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Abnormal Low-Frequency Oscillations Reflect Trait-Like
Pain Ratings in Chronic Pain Patients Revealed through a
Machine Learning Approach
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Measures of moment-to-moment fluctuations in brain activity of an individual at rest have been shown to be a sensitive and reliable
metric for studying pathological brain mechanisms across various chronic pain patient populations. However, the relationship between
pathological brain activity and clinical symptoms are not well defined. Therefore, we used regional BOLD signal variability/amplitude of
low-frequency oscillations (LFOs) to identify functional brain abnormalities in the dynamic pain connectome in chronic pain patients
that are related to chronic pain characteristics (i.e., pain intensity). Moreover, we examined whether there were sex-specific attributes of
these functional brain abnormalities and whether functional brain abnormalities in patients is related to pain intensity characteristics on
different time scales. We acquired resting-state functional MRI and quantified frequency-specific regional LFOs in chronic pain patients
with ankylosing spondylitis. We found that patients exhibit frequency-specific aberrations in LFOs. Specifically, lower-frequency
(slow-5) abnormalities were restricted to the ascending pain pathway (thalamus and S1), whereas higher-frequency abnormalities also
included the default mode (i.e., posterior cingulate cortex; slow-3, slow-4) and salience (i.e., mid-cingulate cortex) networks (slow-4).
Using a machine learning approach, we found that these abnormalities, in particular within higher frequencies (slow-3), can be used to
make generalizable inferences about patients’ average pain ratings (trait-like pain) but not current (i.e., state-like) pain levels. Further-
more, we identified sex differences in LFOs in patients that were not present in healthy controls. These novel findings reveal mechanistic
brain abnormalities underlying the longer-lasting symptoms (trait pain intensity) in chronic pain.
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Measures of moment-to-moment fluctuations in brain activity of an individual at rest have been shown to be a reliable metric for studying
functional brain associated with chronic pain. The current results demonstrate that dysfunction in these intrinsic fluctuations/oscilla-
tions in the ascending pain pathway, default mode network, and salience network during resting state display sex differences and can be
used to make inferences about trait-like pain intensity ratings in chronic pain patients. These results provide robust and generalizable
implications for investigating brain mechanisms associated with longer-lasting/trait-like chronic pain symptoms. j
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from moment to moment, and even on the order of hours and
days. The mechanisms that contribute to chronic, fluctuating
levels of pain and how they differ across individuals provide a

Introduction
The temporal dimension of chronic pain is often overlooked, yet
patients commonly report that their symptoms can fluctuate
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window into underlying etiologies and potential treatment ap-
proaches. However, most brain imaging studies of chronic pain
do not distinguish pain at the time of the study (state pain) from
average pain experienced over time (trait pain). State and trait
pain can reflect different aspects of chronic pain conditions.

One chronic pain condition that affects primarily younger
adults devoid of comorbidities commonly seen in other chronic
pain disorders is ankylosing spondylitis (AS). AS is a form of
arthritis resulting from inflammation of the sacroiliac joint, re-
sulting in debilitating lower back pain (Bidad et al., 2017). These
patients have aching, tender and sore pain that can be shooting or
stabbing (Wu et al., 2013), of intensity ebbs and flows throughout
the day (Sieper et al., 2002).

One approach to investigate temporal mechanisms underly-
ing chronic pain is to quantify low-frequency oscillations (LFOs)
of brain activity during resting-state functional MRI (fMRI). This
can be measured by BOLD signal variability, the SD of the BOLD
signal time course (Garrettetal., 2010; Rogachovetal., 2016). We
recently demonstrated that regional BOLD signal variability is a
sensitive indicator of individual differences of pain sensitivity and
coping in healthy individuals (Rogachov et al., 2016). Moreover,
others have reported abnormalities in LFOs in chronic pain pa-
tients with back pain (Baliki et al., 2011), osteoarthritis (Baliki et
al., 2014), migraine (Hodkinson et al., 2016), and neuropathic
pain (Alshelh et al., 2016), but they reported conflicting findings.
Baliki et al. (2011) reported that LFO abnormalities dynamically
track fluctuations in patients’ ongoing (state-like) pain during
fMRI in low back pain patients; however, later work has also
shown LFO abnormalities in low back pain and osteoarthritis to
be related to more longer-lasting/trait-like pain characteristics
(i.e., disease duration; Baliki et al., 2014). Likewise, recent work
from our group has shown unique brain connectivity patterns
associated with chronic pain characteristics of different time
scales that represent trait-like and state-like pains (Cheng et al.,
2018). In addition, an important consideration to LFO studies is
frequency-specific and sex-related effects. Chronic pain-related
disruption on LFOs and subsequent correlations to ongoing lev-
els of pain (pain state; Baliki et al., 2011) and longer-lasting fea-
tures (disease duration; Baliki et al., 2014) were found exclusively
within higher frequencies (0.12-0.20 Hz; slow-3). Similarly,
Hong et al. (2013) reported differences in frequency-specific al-
terations in resting-state brain oscillations between men and
women patients with chronic visceral pain.

Therefore, the primary aims of this study were to (1) identify
abnormalities in slow-3, -4, and -5 BOLD signal variability/LFOs
associated with chronic pain in patients with AS and (2) deter-
mine whether frequency-specific abnormalities are related to
pain intensity ratings. We also considered whether these abnor-
malities related to patients’ pain intensity levels on different time
scales [current pain (state-like characteristic) vs average pain in-
tensity over 7 d (trait-like characteristics)] and whether these
abnormalities are impacted by sex. Toward these goals, we col-
lected resting-state fMRI from chronic pain patients with AS (n =
71) and from 62 age- and sex-matched healthy controls. We also
asked patients to rate their average pain over the previous week
(trait-like pain) as well as the intensity of their pain immediately
before the scan (current pain levels that reflects state-like pain).
Importantly, we used a machine learning algorithm to determine
whether functional brain differences between patients and con-
trols can be used to make generalizable inferences related to pa-
tients’ pain intensity ratings. We hypothesized that AS patients
would show increased LFOs compared with healthy controls
(HCs) and that higher-frequency (slow-3) LFOs would be related
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to their trait-like pain represented by average pain intensity over
the previous week.

Materials and Methods

Subjects. The study consisted of 71 right-handed chronic pain patients
diagnosed with AS (51 men, 20 women; average age * SD, 34.9 * 11.1;
18—-61 years old) and 62 right-handed HCs (43 men, 19 women; average
age * SD, 34.0 = 11; 1855 years old) who underwent a neuroimaging
session and psychophysical testing. The AS cohort reported an average
(£SD) years living with pain of 15.5 (9.8), which ranged from 2 to 38
years. Although AS pain is classically associated with pathology localized
to the sacroiliac joint (lower back), many patients reported bilateral pain
radiating into their lower extremities, as well as other joints (e.g., knees
and wrists). Forty-two of the patients were being treated with anti-
TNF-a (biologics) medication (i.e., Embrel, Humira, Remicade, and
Simponi), and 27 were treated with nonsteroidal anti-inflammatory
drugs (i.e., Voltaren, Naprosyn, and Celebrex). All participants provided
informed written consent to procedures approved by the University
Health Network research ethics board. Patients with chronic pain were
recruited from the Spondylitis clinic at Toronto Western Hospital. The
inclusion criteria for the chronic pain patients was a diagnosis of AS
according to the modified New York criteria (van der Linden et al., 1984).
Exclusion criteria for patients and HC participants were as follows: (1) a
previous diagnosis of a psychiatric, neurological, or metabolic disorder;
(2) major surgery in the past 2 years; (3) serious infection (associated
with hospitalization or intravenous antibiotics) within 4 weeks of testing;
and (4) any standard contraindications to MRI scanning (i.e., pregnancy,
metal in the body, claustrophobia).

Neuroimaging acquisition. Brain imaging data were acquired with a 3T
MRI scanner fitted with an eight-channel phase-array head coil (GE
Medical Systems). For each study participant, we collected a high-
resolution T1-weighted anatomical scan (3D IR-FSPGR sequence; 180
axial slices; TR, 7.8 ms; TE, 3 ms; flip angle, 15°; 256 X 256 matrix; 1 X
1 X 1 mm voxels) and a9 min. 14 s T2*-weighted resting-state fMRI scan
(echo-planar imaging sequence; 36 slices; TR, 2000 ms; TE, 30 ms; 64 X
64 matrix; 3.125 X 3.125 X 4 mm voxels). During the resting-state fMRI
scan, the subjects were instructed to “close your eyes, do not try to think
about anything in particular; do not fall asleep.” Two subjects (both AS
patients) were excluded from further analyses because of signal dropout
within the orbitofrontal cortex, leaving a total of 69 subjects.

Questionnaires and pain ratings. All study subjects completed psycho-
logical/personality questionnaires, including the Beck Depression Inven-
tory (BDI; Beck et al., 1961) and the State/Trait Anxiety Inventory
(Spielberger et al., 1983), and patients filled out additional pain-specific
assessments such as their average pain intensity over the past week and
their current level of pain before imaging (0, no pain; 10, worse pain
imaginable). Average pain intensity ratings were collected from 65 of 69
AS patients included in the study. Nine patients [all of whom were treated
with anti-TNF-« (biologics) medication] reported an average weekly
pain of 0 of 10. As the goal of this study was to investigate the relationship
between LFOs and pain intensity, these nine patients were removed,
leaving a total of 56 AS patients in the main analysis. All 56 patients
provided ratings of average pain; however, only 50 of 56 patients also
provided a current pain intensity rating.

Preprocessing of fMRI data. Data were preprocessed using the fMRI
Expert Analysis Tool (FEAT) in FSL version 5.0 (Jenkinson et al., 2012).
First, we deleted the first four volumes of the resting-state scan, and then
we removed nonbrain voxels using the Brain Extraction Tool (BET) within
FEAT and performed motion correction (MCFLIRT). T1-weighted ana-
tomical images were skull stripped using optiBET (Lutkenhoff et al., 2014).
The functional images were registered to the skull-stripped, T1-weighted
anatomical images using FLIRT [rigid-body transformation with 6 df],
which was followed by a nonlinear registration to MNI152-2 mm space
using FNIRT. Next, aCompCor (Napadow et al., 2010; Chai et al., 2012)
was used to removed scanner-related and physiological noise from the
fMRI using FSL, Matlab (MathWorks), and fMRISTAT (Worsley et al.,
2002). Using FSL’s FAST, we first segmented the T1-weighted anatomical
images into partial volume gray matter (GM), white matter (WM), and
CSF maps. The WM and CSF partial volume maps, which were derived
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from the subject’s anatomical space, were linearly registered to their
fMRI space. To prevent the possibility of removing any GM signal, the
WM and CSF maps were thresholded to the top 198 and 20 cm? proba-
bility of WM and CSF voxels, respectively, leaving the voxels with the
highest probability of correctly being mapped as WM and CSF. This
approach allowed us to exclude voxels that may have contained more
than one tissue type (Chai et al., 2012). These thresholded maps were
then multiplied by the resting-state fMRI data, and the top five WM and
CSF components derived from a whole-brain principal component anal-
ysis were regressed out. The six motion parameters derived from
MCFLIRT were also regressed out of the data, which was followed by
spatial smoothing (6 mm full-width at half-maximum kernel). AFNI’s
3dBandpass function was used to temporally filter the fMRI data into
respective slow-wave frequency bands (slow-5, 0.01-0.027 Hz; slow-4,
0.027-0.073 Hz; slow-3, 0.073—0.198 Hz; Buzsaki and Draguhn, 2004; Di
Martino et al., 2008; Zuo et al., 2010).

Definition of resting-state network/pathways of interest. Using the Har-
vard Oxford Cortical and Subcortical Atlases (Frazier et al., 2005; Desi-
kan et al., 2006; Makris et al., 2006; Goldstein et al., 2007) and as per
described previously (Rogachov et al., 2016), a mask of core regions of
the ascending nociceptive system was created in the standard MNI152-2
mm space. This mask included the bilateral thalamus, bilateral primary
and secondary somatosensory cortices (S1, S2), bilateral insula, and an-
terior and mid-cingulate cortices. We also included masks of the default
mode network [DMN; medial prefrontal cortex, posterior cingulate/
precuneus (PCC/PCu), lateral temporal cortex, and lateral parietal cor-
tex] and the salience network [SN; mid-cingulate cortex (MCC), dorso-
lateral prefrontal cortex (dIPFC), and temporoparietal junction;
Hemington et al., 2016] because they are important in shaping an indi-
vidual’s pain experience and are key networks of the dynamic pain con-
nectome (Kucyi and Davis, 2015).

Calculation of regional BOLD signal variability. BOLD signal variability/
LFOs was calculated on a voxel-wise basis using tools from FSL (Jenkin-
son et al., 2012). Specifically, using fslmaths, the SD of each voxel’s time
course was calculated for each subject. Next, since the global mean BOLD
signal variability did not reveal significant group differences between AS
patients and HCs (p = 0.34), each subject’s BOLD signal variability map
was standardized (z-scored) on an individual basis (Martino et al., 2016).
This was done to mitigate potential extraneous sources of variance in the
BOLD signal between subjects (i.e., differences in magnetic gain between
scans). The standardization process involved subtracting from each voxel
the subject’s mean BOLD signal variability across their gray matter and
dividing this by the SD of the BOLD signal variability across the gray
matter. Thus, a BOLD signal variability z-score value of 0 represents
oscillations that are equal to the individual’s average across the entire
whole brain (gray matter). Positive values represent BOLD signal vari-
ability that is greater than the whole-brain (gray matter) average, and
negative values represent those that are lower than the whole-brain (gray
matter) average. The computed SD is related to the amplitude of the
resting-state fluctuations in the time domain and reflects the strength or
intensity of the low-frequency fluctuation (Zuo et al., 2010).

Group voxel-wise analysis. For each frequency band of interest, com-
parisons between the HC and AS groups’ subject-level amplitude maps
were performed using a two-sample unpaired ¢ test using Randomise,
FSL’s tool for nonparametric permutation inferencing (Winkler et al.,
2014). We combined our masks/networks of interest (ascending nocice-
ptive system, DMN, and SN) and ran voxel-wise permutation tests (pos-
itive and negative contrasts with 5000 permutations) with threshold-free
cluster enhancement (TFCE). The presented group-level results are
thresholded at p < 0.05 [family-wise error (FWE) corrected for multiple
comparisons]. Although there were no group differences in age (p =
0.194) and residual head motion (p = 0.533), previous studies have
demonstrated that both factors can impact amplitude recordings (Gar-
rett etal., 2010). Thus, to limit any possible confounding effects of age or
head motion, both age and mean relative head displacement for each
subject were included as variables of no interest in the design matrix.

Cross-validation regression: BOLD signal variability/LFOs and pain
ratings. Using PRoNTo (Pattern Recognition for Neuroimaging Tool-
box; Schrouff et al., 2013), we applied a machine learning approach to
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examine multivariate brain patterns that are related to patients’ pain
(Rogachov et al., 2015). To do this, voxel-wise BOLD signal variability
was regressed against patients’ pain ratings using cross-validation (10-
fold) kernel ridge regression. Of note, only the voxels that were statisti-
cally significant from the group-level BOLD signal variability analysis,
between AS patients and HCs, were included in this analysis. Two sepa-
rate models were created: one for patients’ state pain intensity (current
pain collected right before the MRI scan; n = 50) and one for their
trait-like pain intensity (average pain over the week; n = 56). Follow-up
permutation testing (5000 iterations) was conducted to determine the
statistical significance of the correlation between actual and model-
estimated pain ratings, as well as the mean squared error (MSE), the
magnitude of error in the model.

Sex-related analyses. To examine whether the spatial distribution of the
frequency-specific abnormalities we found in the main analysis were
driven/explained by sex, we performed, within each frequency band of
interest, a two-sample unpaired ¢ test on the subject-level amplitude
maps for men [AS men (n = 19) vs HC men (n = 19)] and women [AS
women (n = 19) vs HC women (n = 19)] separately. The frequency-
specific group contrasts were masked and run through a voxel-wise
permutation test (positive and negative contrasts with 5000 permu-
tations) using TFCE. All reported results are thresholded at p < 0.05
(FWE corrected).

Moreover, we examined sex differences within each condition (AS
men vs AS women; HC men vs HC women) separately. The same net-
works (ascending nociceptive system, DMN, and SN) were amalgam-
ated, masked, and run through a voxel-wise permutation test (positive
and negative contrast with 5000 permutations) using TFCE. All reported
results are thresholded at p < 0.05 (FWE corrected).

Results

BOLD signal variability is increased in AS chronic

pain patients

We found that compared with the HC group, AS patients had
abnormally greater LFOs within regions of the dynamic pain con-
nectome. Specifically, AS patients had increased LFOs within left
ventrolateral thalamus and S1 of the ascending pain pathway in
the slow-5 frequency band (Fig. 1). Within the slow-4 frequency
band, AS patients exhibited increased LFOs in S1 of the ascending
pain pathway and in the PCC and MCC of the DMN and SN,
respectively (Fig. 1). Finally, patients had increased LFOs in S1
and PCC/PCu compared with HCs in the slow-4 frequency band
(Fig. 1). Within brain regions that showed statistically significant
group differences, HCs had negative z-score values in slow-5 and
positive z-score values in slow-3 and slow-4. On the other hand,
AS patients had positive z-score values in all frequency bands
examined (Fig. 1, Table 1).

BOLD signal variability impairments reflect trait-like

pain ratings

Of the 65 AS patients who provided an average pain intensity
rating, 56 reported experiencing some pain in the week before
testing (average week pain,1-10 of 10), while 9 of the patients (all
of whom were undergoing treatment with biologic agents) re-
ported being completely pain free. Only patients with pain were
included in our analysis. The mean (*=SD) trait pain intensity
rating over the last week of the AS patients was 4.03 = 2.18. Using
cross-validated multivariate regression, we found that a model
based on LFOs could generalize to make inferences about unseen
patients’ average pain intensity ratings [trait pain; n = 56; r =
0.43, p = 0.005 MSE, 4.94 (p = 0.0088); Fig. 2]. The brain
regions with the greatest predictive weights/magnitude to make
inferences on unseen patients’ for average pain ratings were the
PCC/PCu and right S1 (Fig. 2C).
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Figure1.  Frequency-specific changesin BOLD signal variability/LFOs. The contrast maps represent the differencesin BOLD signal variability/LFOs between AS patients (n = 56) and HCs (n = 62) within three
frequency bands: slow-5 (0.01-0.027 Hz), slow-4 (0.027—0.073 Hz), and slow-3 (0.073—0.198 Hz). Since there was no significant group differences in global BOLD variability (p = 0.34), subject-level
standardization (z-scored) was performed. The corresponding raw z-scored BOLD signal variability values averaged across the whole significant cluster are represented in the bar graphs. All statistical images
display significant clusters (p << 0.05, FWE corrected). Warm colors represent brain areas in which AS patients had greater BOLD signal variability/LFOs than HCs, and cool colors represent brain areas in which AS
patients had lower BOLD signal variability/LFOs than HCs. All axial slices are represented in radiological orientation. S1, Primary somatosensory cortex, MCC, Mid-cingulate cortex, and PCC/PCu - Posterior
cingulate cortex/precuneus; L, left; R, right. *p << 0.05, FWE-corrected.

<0.001

Sex-related differences in BOLD signal variability

To investigate whether the abnormalities reported in our main
result were driven by sex, a follow-up analysis was performed in
men [AS (n=19) vs HC (n = 19)] and in women [AS (n = 19) vs

HC (n = 19)], separately. Within the slowest frequency band
(slow-5), the majority of the results (e.g., thalamus and right S1)
are driven by women. Likewise, our main findings in slow-3 with
the PCC/PCu are also primarily explained by women. On the



Rogachov et al. ® Brain Oscillations and Trait Chronic Pain

J. Neurosci., August 15,2018 - 38(33):7293-7302 « 7297

Table 1. Peak MNI coordinates from brain regions that had significantly increased and decreased BOLD signal variability in AS patients (n = 56) compared with HCs (n = 62)

MNI coordinates (mm)

Number of
Frequency band Contrast voxels X y z Brain region
Slow-5 (0.01-0.027 Hz) AS > HC 441 4 -2 L) Right primary somatosensory cortex
67 -10 —14 8 Left thalamus
4 6 —60 16 Posterior cingulate cortex
Slow-4 (0.027—0.073 Hz) AS > HC 1056 8 —52 10 Precuneus
291 46 —36 4 Right supramarginal gyrus
57 —56 —16 36 Left primary somatosensory cortex
31 6 =2 40 Mid-cingulate cortex
10 62 —6 24 Right primary somatosensory cortex
AS <HC 99 16 —26 16 Right thalamus
13 —14 28 16 Left thalamus
Slow-3 (0.073-0.198 Hz) AS > HC 598 6 =70 34 Precuneus
81 40 —22 50 Right primary somatosensory cortex
19 42 —28 46 Right primary somatosensory cortex
AS < HC 23 18 —24 14 Right thalamus
All statistical images were thresholded at p << 0.05 (FWE corrected for multiple comparison) using TFCE.
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pain intensity ratings and model-estimated average pain intensity ratings using BOLD signal variability/LFOs in areas (i.e., PCCand S1) that showed group differences in slow-3 between AS patients
and HGs (r = 0.43,p = 0.005, n = 56). B, No relationship between self-reported state pain ratings and model-estimated state pain ratings in areas that had group differences in slow-3 between
AS patientsand HCs (r= —0.18,p = 0.81,n = 50). C, The distribution of brain regions and their associated weights that were used in the machine learning model to make inferences about average
pain intensity ratings. PCC, Posterior cingulate cortex; S1, Primary somatosensory cortex; L, Left; R, right.

other hand, slow-4 results show to have been driven by both sexes
fairly equally, with men accounting for a marginally larger pro-
portion in the PCC/PCu. This suggests that the majority of our
findings with our main analysis, particularly with slow-3 and
slow-5, are explained by women subjects (Table 2, Fig. 3).
Furthermore, we explored sex differences within the subjects
used in this study. Among the AS patients (19 men, 19 women),
although both positive, men exhibited lower slow-5 BOLD signal
variability/LFOs in the PCC compared with women (average =
SEM: men, 0.35 = 0.08; women, 0.90 * 0.07; p < 0.05). However,
in the higher-frequency bands, men had higher, positive BOLD
signal variability/LFOs than the women, who had negative BOLD

signal variability/LFOs in dIPFC (slow-4; men, 0.42 *= 0.19;
women, —0.67 = 0.11) and right primary S1 (slow-3; men,
0.09 = 0.11; women, —0.71 = 0.07; p < 0.05; Fig. 4, Table 3).
None of these effects were seen in HCs. Finally, there were no sex
differences in trait pain (z = —0.157, p = 0.8858).

State versus trait pain characteristics

The temporal dimension of chronic pain is often overlooked, yet
patients commonly report that their symptoms can fluctuate
from moment to moment and even on the order of hours and
days. Brain imaging studies of chronic pain typically examine
brain function related to the amount of pain that a patient re-
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Table 2. Peak MNI coordinates from brain regions that show sex-related effects from the main analysis

MNI coordinates (mm)

Number of
Frequency band Contrast voxels X y z Brain region
Slow-5 (0.01-0.027 Hz) Men << women (AS patients) 36 -2 —44 26 Posterior cingulate cortex
Slow-4 (0.027-0.073 Hz) Men > women (AS patients) 8 —-32 50 28 Left dorsolateral prefrontal cortex
Slow-3 (0.073-0.198 Hz Men > women (AS patients) 9 48 —28 62 Right primary somatosensory cortex

The AS patients and HCs both consisted of 19 men and 19 women. Al statistical images were thresholded at p << 0.05 (FWE corrected for multiple comparison) using cluster-free threshold enhancement.
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Frequency-specific differences in BOLD signal variability/LFOs between AS patients and HCs is primarily driven by female subjects. The contrast map indicates the extent to which the

differences in BOLD signal variability/LFOs between all AS patients versus all HCs is explained by male subjects (male AS patients vs male HCs; blue clusters), by female subjects (AS patients vs female
HCs; red clusters), or by both sexes (purple clusters). Al statistical images display significant clusters ( p << 0.05, FWE corrected). All axial slices are represented in radiological orientation. S1, primary

somatosensory cortex; PCC/PCu, Posterior cingulate cortex/precuneus.

ports. However, most studies do not distinguish pain at the time
of the study (i.e., state pain) from average pain experienced over
time (i.e., trait pain). Both state and trait pain reflect important
but different aspects of chronic pain conditions. One of the sec-

ondary aims of this study was to raise the issue that functional
brain abnormalities commonly reported in chronic pain patients
may not explain both state- and trait-like pain characteristics.
Our results show that, even though state- and trait-like pain char-
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Frequency-specific sex differences in BOLD signal variability/LFOs in healthy controls and AS patients. The histograms (blue, men; pink, women) represent the standardized BOLD signal

variability values (z-scores) extracted from the significant clusters derived from the contrast maps between men and women. The significant clusters are depicted in the brain maps shown to the right
of each graph. All significant clusters are thresholded at p << 0.05 (FWE corrected). Warm colors represent brain areas in which women had greater BOLD signal variability/LFOs compared with men,
and cool colors represent brain areas in which women had lower BOLD signal variability/LFOs compared with men. S1, Primary somatosensory cortex; dIPFC, Dorsolateral prefrontal cortex; PCC,

Posterior cingulate cortex; *p << 0.05, FWE-corrected.

Table 3. Peak MNI coordinates from brain regions that showed sex-differences in BOLD signal variability/LFOs

MNI coordinates (mm)

Number of
Frequency Band Contrast voxels X y z Brain region
Slow-5 (0.01-0.027 Hz) ASmen > HCmen 49 46 —16 50 Right primary somatosensory cortex
14 4 —36 40 Right supramarginal gyrus
10 38 —20 54 Right primary somatosensory cortex
AS women > HCwomen 289 46 —38 40 Right primary somatosensory cortex
23 —6 —10 6 Left thalamus
Slow-4 (0.027-0.073 Hz) ASmen > HCmen 57 6 =72 34 Precuneus
Slow-3 (0.073—0.198 Hz) AS men > HCmen 21 —6 —62 18 Posterior cingulate cortex
ASwomen > HC women 154 8 —60 18 Posterior cingulate cortex
90 —6 —60 16 Posterior cingulate cortex

The AS patients consisted of 19 men and 19 women. Al statistical images were thresholded at p << 0.05 (FWE corrected for multiple comparison) using cluster-free threshold enhancement.

acteristics are highly correlated (rho = 0.732, p < 0.001), func-
tional brain impairments, as revealed through LFO, cannot explain
patients’ current (state-like) pain intensity ratings (Fig. 2B).

Additional analysis: impact of head motion, psychiatric
metrics, and treatment effects
One important consideration of this study is the potential of
physiological rhythms and head motion artifacts being aliased
into the BOLD signal, particularly at higher frequencies (Cordes
et al., 2001). We performed additional analyses to examine
whether any of our findings were impacted by technical factors
(i.e., head motion) or by psychiatric and treatment effects.
There was no significant differences in mean relative frame-
wise displacement between AS patients and HCs (HCs, 0.09 =

0.06 mm; AS patients, 0.07 * 0.04 mm; independent-samples
Mann-Whitney U test, z = —0.128, p = 0.898). Also, including
mean relative head motion as a covariate of no interest into the
multivariate regression model had a marginal effect on the ability
of slow-3 LFOs to make generalizable inferences about patients’
trait pain (r = 0.43, p = 0.0082; MSE, 4.94; p = 0.0126).

As expected, there were statistically significant differences be-
tween the patients and HCs in psychiatric metrics, specifically
depression (BDI: z = —3.98, p < 0.05), state anxiety (z = —4.25,
p <0.05), and trait anxiety (z = —3.73, p < 0.05), although none
of the patients had clinical levels indicative of a psychiatric disor-
ders. However, we did not find any significant relationship be-
tween BOLD signal variability/LFO group contrast results in any
of the frequency bands and these psychiatric measures (slow-5:
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BDI, n = 56, Spearman’s rho = 0.02, p = 0.886; state anxiety, n =
56, tho = —0.216, p = 0.11; trait anxiety, n = 56, tho = —0.048,
p = 0.726; slow-4: BDI, n = 56, tho = —0.069, p = 0.613; state
anxiety, n = 56, rho = 0.005, p = 0.973; trait anxiety, n = 56,
rho = —0.048, p = 0.726; slow-3: BDI, n = 56, tho = —0.043,
p = 0.753; state anxiety, n = 56, tho = 0.043, p = 0.755; trait
anxiety, n = 56, tho = —0.024, p = 0.858). Therefore, it is un-
likely that the relationship between BOLD signal variability and
patients’ average pain are driven by anxiety or depression.

Finally, since our cohort contained patients both treated (n =
31) and nontreated (n = 25) with biologics, we performed a
follow-up analysis to ensure that our results were not driven
by treatment. Within the clusters that showed significant
group differences between AS patients and HCs, treated and
nontreated patients did not show significant differences in
BOLD signal variabililty/LFOs within any of the tested fre-
quency bands [mean * SEM BOLD signal variability (z-
scores); slow-5: treated, —0.122 = 0.06; nontreated, —0.04 *
0.07; z = —0.700, p = 0.721; slow 4: treated, 0.65 * 0.06;
nontreated, 0.69 = 0.06; z = —0.783, p = 0.883; slow 3:
treated, 0.41 * 0.06; nontreated, 0.46 * 0.07; z = —0.882,
p = 0.383].

Discussion

This is the first study to use a multivariate, machine learning
approach to examine LFOs in the dynamic pain connectome of
patients with chronic pain. Our main finding is that chronic pain
patients with AS exhibit higher-frequency-specific aberrations in
BOLD signal variability/LFOs compared with HCs. Within
slower frequencies (slow-5), patients had abnormal LFOs in the
ascending pain pathway, whereas at higher frequencies (slow-4
and slow-3) these abnormalities were also found in the DMN and
SN. Furthermore, our machine learning algorithm revealed that
the pattern of slow-3 LFO abnormalities can be used to make
generalizable inferences about average pain intensity ratings in
previously unseen patients.

Our finding that patients with chronic pain have higher brain
signal variability in the dynamic pain connectome (i.e., within the
ascending pain pathway, DMN, and SN) are in line with previous
studies of LFOs (Baliki et al., 2011, 2014; Alshelh et al., 2016;
Hodkinson et al., 2016). These findings could arise through sev-
eral mechanisms. First, increased resting-state LFOs within the
ascending pain pathway could result from the heightened level of
sensory traffic that manifests as part of the ongoing, fluctuating
chronic pain intensity. This is supported by other studies in neu-
ropathic pain patients that found increased LFOs within the
thalamus and S1 within a similar frequency range (0.04 Hz; slow-
5-slow-4 border; Alshelh et al., 2016), suggesting that this effect is
generalizable to many chronic pain conditions. Pain-related ru-
mination and negatively valenced internal thought are other fac-
tors that could contribute to increased BOLD signal variability/
LFOs. For example, activity in the DMN has previously been
attributed to episodes of internally directed and self-referential
thought (Fox and Raichle, 2007). Disruption of the DMN has
been shown across multiple chronic pain populations (Baliki et
al., 2008; Napadow et al., 2010), as well as abnormal increases in
LFOs in the DMN of chronic low back pain patients (Baliki et al.,
2008). Our patients also exhibited heightened LFOs in the MCC,
an area associated with pain affect (Vogt, 2005). The MCC re-
ceives projections from the amygdala (Phan et al., 2002), a region
implicated in fear (Whalen et al., 1998) and nociception (Bernard
et al.,, 1992). Given the convergence of fear- and pain-related
input into the MCC, its elevated engagement in chronic pain is
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thought to relate to avoidance behavior often reported in these
patients (Vogt, 2005). Together, a heightened level of resting-
state activity in the DMN and MCC could reflect the affective-
motivational aspect of AS chronic pain.

The neurobiological mechanisms underlying LFOs in the
brain are unknown but could involve neuronal and non-
neuronal activity (Y. F. Wang et al., 2014; Alshelh et al., 2016).
Preclinical studies have shown that low-frequency brain oscilla-
tions, within the 0.1-0.5Hz frequency range, are generated pri-
marily through perpetual excitation within the cerebral cortex
(Sanchez-Vives and McCormick, 2000) and maintained by
rhythmic depolarization—hyperpolarization sequence via regu-
lated excitatory and inhibitory postsynaptic potentials (Steriade
etal., 1993). The continuous yet fluctuating influx of unpleasant,
sensory input experienced by chronic pain patients may be re-
lated to the elevated LFOs responsible for the sensory discrimi-
natory and affective-motivation aspects of pain. Moreover,
others have speculated that non-neuronal cells (astrocytes) may
contribute to LFO regulation and maintenance (Bernard et al.,
1992; Alshelh et al., 2016).

Our study also examined the relationship between LFOs and
average (trait) pain intensity but would also like to put forth the
importance of studying pain characteristics on different time
scales. Few studies have examined brain mechanisms underlying
shorter-lasting (state) and longer-lasting (trait) chronic pain, and
those that have explored this topic have reported conflicting re-
sults. For example, Baliki et al. (2011) showed that when sponta-
neous pain ratings are collected simultaneously with brain
imaging data from chroniclow back pain patients, the fluctuating
patterns of the pain ratings followed a similar time course as the
hemodynamic response from which the LFOs are derived, an
effect that was only present in the upper slow-3 range (0.12-0.2
Hz). However, more recently the same group also showed that
increased LFO amplitudes (upper half of slow-3, 0.12—-0.2 Hz) in
the DMN were correlated with the duration of pain in low back
pain and osteoarthritis patients, proposing a relationship be-
tween LFOs and trait-like features (Baliki et al., 2014). In line with
these studies, we found a relationship between higher-frequency
LFOs (slow-3) and average pain intensity. However, unlike the
aforementioned studies, we used a robust, multivariate machine
learning technique that highlights the generalizability between
slow-3 LFO abnormalities and average pain intensity ratings.
Similar to Baliki et al. (2014), our brain weight maps also sug-
gested that slow-3 LFO abnormalities within DMN (PCC) holds
the greatest prediction power for trait pain rating in unseen pa-
tients (Fig. 2C).

The mechanisms underlying state- and trait-like chronic pain
features may not necessarily be mutually exclusive but, neverthe-
less, pose a crucial consideration when investigating neural cor-
relates of chronic pain characteristics. The current findings
complement our recent work showing a unique pattern of brain
connectivity that can be used to differentiate state and trait pain
(Cheng et al., 2018). Trait pain ratings reflect intensity levels that
actasan anchor around which state pain levels fluctuate through-
out the course of the day. Our findings suggest that aberrations in
brain mechanisms that are present in chronic pain patients are
reflective of the persistent, longer-lasting intensity of pain and
not shorter, state-like representations. The brain plasticity that is
responsible for the manifestation of impaired brain mechanisms
that develop as a result of chronic pain symptoms presumably
occurs over the course of multiple days/weeks and, therefore, is
unable to track a single state-like rating that is bound to fluctuate
throughout the course of the day. Thus, it is important to con-
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sider not only pain intensity levels during testing but also across
ratings over longer time scales, which may actually be more in-
formative when investigating brain mechanisms. Of note, there
are a number of different approaches to assess trait-like pain
characteristics. In this study, patients provided one rating to rep-
resent their average pain rating in the week before testing on test
date. An alternative approach could have been to have patients
use a pain diary to document their pain levels multiple times per
day in the week before our testing. Both approaches have advan-
tages and disadvantages, but our straightforward approach was
made primarily for practical and compliance issues and is one
commonly used by clinicians to obtain a general sense of a pa-
tient’s pain.

Many patients with chronic pain can have comorbidity with
various psychiatric disorders. Although we screened patients and
excluded those with a confirmed psychiatric diagnosis, some of
our patients had increased levels of anxiety (state and trait) and
depression scores compared with the HCs. Therefore, we also
investigated whether our main study findings can be explained by
these psychiatric effects. Overall, all three traits demonstrated a
low correlation with BOLD signal variability group differences in
each of the frequency bands, thus limiting the possibility that
these effects are driven by any psychiatric involvement and em-
phasizing their specificity to pain severity.

A secondary aim of this study was to examine sex-related ef-
fects. First, we found that the majority of the results obtained
from our main analysis, particularly with slow-3 and slow-5, are
primarily driven by women subjects. Compared with male pa-
tients, women patients show greater functional impairments in
pain-associated brain regions, including the ascending pain path-
way, compared with their respective controls. Since no sex-
differences in average pain ratings exist, this finding suggests that
women may have greater engagement of the antinociceptive sys-
tem to offset these differences. Although the current study did not
specifically probe the antinociceptive system, our previous work
has shown that, compared with men, women have stronger
functional connectivity between the subgenual cingulate cor-
tex and the periaqueductal gray, proposing a greater engage-
ment of the descending modulation system in women (G.
Wangetal., 2014). Second, unlike in HCs, our findings suggest
frequency-specific sex differences in BOLD oscillations in AS
patients, which are consistent with previous studies showing
decreased amplitude of LFOs at higher frequencies in the sen-
sorimotor cortex in women compared with men with chronic
pain (Hong et al.,, 2013; Fig. 4). Whereas the neurophysiolog-
ical significance behind these discrepancies is unclear, it
may suggest sex-specific sensory discrimination/perception in
chronic pain patients.

In conclusion, we report that patients with chronic pain ex-
hibit frequency-specific abnormalities in LFOs within the dy-
namic pain connectome as revealed through BOLD signal
variability/LFOs, an effect that was not impacted by technical
(i.e., head motion) or psychiatric (i.e., depression, anxiety) fac-
tors. These abnormalities were localized to the ascending pain
pathway at slow oscillation frequencies (slow-5) but also engaged
the DMN and SN at higher frequencies (slow-4 and slow-3).
Aberrations in BOLD signal variability/LFOs in slow-3 could be
used to make generalizable inference about patients’ average pain
intensity ratings. Thus, our findings indicate that measurable im-
pairments in brain activity in chronic pain patients reflect persis-
tent, longer-lasting levels of trait pain, as opposed to shorter-scale
state-like pain.
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