATCC) complete medium at 37°C and
supplemented with 10% (v/v) FBS, 100 U ml �1 penicillin, 100 �g ml �1

streptomycin, 2.5 mM L-glutamine, and 15 mM HEPES. For the transient
expression of PAN et, cells were plated in six-well plates and grown to at
least 50% confluency. The following day, cells were transfected with 2 �g
of total plasmid DNA using FuGENE 6 Transfection reagent (Roche and
Promega) at a 6 (plasmid DNA):1 (FuGENE 6) ratio. Empty pTriEx 4
vector was used as a control. Cells were collected after 48 h of transfec-
tion, frozen on dry ice, and stored at �80°C.

Pull down of PAN et. Frozen retinas or HEK 293 cells transfected with
either PAN et or empty pTriEx 4 vector were homogenized in 50 mM

Tris/HCl, pH 7.4, and 10% glycerol by short ultrasonic pulses. The ho-
mogenate with 2% IGEPAL CA-630 (56741; Sigma-Aldrich) was heated
at 85°C for 15 min and cleared by centrifugation to remove insoluble
parts and heat-precipitated proteins. The PAN et complex that remained
intact during heating was captured with anti-FLAG affinity gel (B23101;
Biotool) for 1 h at room temperature. The anti-FLAG affinity gel was
washed 2 times with 50 mM Tris/HCl, pH 7.4, 10% glycerol, 2% IGEPAL
CA-630, and then 1 time with 50 mM Tris/HCl, pH 7.4, 10% glycerol. The
captured PAN was eluted with 3% ammonium hydroxide solution and
vacuum-dried. For Western blot analysis, lyophilized samples were re-
constituted in SDS-PAGE sample buffer and analyzed using an Odyssey
Infrared Imaging System (LI-COR Biosciences).

Protein-unfolding activity assay. PAN et and empty pTriEx 4 vector
(negative control) were expressed in HEK 293 cells and purified using
anti-FLAG affinity gel as described above. Wild-type PAN at a concen-
tration of 20 nM was used as positive control and was purified as de-
scribed previously (Smith et al., 2005). The protein-unfolding activity
assay was adopted from that same study (Smith et al., 2005). In brief,
substrate unfolding rate was measured by incubating 1 �M GFPssrA with
or without PAN in a buffer containing 50 mM Tris, 5% glycerol, 20 mM

MgCl2, 400 nM T20S (Thermoplasma acidophilum 20S) and 2 mM ATP at
37°C. PAN unfolds GFPssrA by recognizing the nine-residue ssrA degra-
dation tag on the C terminus of GFP. T20S was added to degrade GFP
that had been unfolded by PAN because GFP-ssrA will refold and regain
fluorescence if it is not degraded or trapped in its unfolded state. The rate
of GFPssrA fluorescence loss was measured on a BioTek synergy mx
96-well plate reader (�ex: 485 nm, �em: 510 nm).

Retina. PAN et was isolated from 47 retinas of PAN et (�) mice. For a
negative control, equal number of PAN et (�) retinas was used. The assay
was conducted as described above except that it also contained 0.15
mg/ml (100 nM) of purified GroEL-D87K (in place of the T20S), which
served as a trap preventing refolding of GFPssrA after unfolding by
PAN et (Weber-Ban et al., 1999).

20S proteasome gate-opening assay. 20S gate opening by PAN was mea-
sured using the internally quenched fluorogenic peptide substrate (LFP)
in reaction buffer containing archaeal T20S (3 nM), wild-type PAN or
PAN et (200 nM), and MgCl2 (20 mM) (Smith et al., 2007). LFP was
dissolved in DMSO and used at a final concentration of 10 �M either in
the presence or absence of 10 �M ATP�S. LFP contains a fluorescent
reporter (MCA) at the N terminus and a quenching group (DNP) at the
C terminus. Upon cleavage of the peptide by the 20S proteasome, MCA is
released and an increase in fluorescence can be observed at ex/em: 325/
393. Rate of fluorescence increase (�ex: 325, �em: 393) was measured
every 20 s in a Biotek 96-well plate reader to determine activation (gate
opening) by PAN.

Microscopy. Enucleated eyes were sent to Excalibur Pathology for
paraffin-embedding and hematoxylin and eosin staining of retinal cross-
sections. The method for immunofluorescence confocal microscopy was
described previously (Brooks et al., 2018).

ERG. Mice were dark-adapted overnight before testing and all proce-
dures were performed under dim red light. Mice were anesthetized by
1.5% isoflurane with 2.5 L/min oxygen delivered through a nose cone.
The animal’s pupils were dilated with a mixture of 1.25% phenylephrine
hydrochloride and 0.5% tropicamide ophthalmic solution and visual
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responses were recorded simultaneously from both eyes using a Celeris
rodent ERG system and Espion software (Diagnosis).

Experimental design and statistical analyses. In all quantifications, the
significance level was determined using the independent two-tailed Stu-
dent’s t test and the values are expressed as mean � SEM. n � 1 repre-
sents one animal.

Antibodies. PAN et was detected using rat anti-HA antibody
(11867423001; Roche) and rabbit anti-HA antibody (sc-805; Santa Cruz
Biotechnology) for immunofluorescent confocal microscopy and
Western blotting, respectively.

Results
Design of the PAN et unfoldase
In Archaea, PAN unfolds substrates and facilitates their translo-
cation into the cavity of the 20S core of the proteasome, where
substrates undergo proteolysis (Zwickl et al., 1999). To prevent
PAN from binding to the endogenous 20S complex, an HA-
FLAG epitope tag (et) was placed on the C terminus of its subunit.
This modification was expected to obstruct the HbYX sequence
that is essential for binding between PAN and the 20S complex
(Fig. 1A) (Smith et al., 2005). This construct termed PAN et was
first purified from HEK 293 cell culture and then its ability to
unfold protein substrate and to couple to the 20S proteasome was
compared with that of wild-type PAN. We found that PAN et

isolated from HEK 293 cells displayed significant protein-
unfolding activity (Fig. 1B). This observation demonstrated that
the PAN et complex could be catalytically active in mammalian
cells at mammalian body temperature. We also found that PAN et

did not stimulate the proteolytic activity of the 20S proteasome
(Fig. 1C), demonstrating that this complex can only act as a
protein-unfolding ATPase. Next, we targeted the expression of
the PAN et transgene to the rod photoreceptors of mice by using a

4.4 kb rhodopsin promoter (Lem et al., 1991). The expression of
PAN et was confirmed by Western blotting (Fig. 1D). Similar to
PAN et expressed in the cell culture, PAN et isolated from the ret-
ina displayed robust protein-unfolding activity at 37°C, demon-
strating that PAN et from the retina is also functionally active (Fig.
1E). Next, we focused on characterizing PAN et mice to determine
whether PAN has an adverse effect on mouse rods.

Characterization of PAN et mice
PAN et mice were healthy and viable. The gross ocular morphol-
ogy of 1-year-old PAN et (�) mice was similar to the morphology
of their PAN et (�) littermates (Fig. 2A). The total number of rod
photoreceptors in PAN et (�) retinas also remained normal based
on the thickness of the outer nuclear layer of the retina, which
contains rod nuclei (Fig. 2B). Examining the expression of PAN et

in the retina by immunofluorescent microscopy revealed that
PAN et was present in all subcellular compartments of rod pho-
toreceptor, except for the rod outer segments (Fig. 2C). This
exclusion is likely due to the size of the PAN complex because
large complexes cannot access the outer segment. The expression
of PAN et (�) transgene in the retina lasted until at least 1 year of
age. To determine the percentage of rods that express transgene,
we visualized PAN et-expressing rods in flat-mounted retinal
preparations (Fig. 2D). We found that at least 40% of rods ex-
pressed PAN et in the areas with the highest degree of mosaicism
shown in Figure 2D, whereas 70% or more of rods expressed
PAN et in the areas with the least amount of mosaicism (data not
shown). Therefore, according to our most conservative assess-
ment at least 50% of rods expressed the transgene. In the assay,
shown in Figure 1E, we had to capture PAN et from 47 retinas to
match the activity of 5.6 � 10 10 wild-type PAN complexes used as

Figure 1. Design of the PAN et unfoldase. A, Diagram illustrating the strategy for conversion of PAN to a protein-unfolding ATPase: a C-terminal epitope tag (et) obstructs the HbYX motif required
for docking to the 20S proteasome. B, Protein unfolding activity of PAN et isolated from HEK 293 cells compared with purified wild-type PAN. Data were normalized to control where an empty vector
was used for transfection. C, ATP binding to PAN (as measured using the nonhydrolyzable ATP analog ATP�S) stimulates 20S gate opening in wild-type PAN (as expected), but not PAN et. The
stimulation of 20S activity (caused by PAN-induced 20S gate opening) was measured using saturating amounts of PAN and a 2 �M concentration of the fluorescent reporter peptide LFP with 20 mM

MgCl2 and 2 mM ADP or 10 �M ATP�S (see Materials and Methods for details). D, Detection of PAN et by Western blotting in anti-FLAG pull downs from retinal lysates. Specific band of 55 kDa (*) was
visualized with antibody against HA. E, Protein-unfolding activity of PAN et isolated from the retina compared with purified wild-type PAN. Data were normalized to control where transgene-
negative mice were used.
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a positive control. Assuming that PAN et and wild-type PAN have
the same specific activity and that there are 6.4 � 10 6 rods in a
mouse retina (Carter-Dawson and LaVail, 1979; Jeon et al.,
1998), half of which express the transgene, we could estimate that
each rod cell expressed �370 PAN et complexes. Last, we analyzed
visual responses of mice by ERG using the amplitude of the
a-wave as a quantitative readout for the status of phototransduc-
tion. We found that visual responses of PAN et(�) and PAN et(�)
siblings were statistically indistinguishable across a wide range of
stimulating flashes (Fig. 2E), which indicated that the levels of
phototransduction proteins in PAN et-expressing rods remained
unaltered. Therefore, we found no evidence that PAN et may
compromise viability or function of rod photoreceptors by un-
folding their native proteins.

PAN et protects rod photoreceptors against
misfolded proteins
Next, we tested the efficiency of PAN et to protect rod photo-
receptors against misfolded proteins in G�1 knock-out mice
(Kolesnikov et al., 2011). In this model, the misfolding of a
major rod protein, the G�1 subunit of transducin, was shown
to overload the UPS (Lobanova et al., 2013). The ensuing
deregulation of proteostasis leads to complete degeneration of
G�1-null rods (Lobanova et al., 2008; Kolesnikov et al., 2011).
To determine whether PAN et can protect rods of G�1-null
mice, PAN et mice were backcrossed on G�1-null background.
Then, PAN et(�) and PAN et(�) littermates (PAN et �/�;
G�1

�/�, and PAN et �/�; G�1
�/�, respectively) were raised un-

der identical environmental conditions and comparatively an-

Figure 2. Normal retinal morphology and rod visual function of 1-year-old PAN et mice. Mice of the indicated genotype were analyzed at 1 year of age. A, Ocular cross-section stained with
hematoxylin and eosin. B, Central retina morphology. The indicated retinal layers are as follows: OS, outer segments layer; IS, inner segments layer; ONL, outer nuclear layer; OPL, outer plexiform
layer; and INL, inner nuclear later. Diagram illustrates the location of rod cells within the retina. C, Protein localization was determined in frozen retinal cross-sections by immunofluorescent confocal
microscopy. The immunostaining of PAN et (red) and the DIC image with cell nuclei stained with DAPI (blue) are shown. D, PAN et (red) was visualized in flat-mounted retinas by immunofluorescent
confocal microscopy using antibody against HA. E, Visual responses of rods were analyzed by ERG and the maximum amplitude of elicited a-wave was plotted as a function of flash intensity. Error
bars indicate SEM (n � 4). Each dataset was fitted with a simple rectangular hyperbola with two parameters.
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alyzed. By the age of 7 months, PAN et (�) mice on G�1-null
background had lost virtually all of their rods, as evident from
disappearance of the entire outer nuclear layer of their retinas.
However, in PAN et (�) mice, more than a half of total rod

population, presumably expressing the transgene (Fig. 2D),
had survived (Fig. 3A–C). Consistent with this observation,
PAN et (�) mice did not elicit any visual responses when ana-
lyzed by ERG, whereas their PAN et (�) littermates continued

Figure 3. PAN et improves the survival of rod photoreceptors in G�1 knock-out mice. Mice of PAN et �/�; G�1
�/� and PAN et �/�; G�1

�/� genotypes, designated as PAN et(�) and
PAN et(�), respectively, were analyzed at the age indicated. A, Ocular cross-section stained with hematoxylin and eosin. B, Retina morphology at area 5 (A, top). The indicated retinal layers are as
follows: OS, outer segments layer; IS, inner segments layer; ONL, outer nuclear layer containing rod nuclei; OPL, outer plexiform layer; INL, inner nuclear later. Diagram illustrates the location of rod
cells within the retina. C, Photoreceptor nuclei count in areas 1–7 of the retina (A, top) of ONL. Error bars indicate SEM (n � 3). D, Visual responses of rods were analyzed by ERG and the amplitude
of maximum elicited a-wave was plotted as a function of flash intensity. Error bars indicate SEM (n � 4). Each dataset was fitted with a simple rectangular hyperbola with two parameters.
E, Representative ERG responses of 7-month-old mice.
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to generate robust a-waves (Fig. 3 D, E). Moreover, the ampli-
tudes of the a-wave in 7-month-old PAN et �/�; G�1

�/� mice
and 1-month-old G�1

�/� mice were mostly identical across a
wide range of stimulating flashes, except for the two brightest
flashes of 4 and 10 cd s m �2 (Fig. 3D), when the reduction in
the a-wave was directly proportional to the number of surviv-
ing rods (Fig. 3C). These data demonstrate that PAN et can
vastly improve the survival rate of G�1-null rod photorecep-
tors. Furthermore, PAN et may be able to completely rescue
G�1 knock-out mice if expression of the PAN et transgene was
uniform with no mosaicism.

Discussion
G�1 knock-out mice were used in this study because their neuro-
degenerative phenotype has been linked to protein misfolding
(Lobanova et al., 2013). G�1 is one of the three subunits of
the phototransduction heterotrimeric G-protein transducin
(G�t1�1�1). As one might expect, knocking out the G�1 subunit
significantly decreases the expression of its binding partner, G�1;
however, it also decreases the amount of G�t1 and greatly reduces
the efficiency of rod phototransduction, which was observed in
two independently generated knock-out lines (Lobanova et al.,
2008; Kolesnikov et al., 2011). G�1 knock-out mice display pro-
gressive loss of rod photoreceptors (Lobanova et al., 2008; Kole-
snikov et al., 2011), although knocking out the G�t1 subunit of
transducin does not cause this phenotype (Calvert et al., 2000).
This apparent discrepancy was resolved by demonstrating that
G�1-null mice have a widespread deficiency in proteasome-
mediated protein degradation, due to the misfolding of the re-
maining G�1 (Lobanova et al., 2013). The folding of nascent G�1

is mediated by chaperonin containing t-complex subunit protein
1 (CCT/TRiC) and crucially depends on the co-chaperone phos-
ducin like protein 1 (Lukov et al., 2005, 2006; Plimpton et al.,
2015) and on G�1 (Schmidt and Neer, 1991; Garcia-Higuera et
al., 1996; Wells et al., 2006). In the absence of G�1 expression,
G�1 predominantly exists as a misfolded protein, which eventu-
ally overwhelms the UPS due to its large quantity (Lobanova et
al., 2013).

The observed protective effect of protein-unfolding ATPase
PAN et further supports the belief that retinal degeneration in G�1

knock-out mice is caused by protein misfolding. However, it is
generally inconsistent with the notion that proteasome overload
is caused by excessive amounts of proteasomal substrates because
PAN et has no proteolytic activity and would not degrade pro-

teins. Therefore, we favor the hypothesis
that PAN et alleviates inhibition of the
proteasome by preventing the formation
of soluble oligomers (Fig. 4). G�1 is pre-
disposed to aggregation due to a high con-
tent of �-sheets (Gaudet et al., 1996) and
could potentially form oligomers. Oli-
gomer formation could also be driven by
secondary protein misfolding events
caused by G�1 knock-out. Binding of G�1

has been proposed to serve as a signal that
prevents mature G�1�1 dimer from reen-
tering the folding chamber of CCT (Gao
et al., 2013). Consistent with this pro-
posal, more G�1 co-purified with CCT in
the retinal extracts of G�1 knock-out mice
than in those of wild-type mice (Lo-
banova et al., 2013). Therefore, in the
absence of G�1, G�1 is expected to com-
petitively inhibit the folding of less abun-

dant CCT substrates, resulting in misfolded proteins in addition
to G�1. These misfolded protein substrates of CCT may eventu-
ally form oligomers that evade the recognition by the mammalian
UPS. These oligomers may accumulate in rods over time and
inhibit the proteasome (Thibaudeau et al., 2018). PAN et, which
has evolved in Archaea and does not require ubiquitin labeling to
recognize misfolded proteins, may more effectively recognize and
unfold the aberrant mammalian proteins. The unfolding of
aggregation-prone proteins is expected to hinder their aggrega-
tion and to expose them to the innate Hsp70-Hsp40 and Hsp90
chaperone systems that cooperate with the UPS (Kettern et al.,
2010). As a result, PAN et helps to maintain proteostasis in G�1-
null rods by purging the unstable nascent �-sheet-rich proteins
that could oligomerize and inhibit the proteasome. Another in-
triguing possibility, which requires further testing, is that PAN et

could target amyloid oligomers directly. Given a potentially
broad substrate specificity of PAN et and its robust activity, it is
tempting to speculate that this xenogeneic unfoldase could be
equally effective against other types of neurodegenerative dis-
eases of protein-misfolding etiology.
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