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Autism is hypothesized to result in a cortical excitatory and inhibitory imbalance driven by inhibitory interneuron dysfunction, which is
associated with the generation of gamma oscillations. On the other hand, impaired motor control has been widely reported in autism.
However, no study has focused on the gamma oscillations during motor control in autism. In the present study, we investigated the
motor-related gamma oscillations in autism using magnetoencephalography. Magnetoencephalographic signals were recorded from 14
right-handed human children with autism (5 female), aged 5-7 years, and age- and IQ-matched 15 typically developing children during
a motor task using their right index finger. Consistent with previous studies, the autism group showed a significantly longer button
response time and reduced amplitude of motor-evoked magnetic fields. We observed that the autism group exhibited a low peak
frequency of motor-related gamma oscillations from the contralateral primary motor cortex, and these were associated with the severity
of autism symptoms. The autism group showed a reduced power of motor-related gamma oscillations in the bilateral primary motor
cortex. A linear discriminant analysis using the button response time and gamma oscillations showed a high classification performance
(86.2% accuracy). The alterations of the gamma oscillations in autism might reflect the cortical excitatory and inhibitory imbalance. Our
findings provide an important clue into the behavioral and neurophysiological alterations in autism and a potential biomarker for autism.

Key words: autism; E/I balance; gamma; magnetoencephalography; movement; young children

(s )

Currently, the diagnosis of autism has been based on behavioral assessments, and a crucial issue in the diagnosis of autism is to
identify objective and quantifiable clinical biomarkers. A key hypothesis of the neurophysiology of autism is an excitatory and
inhibitory imbalance in the brain, which is associated with the generation of gamma oscillations. On the other hand, motor deficits
have also been widely reported in autism. This is the first study to demonstrate low motor performance and altered motor-related
gamma oscillations in autism, reflecting a brain excitatory and inhibitory imbalance. Using these behavioral and neurophysio-
logical parameters, we classified autism and control group with good accuracy. This work provides important information on
behavioral and neurophysiological alterations in patients with autism. j
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A key hypothesis of the neurophysiology of ASD is that the
cortical excitatory and inhibitory (E/I) balance is altered by de-
creased neuronal inhibition in patients with ASD (Rubenstein
and Merzenich, 2003; Rubenstein, 2010). The cortical E/I balance
is highly associated with inhibitory GABAergic neurotransmis-
sion, which is reflected in gamma band oscillations (Traub et al.,
2003; Whittington and Traub, 2003; Bartos et al., 2007; Cardin et
al., 2009; Buzsdki and Wang, 2012). In previous studies using
magnetic resonance spectroscopy (MRS), individuals with ASD
exhibited significantly decreased levels of the inhibitory neu-
rotransmitter GABA in the frontal lobe (Harada et al., 2011),
auditory cortex (Gaetz et al., 2014; Rojas et al., 2014; Port et al.,
2017), and motor cortex (Gaetz et al., 2014). GABA concentra-
tions measured in vivo positively correlated with the frequency of
gamma oscillations in the visual (Muthukumaraswamy et al.,
2009) and motor cortices (Gaetz et al., 2011); that is, alow GABA
concentration is associated with a low frequency of gamma oscil-
lations. Because GABAergic dysfunction is one of the key hypoth-
eses of the neurophysiology of ASD, a lower frequency of gamma
oscillations would be expected to be observed in patients with ASD.

In addition, individuals with ASD have shown either a lack of or
reduced gamma band activities during visual (Milne et al., 2009; Sun
etal, 2012; Snijders et al., 2013), auditory (Wilson et al., 2007; Gan-
dal et al., 2010), and tactile stimulations (Khan et al., 2015). We
speculated that the reduced power of gamma oscillations would be
observed in some other brain areas in subjects with ASD.

Notably, abnormalities in motor control have been widely
reported in patients with ASD (Teitelbaum et al., 1998; Noter-
daeme et al., 2002; Jansiewicz et al., 2006; Bryson et al., 2007;
Fournier et al., 2010; London, 2014). A meta-analysis of 51 stud-
ies confirmed the prevalent and significant motor deficits in
patients with ASD (Fournier et al., 2010). These motor abnor-
malities have been suggested to constitute a core symptom of
ASD (Fournier et al., 2010; London, 2014). Additionally, these
movement disturbances have been detected even in infants with
ASD, and they potentially represent the earliest identifiable clin-
ical dysfunction in subjects with ASD (Teitelbaum et al., 1998;
Bryson et al., 2007). Regarding evoked cortical responses, some
EEG studies have reported a reduced amplitude of motor-evoked
potentials in patients with ASD (Rinehart et al., 2006; Enticott et
al., 2009). However, no previous study has focused on the motor-
induced gamma oscillations that reflect the cortical E/I balance in
patients with ASD. A large number of previous studies on normal
human subjects have reported an obvious increase in the spectral
power of gamma band oscillations during motor control (Cheyne
et al.,, 2008; Muthukumaraswamy, 2010; Cheyne and Ferrari,
2013; Cheyne, 2013). Gamma oscillations provide important in-
formation related to actual motor control and the initiation of
movement (Muthukumaraswamy, 2010; Cheyne and Ferrari,
2013). These motor-induced gamma oscillations, which reflect
the E/I balance, might be altered in subjects with ASD.

Based on the key neurophysiological hypothesis (reduced neuro-
nal inhibition in ASD), we hypothesized that the ASD group in the
present study would show altered motor-induced gamma oscilla-
tions with a low peak frequency and reduced power. In addition, as
reported in the previous studies, we also hypothesized that the ASD
group would show reduced motor-evoked fields and low behavioral
performance during a motor task. Last, we examined whether these
indices using the motor-induced gamma oscillations and behavioral
performance represent a potentially sufficient biomarker of ASD.

To test our hypotheses, we recorded the motor-induced cor-
tical oscillations during finger movement using child-customized
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Table 1. Participant characteristics”

1) ASD t p
Gender (male/female) 15/0 9/5 — —
Age (mo) 69.33 =5.74 73.07 = 7.69 —1.490 0.148
K-ABCachievementscore  103.27 = 14.24  98.64 = 15.76 0.830 0.414
ADOS total score — 9.64 * 3.08 — —
SRS-2 47.00 = 5.07 66.36 = 11.59  —5.724  0.000021
Vineland-Il “Movement” 96.64 = 11.74  77.07 = 17.33 3.497  0.002
subtest

“Data are mean == SD and accompanying statistics (two-sided t test) of participant characteristics. Significant
differences in age and intelligence were not observed between the TD and ASD groups. Scores on the SRS and the
“Movement” subtest of the Vineland-Il scale were significantly different between the two groups.

magnetoencephalography (MEG) that provides a high temporal
and good spatial resolution.

Materials and Methods

Participants. Fourteen young children with ASD (mean * SD age, 6.09 =
0.64 years; 5 females) and 15 age- and IQ-matched typically developing
(TD) children (5.78 = 0.48 years; no female) participated in this study.
All participants were right-handed based on the Edinburgh Handedness
Inventory (Oldfield, 1971). Participants were recruited from Kanazawa
University Hospital. Parents of all children provided full written in-
formed consent to participate in the study, and the procedures were
approved by the Ethics Committee of Kanazawa University Hospital.

The ASD diagnoses were based on DSM-V criteria for autism or
Asperger syndrome (American Psychiatric Association, 2013), the Diag-
nostic Interview for Social and Communication Disorders (Wing et al.,
2002), and/or the Autism Diagnostic Observational Schedule, Generic
(ADOS) (Lord et al., 2000). All diagnoses were confirmed by local psy-
chiatrists and clinical speech therapists.

We assessed the intelligence of all participants using the Kaufman
Assessment Battery for Children (K-ABC), and a significant difference in
achievement scores was not observed between the two groups (t,,) =
0.830, p = 0.414). The autistic traits of all the participants were evaluated
by their parents based on the Social Responsiveness Scale-2 (SRS-2)
(Constantino, 2012). A significant difference in SRS-2 scores was ob-
served between the TD and ASD groups (f,,) = —5.724, p = 0.000021).
The Vineland-II (Sparrow et al., 2005) “Movement” subtest was used to
determine the general motor function of all the participants. The ASD
group showed a significantly lower score for the “Movement” subscale
(ta7) = 3.497, p = 0.002). Their low Vineland motor standard score was
consistent with a previous study (Ozonoff et al., 2008). We provide ad-
ditional details about the participants in Table 1.

Experimental design. For child participants, we developed a video
game-like motor task using Presentation software (Neurobehavioral Sys-
tems). Participants performed a video game-like motor task involving a
button-press using their right index finger during MEG recordings. The
video game-like motor task consisted of 10 blocks of 10 trials per
block to collect 100 button-press responses. Button-press responses
were measured using a nonmagnetic fiber optic response pad (Cur-
rent Designs). Before starting the motor task, the participants were
asked to hold a button response pad and rest their right index finger
on a response button.

Figure 1A shows the experimental paradigm of the video game-like
motor task during one trial. The character in the video game was a cute
puppy. At the beginning of each trial, a mission image indicated which
fruit would be a target for the puppy (see Fig. 1Aa). After 1200 ms, the
puppy ran in the left side of the screen, and the fixation point was pre-
sented in the middle part of the screen (see Fig. 1Ab). The participants
were asked to gaze at the fixation point to reduce artifacts due to eye
movement. The target fruit image randomly appeared on the fixation
point 1.5-2.5 s after the fixation point was presented (see Fig. 1Ac). If a
visual target appeared, participants were instructed to press a button as
soon as possible, but only once (see Fig. 1Ad). When the participant
pressed a button, the puppy jumped and caught the fruit for 800 ms (see
Fig. 1Ae). Visual target stimuli were presented randomly every 3.5-4.5 s
after the button-press response. If the participant pressed a button with-
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out detecting the visual target, this failure caused the puppy to fall down,
and the trial was repeated again. The failed trials were not used for data
analysis. If the puppy collected 10 fruits, one block was completed. A
fanfare was heard, and a bone with a red ribbon was given to the puppy as
a prize after each block to encourage participants.

The MEG signals were recorded for 9 min during the motor task to
collect 100 successful trials. The visual stimuli were projected on a screen
using an LCD projector (IPSiO PJWX6170N, Ricoh). The degree of the
visual angle was 21% in the vertical axis and 26% in the horizontal axis.

MEG recording. Before the experiment, participants received a detailed
explanation of the motor task and performed one block of the motor task
as a practice trial to become familiar with the experimental paradigm and
surroundings.

MEG recording conditions were similar to those reported in previous
studies (Kikuchi et al., 2013; Yoshimura et al., 2014; Hasegawa et al.,
2016). The cortical responses to finger movement were measured using a
whole-head 151 channel MEG system for children (PQ 1151 R, Yok-
ogawa/KIT), located in the MEG Center of Ricoh in a magnetically
shielded room. Participants were placed in a comfortable supine position
on a bed while they performed the motor task.

Four head-positioning coils were attached to the head surface (i.e., Cz,
5 cm anterior part from Cz, and 5 cm superior side of the left and right
preauricular regions) to determine the location of the participant’s head
in the MEG helmet. We measured the locations of the positioning coils
and >100 head surface points using a 3D digitizer (Fastrak, Polhemus).
The locations of the positioning coils were recorded before the MEG
recordings commenced. During the MEG recording, two experimenters
were seated next to the participants in the shielded room to encourage
them. In addition, the participants were carefully monitored using a
video monitoring system to assess their compliance with the instructions
and to record any notable artifacts, such as head motion, inappropriate
head position, and consistent attention to the screen.

MEG data were digitized at a sampling rate of 2000 Hz and filtered
with a 200 Hz low-pass filter. After MEG recording, the positioning coils
were replaced with MRI-visible markers. Images of the brain structure
were obtained from all participants using a 1.5 T MRI scanner (SIGNA
Explorer, GE Healthcare) to compute the individual head models for the
source analysis. The T1-weighted gradient echo and Silenz pulse se-
quence images (TR = 435.68 ms, TE = 0.024 ms, flip angle = 7°, FOV =
220 mm, matrix size = 256 X 256 pixels, slice thickness = 1.7 mm, and
130 transaxial images) were used as an anatomical reference.

Data analysis. We analyzed the MEG data using the Brainstorm tool-
box (Tadel et al., 2011) and MATLAB (The MathWorks). Raw data were
bandpass filtered from 0.3 to 200 Hz and notch filtered at 60, 120, and 180
Hz. We rejected the artifacts caused by eye blinks, eye movements, and
heartbeats using an independent component analysis method (“Ru-
nICA” implemented in Brainstorm, www.sccn.ucsd.edu/eeglab/). We
identified the independent components representing the cardiac and
ocular signals by visual inspection based on their time course and topog-
raphy. After removing these artifacts, the remaining independent com-
ponents were back-projected into the signal space. Thereafter, the data
were segmented from —3 to 3 s following each button-press. We rejected
the failed trials and trials containing muscle artifacts.

For the source analysis, we computed the weighted minimum norm
estimates (WMNE) (Hdmaldinen and Ilmoniemi, 1994; Hauk, 2004; Lin
et al., 2006) implemented in the Brainstorm toolbox. Individual MRIs
were used to build an overlapping sphere conductor model. We esti-
mated the noise-covariance matrix for each subject using the premove-
ment baseline period (—2 to —1.5s). We performed the wMNE source
analysis using an overlapping-sphere head model with a Tikhonov regu-
larization factor (A = 0.1).

All preprocessed trials were bandpass filtered between 0.3 to 30 Hz and
averaged for each participant to obtain movement-related fields. The
baseline was selected from —2 to —1.5 s before movement onset. We
computed the cortical sources of individual motor fields (MFs) using
wMNE, and these individual cortical sources were projected on the
ICBM152 template anatomy in MNI coordinates (Table 2). Grand-
averaged cortical sources for all participants in the TD and ASD groups
were calculated (see Fig. 2A), and we confirmed that the maximum cor-
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Table 2. Individual button response times and source locations and magnitudes of
the MFs at 20-40 ms

MF source (20 —40 ms)

MNI coordinates

Button response Magnitude
Subject time (ms) X y z (pA.m)
TD children
TDO1 542.7 —538 —09 56.5 13.0
D02 434.0 —21.1 —137 743 9.9
D03 4452 —49.0 =77 58.3 14.1
TD04 643.4 —519 0.5 512 18.0
TDO05 3975 —56.6 =9.1 54.0 159
TDO06 464.2 —56.0 —6.7 56.7 9.1
D07 379.8 —427 —9.9 60.8 14.8
TD08 406.1 —47.6 —038 64.0 243
D09 450.1 —47.9 —6.2 59.6 143
D10 3789 —267 —149 76.7 1.7
D11 3338 —56.1 9.0 47.8 314
D12 362.6 —29.6 —89 72.9 245
D13 555.1 —342 —14.6 70.6 17.7
D14 493.5 —449 —58 65.9 6.8
D15 293.8 —50.8 —47 545 316
Mean 438.7 —44.6 —6.3 61.6 16.9
SD 91.7 1.4 6.4 8.8 74
Children with ASD
ASDO1 519.6 —512 39 574 26.0
ASD02 7425 —544 114 53.6 6.9
ASDO3 7140 —434 -39 61.9 7.6
ASD04 4271 —39.7 —82 72.5 132
ASDO5 495.8 —328 115 73.2 10.6
ASD06 962.2 —454 —135 55.3 9.2
ASDO7 540.4 —532 —82 9.7 8.6
ASD08 670.8 =511 10.2 46.8 79
ASD09 7245 —49.8 —6.9 50.7 13.1
ASD10 490.7 —47.1 —104 65.0 173
ASDT1 398.1 —60.1 15 47.5 9.8
ASD12 599.3 —323 —13.9 723 9.1
ASD13 839.1 —412 —44 63.7 8.9
ASD14 300.0 —583 —10.0 56.7 1.9
Mean 601.7 —47.1 —6.2 56.2 1.4
SD 183.1 8.6 7.1 16.0 5.0

tical source of MFs was located in the primary motor cortex (M1). For
further analysis, we selected M1 from the Desikan-Killiany atlas (Desikan
etal., 2006) defined using FreeSurfer version 6.0 (http://surfer.nmr.mgh.
harvard.edu/). We obtained the source waveforms by calculating the
mean signals for every voxel in the contralateral M 1.

For the time-frequency analysis, we calculated time-frequency repre-
sentations (TFRs) in the bilateral M1 at 1-100 Hz using a 7 cycle Morlet-
wavelet for each single trial source data. The TFRs were converted to
percentage changes in power relative to the premovement baseline (—2
to —1.55s). TFRs were averaged for each subject and then grand-averaged
for all participants in the TD and ASD groups. In the TERs from M1 (see
Fig. 3), we visually observed group difference in the movement-induced
gamma oscillations.

First, we determined the specific frequency, which had a maximum
power within the —100 to 200 ms time window for the 60 to 100 Hz
frequency range in the individual TFRs from the M1. Second, as shown in
Figure 3, grand-averaged TFRs revealed that finger movement elicited a
robust increase in the gamma band (70-90 Hz) in the bilateral M1 during
the time windows of 0—-100 ms. We averaged the power values in these
time and frequency windows to calculate the power values for the gamma
oscillations. We used these peak frequencies and power values in the
subsequent statistical analyses.

Statistical analyses. Statistical analyses were performed using SPSS ver-
sion 24.0 (IBM). We used two-sample ¢ tests (two-tailed) to compare
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Experimental paradigm and button response times for the TD and ASD groups. A, The video game-like motor task was developed for child participants. The goal of this motor task is to

collect fruits. While the puppy is running, fruits appear as a visual target. After the mission image is presented (Aa), the fixation point is randomly presented in the middle part of the screen for
1.5-25 (Ab). When the target appears at the fixation point (Ac), participants press the button as soon as possible (Ad). The puppy jumps to collect the fruits after the participant presses the button
(Ae). In one trial, the visual target randomly appears every 3.5—4.5 s after the button press, and this process is repeated 10 times in each of 10 blocks. B, The ASD group showed a significantly

prolonged button response time than the TD group (t,;) = —2.999, p = 0.004). **p < 0.01.

differences in the characteristics of participants in the TD and ASD
groups in terms of age, K-ABC score, SRS-2 score, and score on the
Vineland-II “Movement” subtest. To test our hypothesis, we applied
two-sample ¢ tests (one-tailed) to compare the button response time and
amplitude of MFs. For comparison of the frequency and power of the
movement-induced gamma oscillations, as we obtained these values
from both hemispheres, we used two-way ANCOVA in which “diagno-
sis, 2 levels (1, TD and 2, ASD)” was the between-group factor, “hemi-
sphere, 2 levels (1, contralateral and 2, ipsilateral)” was the within-group
factor and sex served as the covariance (male = 0; female = 1). For
variables displaying significant differences between two groups, we tested
the correlation between these variables and ADOS scores (i.e., severity of
symptoms) using Spearman’s p correlation analysis. For all statistical
tests, we used an alpha level of 0.05.

We applied Fisher’s linear discriminant analysis with cross-validation
to test its predictive accuracy in classifying the participants into two
categories: TD and ASD. For this analysis, we used behavioral and corti-
cal oscillatory parameters displaying robust significant differences be-
tween the two groups. In the cross-validation test, each case was classified
by the functions derived from all other cases, and this process was re-
peated for all cases. Receiver operator characteristic (ROC) curves were
plotted for sensitivity (on the y-axis) versus 1 — the specificity (on the
x-axis). The area under the ROC curve (AUC) was used as an index of the
participant’s discriminative capacity.

As an additional analysis of male TD (n = 15) and male ASD (n = 9)
groups, we compared variables displaying significant differences between
the TD and ASD (including both genders) groups to exclude any gender
effect.

Results

Button response time

To calculate the button response time (the latency between visual-
target onset and button-press onset), we only analyzed successful
trials, in which the participants pressed the response button within
the allowed time window (200—2000 ms according to the visual trig-
ger). Individual button response times are presented in Table 2. A
significantly longer mean response time was observed for the ASD
group (mean * SD, 601.7 * 183.1 ms) than for the TD group
(438.7 £ 91.7 ms) (t,7) = —2.999, p = 0.004; Fig. 1B). In the addi-
tional analysis only for male subjects, this significant difference still
remained (¢,,, = —3.100, p = 0.005). The button response time of
the ASD group (including both genders) was not significantly cor-
related with the ADOS score (p = 0.341, p = 0.233).

Motor-evoked magnetic fields

Figure 2A shows the grand-averaged cortical sources of MF com-
ponents (+ = 20—40 ms) in the 15 TD children and 14 children
with ASD. The cortical sources of MFs were observed in the sen-
sorimotor and premotor cortices in both groups. We observed
lower cortical activation of MFs in the ASD group than in the TD
group. Individual peak source locations and magnitudes for the
MFs are presented in Table 2. In the contralateral M1, the grand-
averaged source waveforms showed MF peaks at ~30 ms follow-
ing movement onset in both groups (Fig. 2B). The ASD group
showed a significantly reduced peak amplitude of MFs compared
with the TD group in the 20—40 ms time window (f,,, = 2.251,
p = 0.017). In the additional analysis only for male subjects, this
significant difference still remained (f.,,) = 1.995, p = 0.030).
The amplitude of MFs was not correlated with the ADOS total
score in the ASD group (including both genders) (p = —0.310,
p = 0.281).

Motor-related gamma oscillations

Group-averaged TRFs from the bilateral M1 during finger move-
ment were separately plotted for the TD and ASD groups (Fig. 3).
We observed movement-induced gamma oscillations from the
bilateral M1 in the 70 to 90 Hz range.

The motor-related gamma oscillations appeared at movement
onset and lasted for ~100 ms. The mean power and peak fre-
quency of the gamma oscillations in each group are shown in
Table 3. Regarding the gamma frequency, the two-way ANCOVA
revealed a significant interaction (i.e., group vs hemisphere;
F(| 56 = 4.453, p = 0.045). As a result of the post hoc test between
two groups for contralateral and ipsilateral M1, the ASD group
exhibited a lower peak frequency of motor-related gamma oscil-
lations from the contralateral M1, as shown in Figure 4A (¢, =
2.825, p = 0.005), but not from the ipsilateral M1 (.,,, = 0.365,
p = 0.359). In the additional analysis only for male subjects, this
significant difference observed in the contralateral M1 still re-
mained (¢, = 2.732, p = 0.006). In the ASD group (including
both genders), the peak frequency of gamma oscillations from the
contralateral M1 correlated inversely with the ADOS score, re-
flecting the severity of social interaction and communication
symptoms (p = —0.618, p = 0.019) (Fig. 4B). In the additional
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Cortical sources and source waveforms of MFs in the TD and ASD groups. A, Grand-averaged cortical sources of the MFs at 20 — 40 ms in the TD (top) and ASD groups (bottom). Both

groups showed motor-evoked cortical activity in the sensorimotor cortex and premotor cortex. B, Grand-averaged source waveforms (filtered 0.5-30 Hz) from the contralateral M1in the TD (blue
trace) and ASD groups (red trace). A significantly greater amplitude of the MF component (asterisk) was observed in the ASD group thanin the TD group (t,;, = 2.251,p = 0.017). , Left hemisphere

(i.e., contralateral); R, right hemisphere (i.e., ipsilateral). *p << 0.05.
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Figure3.

Group-averaged time-frequency plots for the TD and ASD groups. Movement-related oscillatory changes are shown for the bilateral M11in the TD (top) and ASD groups (bottom). Yellow

and red represent relative increases in power. Blue represents relative decreases in power compared with the power of the premovement baseline (—2to —1.55).

analysis only for male subjects, this significant correlation still
remained (p = —0.774, p = 0.014).

Figure 5A shows the cortical sources of motor-related gamma
oscillations in both participant groups. Regarding the gamma
power, the two-way ANCOVA revealed no significant interaction
(i.e., group vs hemisphere; F; ,5 = 0.946, p = 0.340); however,
there was a significant main group effect (i.e., TD vs ASD;
F(1 26 = 7.618, p = 0.010) and a significant main hemisphere
effect (i.e., contralateral vsipsilateral; F(, ,) = 11.682, p = 0.002).

As a result of the post hoc test between two groups for contralat-
eral and ipsilateral M1 (Fig. 5B), the ASD group showed a re-
duced gamma power in the contralateral (., = 2.165, p =
0.020) and ipsilateral M1 (t,,) = 3.158, p = 0.002) compared
with the TD group. In the additional analysis only for male sub-
jects, this significant differences were still remained in the con-
tralateral (t,,) = 2.338, p = 0.015) and ipsilateral M1 (t,,, =
2.792,p = 0.005). In the ASD group (including both genders), the
power of gamma oscillations from the bilateral M1 was not sig-
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Table 3. Motor-related gamma oscillations in the bilateral primary motor cortex”
1) ASD

Mean  SD Mean  SD t p
Contralateral gamma oscillations
Peak frequency (Hz) 80.47 8.04 7436 590 2.825 0.005**
Power (%) 3744 2756 1948 1473 2165  0.020%
Ipsilateral gamma oscillations
Peak frequency (Hz) 7760 1257 76.00 10.89 0365 0.359
Power (%) 16.00 11.04 447 832 3.158  0.002**

“Data are mean == SD and accompanying statistics ( post hoc t test) of relative spectral power and peak frequency in
the motor-related gamma oscillations in the TD and ASD groups. The power of the bilateral gamma oscillations and
peak frequency of contralateral gamma oscillations were significantly different between the two groups.

#p < 0.05; **p < 0.01.

nificantly correlated with the ADOS score (contralateral: p =
—0.300, p = 0.298; ipsilateral: p = 0.371, p = 0.192).

Classification using linear discriminant analysis

We observed robust significant differences in the button response
time, the frequency of contralateral M1 gamma, and the power of
ipsilateral M1 gamma between the two groups. Therefore, we
initially used these three variables to classify participants into the
TD and ASD groups. A linear discriminant analysis classifier
identified participants in the two groups with 86.2% accuracy
(85.7% sensitivity and 86.7% specificity). Even when we used two
of the three parameters (i.e., button response time and power of
the ipsilateral M1 gamma oscillations), the linear discriminant
analysis classifier correctly identified the group assignments of
the participants with 86.2% accuracy (85.7% sensitivity and
86.7% specificity) (Fig. 6A). The ROC curve showed the predic-
tive ability, as the AUC was 91% (Fig. 6B).

Discussion

To our knowledge, this neurophysiological study is the first to
explore gamma oscillations during motor control in patients with
ASD. The ASD group showed a prolonged response time during
the motor task compared with the TD group. We observed a low
peak frequency and reduced power of motor-related gamma os-
cillations in the ASD group. As expected, we identified a sufficient
index to classify the TD and ASD groups using behavioral perfor-
mance and neurophysiological gamma oscillations.

Button response time

The ASD group showed a button response time that was ~160 ms
longer than that in the TD group. Previous behavioral studies
have reported low motor performance on tasks involving gait and
balance, fine and gross movement, and movement planning in
individuals with ASD (Teitelbaum et al., 1998; Noterdaeme et al.,
2002; Jansiewicz et al., 2006; Bryson et al., 2007; Mostofsky et al.,
2009; Fournier et al., 2010). In addition, individuals with ASD
have shown a delay in the latency to movement during a precued
motor task (Glazebrook et al., 2008; Nazarali et al., 2009). Con-
sistent with the results from these previous studies, we observed
lower motor performance in the ASD group in the present study.

Motor-evoked magnetic fields

We observed the expected cortical sources of MF components in
the sensorimotor cortex and premotor cortex. In the contralat-
eral M1, the latencies of the MFs were ~30 ms after movement
onset. Although MFs from adult participants have been observed
at ~50 ms before a mechanical button press (Cheyne and Wein-
berg, 1989; Kristeva et al., 1991), children showed prolonged la-
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tencies of MFs at ~20 ms after the button press (Cheyne et al.,
2014), similar to the values reported in the present study.

In the present study, the amplitude of the MF components was
decreased in the ASD group, similar to previous EEG studies
reporting that individuals with ASD exhibited abnormalities in
movement-related potentials (Rinehart et al., 2006; Enticott et
al., 2009). The amplitude of MFs in subjects with ASD was not
correlated with the ADOS total score. The severity of ASD symp-
toms might be not reflected in the movement-evoked cortical
activity (i.e., MFs).

Motor-related gamma oscillations

Both groups of children displayed robust movement-related
gamma oscillations from the M1 in the 70-90 Hz range at the
~0-100 ms time window. Previous MEG studies have reported
that transient finger movements induced gamma oscillations
from the M1 in children (Gaetz et al., 2010; Cheyne et al., 2014),
similar to the gamma oscillations described in adults (Cheyne et
al., 2008; Muthukumaraswamy, 2010).

Transient and narrow-band gamma oscillations are highly lo-
calized in the M1 in the 70-90 Hz range, as determined using
electrocorticograms (Pfurtscheller et al., 2003; Ball et al., 2008),
scalp EEG (Ball etal., 2008; Darvas et al., 2010), and MEG record-
ings (Cheyne et al., 2008; Muthukumaraswamy, 2010). Movement-
related gamma oscillations have been observed for both cued and
voluntary movements and were observed during active but not
passive movement (Muthukumaraswamy, 2010). Movement-
related gamma oscillations might reflect a disinhibition of move-
ment through corticobasal ganglia motor circuits and have a
facilitatory effect on movement initiation (Cheyne et al., 2008).
In the present study, we identified two aspects of motor-related
gamma oscillations that were altered in the ASD compared with
the TD group.

First, we observed a significantly lower peak frequency of
gamma oscillations in the ASD than the TD group. Gamma band
oscillations are generated by GABAergic interneurons, which are
attributed to the cortical E/I balance (Traub et al., 2003; Whit-
tington and Traub, 2003; Bartos et al., 2007; Cardin et al., 2009;
Buzsaki and Wang, 2012). The E/I imbalance has been reported
as a key neurophysiological hypothesis of ASD (Rubenstein and
Merzenich, 2003; Rubenstein, 2010). Using MRS, a low concen-
tration of the inhibitory neurotransmitter GABA in M1 has been
reported in individuals with ASD (Gaetz et al., 2014), supporting
the E/I imbalance (toward excitatory) model of autism. Regard-
ing the peak frequency of gamma oscillations and the GABAergic
system, pharmacological human studies have produced contro-
versial results. The frequency of gamma oscillations induced by
visual stimuli was decreased following the administration of
GABA enhancer (Campbell et al., 2014; Lozano-Soldevilla et al.,
2014; Magazzini et al., 2016), whereas gamma oscillations in-
duced by the movement task were not affected after GABA
enhancer administration (Muthukumaraswamy et al., 2013;
Campbell et al., 2014; Lozano-Soldevilla et al., 2014). Intrigu-
ingly, nonpharmacological human studies using MRS and MEG
have demonstrated positive relationships between the GABA
concentration and the gamma frequency in visual (Muthukuma-
raswamy et al., 2009) and motor (Gaetz et al., 2011) cortices. In
the present study, the frequency of motor-related gamma oscil-
lations in the ASD group was lower than those in the TD group.
Therefore, we speculate that the lower frequency of motor-
related gamma oscillations observed in the ASD group is related
to their lower GABA concentration in the M1. In addition, a
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significant negative correlation between the peak frequency of  peak frequency of motor-related gamma oscillations, reflecting a
gamma oscillations and the ADOS total score was observed, re-  low GABA concentration.

flecting the ASD symptom severity. This correlation implied that Second, the ASD group showed a significant reduction in
the subjects with severe autism symptoms tended to displayalow  motor-related gamma power in the bilateral M1. Reduced gamma



An et al. @ Altered Motor Gamma Oscillations in Autism

band activities during sensory processing have been reported in
individuals with ASD (Simon and Wallace, 2016). Gamma activ-
ity has been found to be either absent or reduced in individuals
with ASD in response to visual (Milne et al., 2009; Sun et al., 2012;
Snijders et al., 2013), auditory (Wilson et al., 2007; Gandal et al.,
2010), and tactile stimulations (Khan et al., 2015). Although
motor-related gamma responses differ from other sensory-
related gamma responses in many respects, the motor-related
gamma oscillations were also disrupted in the ASD group in the
present study, similar to other sensory-related gamma oscilla-
tions in the ASD group.

The observation of altered motor-related gamma oscillations
in children with ASD may be the result of a regional downregu-
lation in neurotransmitter (i.e., GABA) levels in the motor cor-
tex, which might account for the cortical E/I imbalance of
individuals with ASD. Additionally, there is a possibility that al-
tered motor-related gamma oscillations could reflect the imma-
ture or delayed development of motor control in young children
with ASD. A previous study using MEG demonstrated that some
younger children (e.g., 3—4 years old) showed motor-related gamma
oscillations predominantly in the lower gamma frequency (i.e.,
35-45 Hz) (Cheyne et al., 2014). Therefore, the results from the
present study may be explained by the cortical E/I imbalance and/or
immature motor system in young children with ASD.

In conclusion, although the cortical E/I imbalance and motor
deficits have been widely reported in individuals with ASD, this is
the first study to focus on gamma oscillations (a candidate indi-
cator of the E/I balance) during motor control in subjects with
ASD. In the present MEG study, we investigated gamma oscilla-
tions during a video game-like motor task in young children with
ASD and age- and IQ-matched TD children. We observed behav-
ioral and neurophysiological alterations in the ASD group. A
prolonged button response time in the ASD group might reflect
disruptions in basic motor control. The low peak frequency and
reduced power of motor gamma oscillations in subjects with ASD
suggested that they had lower GABA concentrations and a neural
E/I imbalance. The low peak frequency of motor-related gamma
oscillations correlated with the lower social ability among the
ASD symptoms. Using these behavioral performance and cortical
gamma oscillation findings, we could classify participants into
the TD and ASD groups with good accuracy.

Further studies with a longitudinal design, larger sample size,
and wider age range are necessary to draw a definitive conclusion
regarding the neurodevelopmental alterations in individuals with
ASD and to assess a more reliable discriminant classifier between
TD and ASD.

During the MEG recordings, we recorded the head movement
of the children subjects using video monitors. MEG signals, where
head of the subject obviously moved, were eliminated from the anal-
ysis by visual inspection. Further investigations with a quantification
algorithm for head movement will provide more reliable data.

In the present study, we focused on young children with ASD
and TD children because an early diagnosis of ASD is helpful in
supporting developmental follow-up in children with ASD. Our
study provides important information that will improve our un-
derstanding of the neurophysiological mechanism underlying
the earlier development of social abilities and motor control in
children with ASD. As a highly noninvasive method, MEG could
provide a potential biomarker for ASD by applying the observed
behavioral and neurophysiological alterations in patients with
ASD.
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